2016高考立体几何证明垂直的专题训练
立体几何垂直问题经典题型汇总
1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 证明 ◆◆◆◆◆◆◆◆◆◆◆2 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.3 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .证明:5 如图3,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .证明:.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD ,求证:AC ⊥BDADB OC证明: 7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1DD 1 C 1A 1B 1D CA B证明:8.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC分析:10【典型例题精讲】[例1] 如图9—39,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .图9—39[例2] A B C D F E G A'在长方体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,侧棱长为3,E 、F 分别是AB 1、CB 1的中点,求证:平面D 1EF ⊥平面AB 1C .【证明】如图9—43,∵E 、F 分别是AB 1、CB 1的中点,3.如图9—44,已知斜三棱柱ABC —A 1B 1C 1的各棱长均为2,侧棱与底面成3的角,侧面ABB 1A 1垂直于底面, 图9—44(1)证明:B 1C ⊥C 1A .(2)求四棱锥B —ACC 1A 1的体积.4.如图9—45,四棱锥P —ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD ,E 为AB 的中点,且PA=AB .图9—45(1)求证:平面PCE ⊥平面PCD ;(2)求点A 到平面PCE 的距离.5.已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,对角线AC=2,BD=23,E 、F 分别为棱CC 1、BB 1上的点,且满足EC=BC=2FB .图9—466(1)求证:平面AEF ⊥平面A 1ACC 1;(2)求异面直线EF 、A 1C 1所成角的余弦值. (2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16AC =,求三棱柱111ABC A B C -的体积. C 11A AB C。
专题4:立体几何中垂直关系的证明基础练习题
12.证明见解析
【分析】
在等腰三角形PAB中, 是 的中点,可得 ,利用线面垂直的判定定理可证 平面 ,利用线面垂直的性质定理,即可得证.
【详解】
证明:∵ 是 的中点, ,
∴ ,
∵ 底面 ,
∴ ,
又∵ ,即
∴ 平面 ,
∴ ,
∵ 平面 , 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ .
8.证明见解析
【分析】
由平面 ⊥平面 得到 ⊥平面 ,进一步得到 ⊥ ,再结合直径所对圆周角为直角得到 ⊥ , ⊥平面 ,从而得到证明.
【详解】
由题设知,平面 ⊥平面 ,交线为 .
因为 ⊥ , 平面 ,所以 ⊥平面 ,故 ⊥ .
因为 为 上异于 , 的点,且 为直径,所以 ⊥ .
又 = ,所以 ⊥平面 .
∴点O为三角形ABC的垂心,∴BO⊥AC
又因PO⊥AC,所以AC⊥PBO
故PB⊥AC
考点:证明异面直线垂直.
7.见解析
【分析】
由已知中P为正方形ABCD所在平面外一点,PA⊥面ABCD,结合正方形的几何特征,我们易得到BC⊥平面PAB,由线面垂直的性质得到BC⊥AE,结合已知中AE⊥PB,及线面垂直的判定定理,得到AE⊥平面PBC,最后再由线面垂直的判定定理,即可得到AE⊥PC.
【点睛】
此题考查线面垂直的性质和判定的综合应用,利用线面垂直得线线垂直.
5.证明见解析
【分析】
先证直线 平面 ,再证平面 ⊥平面 .
【详解】
证明:∵ 是圆的直径, 是圆上任一点, , ,
平面 , 平面 ,
,又 ,
平面 ,又 平面 ,
平面 ⊥平面 .
【点睛】
立体几何线面与面面垂直的证明
那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(完整word版)2016—高二高中立体几何证明垂直的专题训练
高中立体几何证明垂直的练习立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。
(2) 利用等腰三角形底边上的中线的性质。
(3) 利用勾股定理。
(4) 利用三角形全等或三角行相似。
(5) 利用直径所对的圆周角是直角,等等。
(1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,//1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;分析:取PC 的中点G ,易证EG//AF ,又易证A F ⊥平面PDC 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD3、如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ABCD ⊥平面;(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面.分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PABE FBACDP(第2题图)(2)利用等腰三角形底边上的中线的性质5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º 证明:AB ⊥PC因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =。
第8章立体几何专题4 垂直的证明常考题型专题练习——【含答案】
1垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一 线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA 平面PAD;【答案】(1)证明见解析;(2)2.【解析】(1)过A作AF⊥DC于F,则CF=DF=AF,所以∠DAC=90°,即AC⊥DA,又PA⊥底面ABCD,AC⊂面ABCD,所以AC⊥PA,因为PA、AD⊂面PAD,且PA∩AD=A,所以AC⊥平面PAD.例2、如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.11(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点C 1B 1A 1GFE DCBA求证:AC ⊥平面BEF ;1【解析】(1)在三棱柱111ABC A BC -中,∵1CC ⊥平面ABC , ∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点, ∴AC ⊥EF . ∵AB BC =. ∴AC ⊥BE , ∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥PA .在直角梯形ABCD 中,12BC CD AD ==,由题意可得2AB BDBC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面PAB.【巩固练习】1、如图,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D 是B1C1的中点.证明:A1D⊥平面A1BC;【答案】见解析【解析】证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以A1E⊥AE.11因为AB =AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.连接DE ,由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B,从而DE ∥A 1A 且DE =A 1A ,所以AA 1DE 为平行四边形.于是A 1D ∥AE. 因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ; (2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所以OE 是三角形PAC 的中位线,所以//PA OE ,而PA ⊂平面EDB ,OE ⊂平面EDB ,1所以PA ∥平面EDB.(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E =,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ; (2)求证:PA ⊥平面PCD 【答案】(1)详见解析(2)详见解析 【解析】(1)连结OE .1因为四边形ABCD 是平行四边形,AC ,BD相交于点O ,所以O 为AC 的中点. 因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥. 由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC , PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二 面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且2AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.旗开得胜1(1)求证://EF 平面PAD ; (2)求证:平面PAC ⊥平面PDE . 【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点//FG CD ∴,且12FG CD = 又E 为AB 中点//AE CD ∴,且12AE CD =//AE FG ∴,AE FG =四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD //EF ∴平面PAD(2)设AC DE H =由AEHCDH ∆∆及E 为AB 中点旗开得胜1得12AH AE CH CD == 又2AB =,1BC =3AC ∴=,1333AH AC ==23AH AB AE AC ∴==又BAD ∠为公共角GAE BAC ∴∆∆90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PAAC A =DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;MD CBA【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.例3、如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=3π,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=AD,点M在线段EF上。
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
立体几何垂直问题练习题
垂直问题线面垂直判定定理:ααα⊥⇒⊥⊥=⊂⊂l b l a l O b a b a ,,,, 若面面垂直判定定理:βααβ⊥⇒⊂⊥a a,1、 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F ,(1)求证:BC ⊥平面PAC ;(2)求证:PB ⊥平面AEF.2、如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .3、如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM.4、已知等腰梯形PDCB 中,A PD DC PB ,2,1,3===为PB 边上一点,且PB DA ⊥,将PAD ∆ 沿AD 折起,使AB PA ⊥求证:(1)PAB CD 面//;(2)PAC CB 面⊥5、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C F E P BABAMP6、如图,四棱锥P ABCD -中,底面ABCD 为平行四边形。
60,2,DAB AB AD PD ∠==⊥ 底面ABCD ,证明:PA BD ⊥7、已知如图,P ∉平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC .8、如图AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥平面ABC ,AE ⊥BD 于E ,AF ⊥CD 于F , 求证:⑴平面⊥BCD 平面ACD ⑵BD ⊥平面AEF9、、如图,在三棱柱111ABC A B C -中,1,BC BC BC AB ⊥⊥,1BC AB =,,,E F G 分别为线段1111,,AC AC BB 的中点,求证:(1)平面ABC ⊥平面1ABC ; (2)//EF 面11BCC B ; (3)GF ⊥平面11AB C10、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD 证明:AB ⊥平面VADVD CBA。
立体几何线面垂直-题型全归纳(解析版)
立体几何线面垂直-题型全归纳题型一利用等腰三角形“三线合一”例题1、如图,在正三棱锥P-ABC中,E,F,G分别为线段PA,PB,BC的中点,证明:BC⊥平面PAG。
证明:在正三棱锥P-ABC中,AB=AC,G是BC的中点,∴AG⊥BC,又 PB=PC,G是BC的中点,∴PG⊥BC,PG⋂AG=G,PG,AG⊂平面PAG,∴BC⊥平面PAG,解题步骤(1)根据线段的中点,找出相应的等腰三角形;(2)格式“因为D是BC的中点,且AB=AC,所以AD⊥BC”;(3)依据“三线合一”得到线线垂直。
变式训练1、已知四面体ABCD中,AB=AC,BD=CD,E为棱BC的中点,求证:AD⊥BC证明:连接DE,AB=AC,E是BC的中点,∴AE⊥BC,又 BD=CD,E是BC的中点,∴DE⊥BC,AE⋂DE=E,AE,DE⊂平面ADE,∴BC⊥平面ADE,AD⊂平面ADE,∴AD⊥BC变式训练2、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥证明:取AB的中点O,连接OP,OC, AP=BP,O是AB的中点,∴PE⊥AB,又 AC=BC,O是AB的中点,∴OC⊥AB,PO⋂CO=O,PO,CO⊂平面POC,∴AB⊥平面POC,PC⊂平面POC,∴AB⊥PC。
变式训练3、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,E为CD的中点,060=∠ABC ,求证:AB⊥平面PAE。
证明: 底面ABCD是菱形,060=∠ABC ,∴AE⊥CD,又 AB//CD,∴AB⊥AE,又PA⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PA,AP⋂AE=A,AP,AE⊂平面PAE,∴AB⊥平面PAE。
A CB P题型二利用勾股定理逆定理例题2、如图,在正方体1111D C B A ABCD -中,M 为棱1CC 的中点,AC 交BD 于点O ,求证:BDM1平面⊥O A 证明:连接OM,M A 1,11C A ,设正方体的棱长为2,则6222222121=+=+=AO A A O A 32122222=+=+=OC CM OM 91)22(222121121=+=+=M C C A M A 21221M A OM O A =+∴即:OM⊥OA 1又 在正方体1111D CB A ABCD -中,∴BD⊥OA 1 OM,BD⊂平面BDM,∴BDM1平面⊥O A 解题步骤(1)根据题干给出的线段长度(没有长度的可以假设),标示在图形上,找出相应的三角形;(2)把线段的长度分别求平方,判断能否构成“222c b a =+”;(3)根据平方关系得到线线垂直。
高考数学一轮复习 第八章 立体几何 8.5 直线、平面垂直的判定与性质练习 理-人教版高三全册数学试
§8.5直线、平面垂直的判定与性质考纲解读考点内容解读要求高考示例常考题型预测热度1.直线与平面垂直的判定与性质①以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.理解以下判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.②能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题掌握2016课标全国Ⅱ,19;2015,17;2015某某,19;2014某某,18;2013某某,19解答题★★★2.平面与平面垂直的判定与性质掌握2017课标全国Ⅰ,18;2017课标全国Ⅲ,19;2016课标全国Ⅰ,18;2015课标Ⅰ,18;2014某某,19解答题★★★分析解读 1.掌握直线与平面垂直的判定定理和性质定理.2.会运用直线与平面、平面与平面垂直的判定定理和性质定理解决简单的应用问题与证明问题.3.掌握转化的思想方法.4.高考中常以解答题的形式呈现,考查线线、线面、面面垂直的转化思想,分值约为12分,属中档题.五年高考考点一直线与平面垂直的判定与性质1.(2016课标全国Ⅱ,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=.(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.解析(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.因此EF⊥HD,从而EF⊥D'H.(2分)由AB=5,AC=6得DO=BO==4.由EF∥AC得==.所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.(4分)又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(5分)(2)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,y1,z1)是平面ABD'的法向量,则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD'的法向量,则即所以可取n=(0,-3,1).(10分)于是cos<m,n>===-,sin<m,n>=.因此二面角B-D'A-C的正弦值是.(12分)2.(2015,17,14分)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.解析(1)证明:因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB.所以AO⊥BE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos<n,p>==-.由题设知二面角F-AE-B为钝角,所以它的余弦值为-.(3)因为BE⊥平面AOC,所以BE⊥OC,即·=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以·=-2(a-2)-3(a-2)2.由·=0及0<a<2,解得a=.3.(2015某某,19,12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.解析解法一:(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD,而DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)如图,在面PBC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线.由(1)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=,在Rt△PDB中,由DF⊥PB,得∠DPF=∠FDB=,则tan=tan∠DPF===,解得λ=.所以==.故当面DEF与面ABCD所成二面角的大小为时,=.解法二:(1)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),=(λ,1,-1),点E是PC的中点,所以E,=,于是·=0,即PB⊥DE.又已知EF⊥PB,而DE∩EF=E,所以PB⊥平面DEF.因=(0,1,-1),·=0,则DE⊥PC,所以DE⊥平面PBC.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)因为PD⊥平面ABCD,所以=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB⊥平面DEF,所以=(-λ,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则cos===,解得λ=,所以==.故当面DEF与面ABCD所成二面角的大小为时,=.教师用书专用(4—9)4.(2015某某,19,13分)如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形,A1A=6,且A1A⊥底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P-QD-A的余弦值为,求四面体ADPQ的体积.解析解法一:由题设知,AA1,AB,AD两两垂直.以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.(1)若P是DD1的中点,则P,=.又=(3,0,6),于是·=18-18=0,所以⊥,即AB1⊥PQ.(2)由题设知,=(6,m-6,0),=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面PQD的法向量,则即取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(0,0,1),所以cos<n1,n2>===.而二面角P-QD-A的余弦值为,因此=,解得m=4,或m=8(舍去),此时Q(6,4,0).设=λ(0<λ≤1),而=(0,-3,6),由此得点P(0,6-3λ,6λ),所以=(6,3λ-2,-6λ).因为PQ∥平面ABB1A1,且平面ABB1A1的一个法向量是n3=(0,1,0),所以·n3=0,即3λ-2=0,亦即λ=,从而P(0,4,4).于是,将四面体ADPQ视为以△ADQ为底面的三棱锥P-ADQ,则其高h=4.故四面体ADPQ的体积V=S△ADQ·h=××6×6×4=24.解法二:(1)如图a,取A1A的中点R,连接PR,BR.因为A1A,D1D是梯形A1ADD1的两腰,P是D1D的中点,所以P R∥AD,于是由AD∥BC知,PR∥BC,所以P,R,B,C四点共面.由题设知,BC⊥AB,BC⊥A1A,所以BC⊥平面ABB1A1,因此BC⊥AB1.①因为tan∠ABR====tan∠A1AB1,所以∠ABR=∠A1AB1,因此∠ABR+∠BAB1=∠A1AB1+∠BAB1=90°,于是AB1⊥BR.再由①即知AB1⊥平面PRBC.又PQ⊂平面PRBC,故AB1⊥PQ.图a图b(2)如图b,过点P作PM∥A1A交AD于点M,则PM∥平面ABB1A1.②因为A1A⊥平面ABCD,所以PM⊥平面ABCD.过点M作MN⊥QD于点N,连接PN,则PN⊥QD,∠PNM为二面角P-QD-A 的平面角,所以cos∠PNM=,即=,从而=.③连接MQ,由PQ∥平面ABB1A1及②知,平面PQM∥平面ABB1A1,所以MQ∥AB.又ABCD是正方形,所以ABQM为矩形,故MQ=AB=6.设MD=t,则MN==.④过点D1作D1E∥A1A交AD于点E,则AA1D1E为矩形,所以D1E=A1A=6,AE=A1D1=3,因此ED=AD-AE=3.于是===2,所以PM=2MD=2t.再由③,④得=,解得t=2,因此PM=4.故四面体ADPQ的体积V=S△ADQ·PM=××6×6×4=24.5.(2014某某,18,13分)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD 于点E.(1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值.解析(1)证明:∵PD⊥平面ABCD,AD⊂平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,AF∩AD=A,∴PC⊥平面ADF,即CF⊥平面ADF.(2)解法一:设AB=1,则Rt△PDC中,CD=1,∵∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,∴CF=,又FE∥CD,∴==,∴DE=,同理,EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0).设m=(x,y,z)是平面AEF的法向量,则又∴令x=4,得z=,故m=(4,0,),由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为θ,可知θ为锐角,cos θ=|cos<m,>|===,故二面角D-AF-E的余弦值为.解法二:设AB=1,∵CF⊥平面ADF,∴CF⊥DF.∴在△CFD中,DF=,∵CD⊥AD,CD⊥PD,∴CD⊥平面ADE.又∵EF∥CD,∴EF⊥平面ADE.∴EF⊥AE,∴在△DEF中,DE=,EF=,在△ADE中,AE=,在△ADF中,AF=.由V A-DEF=·S△ADE·EF=·S△ADF·h E-ADF,解得h E-ADF=,设△AEF的边AF上的高为h,由S△AEF=·EF·AE=·AF·h,解得h=×,设二面角D-AF-E的平面角为θ.则sin θ==××=,∴cos θ=.6.(2014某某,17,13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.解析(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.(2)过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,又BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD.以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量为n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量为n=(1,-1,1).设直线AD与平面MBC所成角为θ,则sin θ=|cos<n,>|==,即直线AD与平面MBC所成角的正弦值为.7.(2014某某,19,12分)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.解析(1)证明:因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD,因为CC1∥DD1,所以CC1⊥BD,而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C,故O1O⊥底面ABCD.(2)解法一:如图,过O1作O1H⊥OB1于H,连接HC1.由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1,进而OB1⊥C1H,故∠C1HO1是二面角C1-OB1-D的平面角,不妨设AB=2,因为∠CBA=60°,所以OB=,OC=1,OB1=.在Rt△OO1B1中,易知O1H==2,而O1C1=1,于是C1H===.故cos∠C1HO1===.即二面角C1-OB1-D的余弦值为.解法二:因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥BD,又由(1)知O1O⊥底面ABCD,从而OB、OC、OO1两两垂直.如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz,不妨设AB=2,因为∠CBA=60°,所以OB=,OC=1,于是相关各点的坐标为O(0,0,0),B1(,0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的法向量,则即取z=-,则x=2,y=2,所以n2=(2,2,-),设二面角C1-OB1-D的大小为θ,易知θ是锐角,于是cos θ=|cos<n1,n2>|===.故二面角C1-OB1-D的余弦值为.8.(2013某某,19,12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.解析(1)如图,在平面ABC内,过点P作直线l∥BC,分别交AB,AC于点M,N,因为l在平面A1BC外,BC在平面A1BC内,由直线与平面平行的判定定理可知,l∥平面A1BC.因为AB=AC,D是BC的中点,所以BC⊥AD,则直线l⊥AD.因为AA1⊥平面ABC,所以AA1⊥直线l.又因为AD,AA1在平面ADD1A1内,且AD与AA1相交,所以直线l⊥平面ADD1A1.(6分)(2)解法一:连接A1P,过A作AE⊥A1P于E,过E作EF⊥A1M于F,连接AF.由(1)知,MN⊥平面AEA1,所以平面AEA1⊥平面A1MN.所以AE⊥平面A1MN,则A1M⊥AE.所以A1M⊥平面AEF,则A1M⊥AF.故∠AFE为二面角A-A1M-N的平面角(设为θ).设AA1=1,则由AB=AC=2AA1,∠BAC=120°,有∠BAD=60°,AB=2,AD=1.又P为AD的中点,所以M为AB中点,且AP=,AM=1,所以在Rt△AA1P中,A1P=;在Rt△A1AM中,A1M=.从而AE==,AF==,所以sin θ==,所以cos θ===.故二面角A-A1M-N的余弦值为.(12分)解法二:设A1A=1.如图,过A1作A1E平行于B1C1,以A1为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O-xyz(点O与点A1重合).则A1(0,0,0),A(0,0,1).因为P为AD的中点,所以M,N分别为AB,AC的中点,故M,N,所以=,=(0,0,1),=(,0,0).设平面AA1M的一个法向量为n1=(x1,y1,z1),则即故有从而取x1=1,则y1=-,所以n1=(1,-,0).设平面A1MN的一个法向量为n2=(x2,y2,z2),则即故有从而取y2=2,则z2=-1,所以n2=(0,2,-1).设二面角A-A1M-N的平面角为θ,又θ为锐角,则cos θ===.故二面角A-A1M-N的余弦值为.(12分)9.(2013某某,18,14分)如图①,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=,O 为BC的中点.将△ADE沿DE折起,得到如图②所示的四棱锥A'-BCDE,其中A'O=.(1)证明:A'O⊥平面BCDE;(2)求二面角A'-CD-B的平面角的余弦值.图①图②解析(1)在题图①中,易得OC=3,AC=3,AD=2.连接OD,OE,在△OCD中,由余弦定理可得OD==.由翻折不变性可知A'D=2,所以A'O2+OD2=A'D2,所以A'O⊥OD,同理可证A'O⊥OE,又OD∩OE=O,所以A'O⊥平面BCDE.(2)解法一:过O作OH⊥CD交CD的延长线于H,连接A'H,因为A'O⊥平面BCDE,所以A'H⊥CD,所以∠A'HO为二面角A'-CD-B的平面角.结合题图①可知,H为AC中点,故OH=,从而A'H==,所以cos∠A'HO==,所以二面角A'-CD-B的平面角的余弦值为. 解法二:以O点为原点,建立空间直角坐标系O-xyz,如图所示,则A'(0,0,),C(0,-3,0),D(1,-2,0),所以=(0,3,),=(-1,2,).设n=(x,y,z)为平面A'CD的法向量,则即解得令x=1,得n=(1,-1,).由(1)知,=(0,0,)为平面CDB的一个法向量,所以cos<n,>===,即二面角A'-CD-B的平面角的余弦值为.考点二平面与平面垂直的判定与性质1.(2017课标全国Ⅰ,18,12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.解析本题考查了立体几何中面面垂直的证明和二面角问题.(1)由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,又AP∩PD=P,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)在平面PAD内作PF⊥AD,垂足为F.由(1)可知,AB⊥平面PAD,故AB⊥PF,又AD∩AB=A,可得PF⊥平面ABCD.以 F为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系F-xyz.由(1)及已知可得A,P,B,C.所以=,=(,0,0),=,=(0,1,0).设n=(x1,y1,z1)是平面PCB的法向量,则即可取n=(0,-1,-).设m=(x2,y2,z2)是平面PAB的法向量,则即可取m=(1,0,1).则cos<n,m>==-.易知二面角A-PB-C为钝二面角,所以二面角A-PB-C的余弦值为-.2.(2016课标全国Ⅰ,18,12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.解析(1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.(2分)又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(3分)(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系G-xyz.(6分)由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则|DF|=2,|DG|=,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,).由已知得,AB∥EF,所以AB∥平面EFDC.(8分)又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE-F的平面角,∠CEF=60°.从而可得C(-2,0,).所以=(1,0,),=(0,4,0),=(-3,-4,),=(-4,0,0).(10分)设n=(x,y,z)是平面BCE的法向量,则即所以可取n=(3,0,-).设m是平面ABCD的法向量,则同理可取m=(0,,4).则cos <n,m>==-.故二面角E-BC-A的余弦值为-.(12分)3.(2015课标Ⅰ,18,12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.解析(1)证明:连接BD.设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC=.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=,且EG⊥AC.在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=,可得EF=.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.(6分)(2)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,||为单位长,建立空间直角坐标系G-xyz.由(1)可得A(0,-,0),E(1,0,),F,C(0,,0),所以=(1,,),=.(10分)故cos<,>==-.所以直线AE与直线CF所成角的余弦值为.(12分)教师用书专用(4)4.(2014某某,19,12分)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.解析(1)证明:ABCD为矩形,故AB⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,故AB⊥PD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连接PG.故PO⊥平面ABCD,BC⊥平面POG,所以BC⊥PG.在Rt△BPC中,PG=,GC=,BG=.设AB=m,则OP==,故四棱锥P-ABCD的体积V=··m·=.因为m==,故当m=,即AB=时,四棱锥P-ABCD的体积最大.此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故=,=(0,,0),=.设平面BPC的一个法向量为n1=(x,y,1),则由n1⊥,n1⊥得解得x=1,y=0,所以n1=(1,0,1).同理可求出平面DPC的一个法向量为n2=.从而平面BPC与平面DPC的夹角θ的余弦值为cos θ===.三年模拟A组2016—2018年模拟·基础题组考点一直线与平面垂直的判定与性质形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设=m(m>0),则“0<m<2”是“三棱锥C-ABE的体积不小于1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B2.(人教A必2,二,2-3-1,2,变式)如果PA、PB、PC两两垂直,那么点P在平面ABC内的投影一定是△ABC的( )A.重心B.内心C.外心D.垂心答案 D3.(2018某某某某模拟,19)如图,在三棱锥P-ABC中,PA⊥AC,PC⊥BC,M为PB的中点,D为AB的中点,且△AMB 为正三角形.(1)求证:BC⊥平面PAC;(2)若PA=2BC,三棱锥P-ABC的体积为1,求点B到平面DCM的距离.解析(1)证明:在正△AMB中,D是AB的中点,所以MD⊥AB.因为M是PB的中点,D是AB的中点,所以MD∥PA,故PA⊥AB.又PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.因为BC⊂平面ABC,所以PA⊥BC.又PC⊥BC,PA∩PC=P,PA,PC⊂平面PAC,所以BC⊥平面PAC.(2)设AB=x,则PB=2x,PA=2MD=x,BC=,AC=x.三棱锥P-ABC的体积V=·S△ABC·PA=x3=1,得x=2.所以AB=MB=2,BC=,AC=1,MD=.所以S△BCD=S△ABC=×××1=.由(1)知MD∥PA,PA⊥平面ABC,所以MD⊥DC.在△ABC中,CD=AB=1,所以S△MCD=×MD×CD=××1=.设点B到平面DCM的距离为h.因为V M-BCD=V B-MCD,所以S△BCD·MD=S△MCD·h,即××=××h.所以h=.故点B到平面DCM的距离为.考点二平面与平面垂直的判定与性质4.(2017某某某某二模,16)如图,一XA4纸的长、宽分别为2a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是.(写①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.答案①②③④5.(2018某某某某模拟,18)如图,在四棱锥P-ABCD中,在底面四边形ABCD中,AD∥BC,AD⊥CD,Q是AD的中点,M 是棱PC的中点,PA=PD=2,BC=AD=1,CD=,PB=.(1)求证:PA∥平面MQB;(2)求证:平面PAD⊥平面ABCD;(3)求三棱锥B-PQM的体积.解析(1)证明:如图,连接AC交BQ于N,连接MN,CQ.∵BC=AD,AD∥BC,Q是AD的中点,∴AQ∥BC,且AQ=BC,∴四边形ABCQ是平行四边形,∴N是BQ的中点.∵M是棱PC的中点,∴MN∥PA.∵PA⊄平面MQB,MN⊂平面MQB,∴PA∥平面MQB.(2)证明:∵AD∥BC,BC=AD=1,Q是AD的中点,∴四边形BCDQ为平行四边形,∴CD∥BQ.∵AD⊥CD,∴QB⊥AD.又PA=PD=2,AD=2,Q是AD的中点,∴PQ=.又QB=CD=,PB=,∴PB2=PQ2+QB2.又PQ∩AD=Q,∴BQ⊥平面PAD.又BQ⊂平面ABCD,∴平面PAD⊥平面ABCD.(3)∵PA=PD=2,Q是AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD.又M是棱PC的中点,故V B-PQM=V P-BQC=×××1××=.6.(2017某某部分重点中学联考,19)如图,已知AB是☉O的直径,点C是☉O上的动点,PA垂直于平面ABC.(1)证明:平面PAC⊥平面PBC;(2)设PA=,AC=1,求三棱锥A-PBC的高.解析(1)证明:∵AB是☉O的直径,点C是☉O上的动点,∴∠ACB=90°,即BC⊥AC.(1分)又∵PA垂直于平面ABC,BC⊂平面ABC,∴PA⊥BC.(2分)∵PA∩AC=A,∴BC⊥平面PAC.(4分)又BC⊂平面PBC,∴平面PAC⊥平面PBC.(6分)(2)如图,过点A作PC的垂线,垂足为D,由平面PAC⊥平面PBC,平面PAC∩平面PBC=PC,易得AD的长即为三棱锥A-PBC的高.(8分)在Rt△APC中,PA=,AC=1,∴PC=2,(9分)由AD×PC=PA×AC,得AD===,∴三棱锥A-PBC的高为.(12分)B组2016—2018年模拟·提升题组(满分:45分时间:60分钟)一、填空题(共5分)1.(2016某某五个一名校3月联考,15)在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是AC1,A1B1的中点,点P 在其表面上运动,则总能使MP与BN垂直的点P的轨迹的周长等于.答案2+二、解答题(共40分)2.(2018某某某某模拟,18)如图,在四棱锥P-ABCD中,底面四边形ABCD是边长为的正方形,PA⊥BD.(2)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥D-ACE的体积.解析(1)证明:设AC,BD交于点O,连接PO.∵四边形ABCD是正方形,∴AC⊥BD且O为BD的中点.又∵PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,由于PO⊂平面PAC,故BD⊥PO.又∵BO=DO,∴PB=PD.(2)设PD的中点为Q,连接AQ,EQ,∴EQ=CD且EQ∥CD,又F为AB的中点,且AB CD,∴EQ AF.∴四边形AFEQ为平行四边形,∴EF∥AQ.∵EF⊥平面PCD,∴AQ⊥平面PCD,∴AQ⊥PD,∵PD的中点为Q,∴AP=AD=.由AQ⊥平面PCD,可得AQ⊥CD.又∵AD⊥CD,AQ∩AD=A,∴CD⊥平面PAD,∴CD⊥PA.又∵BD⊥PA,CD∩BD=D,∴PA⊥平面ABCD.V D-ACE=V E-ACD=×PA×S△ACD=×××××=,故三棱锥D-ACE的体积为.3.(2018某某某某模拟,19)如图1,已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD 上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图2).G是BC的中点,以F、B、C、D 为顶点的三棱锥的体积记为f(x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成角的余弦值.图1 图2解析(1)证明:作DH⊥EF,垂足为H,连接BH、GH、EG.∵平面AEFD⊥平面EBCF,平面AEFD∩平面EBCF=EF,∴DH⊥平面EBCF,又∵EG⊂平面EBCF,∴EG⊥DH.∵AE=2,BG=BC=2,∴BE=BG.∵EH=AD=BC=BG,EF∥BC,∠EBC=90°,∴四边形BGHE为正方形,∴EG⊥BH.又∵BH、DH⊂平面DBH,且BH∩DH=H,∴EG⊥平面DBH.∵BD⊂平面DBH,∴EG⊥BD.(2)∵AE⊥EF,平面AEFD⊥平面EBCF,平面AEFD∩平面EBCF=EF,∴AE⊥平面EBCF.结合DH⊥平面EBCF,得AE∥DH,∴四边形AEHD是矩形,得DH=AE,故以F、B、C、D为顶点的三棱锥D-BCF的高DH=AE=x,又∵S△BCF=BC·BE=×4×(4-x)=8-2x,∴三棱锥D-BCF的体积V=f(x)=S△BFC·DH=S△BFC·AE=(8-2x)x=-x2+x=-(x-2)2+.∴当x=2时, f(x)取最大值.(3)由(2)知当f(x)取得最大值时,AE=2,故BE=2,结合DH∥AE,可得∠BDH或其补角是异面直线AE与BD所成的角.在Rt△BEH中,BH===2.∵DH⊥平面EBCF,BH⊂平面EBCF,∴DH⊥BH.在Rt△BDH中,BD===2,∴cos∠BDH===.∴异面直线AE与BD所成角的余弦值为.4.(2017某某某某一模,18)如图,在四棱锥P-ABCD中,O为AB的中点,平面POC⊥平面ABCD,AD∥BC,AB⊥BC,PA=PB=BC=AB=2,AD=3.(1)求证:平面PAB⊥平面ABCD;(2)求二面角O-PD-C的余弦值.解析(1)证明:∵PA=PB,O为AB的中点,AB=2,∴PO⊥AB,AO=BO=1.过点C作CE∥AB交AD于E,∵AD∥BC,AB⊥BC,∴四边形ABCE是矩形,∴AE=BC=2,CE=AB=2,又∵AD=3,∴DE=1,∴CD==,∵AD∥BC,AB⊥BC,∴AD⊥AB,由勾股定理得OC===,OD===,显然OD2=OC2+CD2=10,∵平面POC⊥平面ABCD,平面POC∩平面ABCD=OC,∴CD⊥平面POC,又PO⊂平面POC,∴CD⊥PO,易知AB与CD相交,∴PO⊥平面ABCD,∵PO⊂平面PAB,∴平面PAB⊥平面ABCD.(2)如图,建立空间直角坐标系O-xyz,则P(0,0,),D(-1,3,0),C(1,2,0),∴=(0,0,),=(-1,3,0),=(-1,-2,),=(-2,1,0).假设平面OPD的法向量为n1=(x1,y1,z1),平面PCD的法向量为n2=(x2,y2,z2).由可得取y1=1,得x1=3,即n1=(3,1,0).由可得取x2=,得y2=2,z2=5,即n2=(,2,5),∴cos<n1,n2>===,故二面角O-PD-C的余弦值为.C组2016—2018年模拟·方法题组方法1 直线与平面垂直的判定方法1.(2018某某某某模拟,18)如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE 沿BE折起至△PBE的位置(如图2所示),连接AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.图1图2解析(1)证明:由翻折不变性可知PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,在题图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF.又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.(2)由(1)知PF⊥平面ABED,∴PF为三棱锥P-ABE的高.设点A到平面PBE的距离为h,V A-PBE=V P-ABE,即××6×9×h=××12×6×2,∴h=,即点A到平面PBE的距离为.2.(2017某某五校联考,19)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E为线段AB上一点,且AE∶EB=7∶2,点F、G、M分别为线段PA、PD、BC的中点.(1)求证:PE⊥平面ABCD;(2)若平面EFG与直线CD交于点N,求二面角P-MN-A的余弦值.解析(1)证明:在等腰△APB中,cos∠ABP==,则由余弦定理可得PE2=+22-2××3×2×=,∴PE=.∴PE2+BE2=4=PB2,∴PE⊥AB.∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,∴PE⊥平面ABCD.(2)连接EN,由已知可得EN∥AD.所以EN⊥AB.由(1)可知PE⊥EN.以E为坐标原点,直线EP、EB、EN分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则P,M,N(0,0,2),从而=,=.设平面PMN的法向量为n=(x,y,z),则n·=0,n·=0,即-x+y+z=0,-y+z=0,令y=3,可得n=.由(1)知平面AMN的一个法向量为=,∴cos<n,>==,由图可知二面角P-MN-A的平面角为锐角,故二面角P-MN-A的余弦值为.方法2 平面与平面垂直的证明方法3.(2018某某某某一中模拟,18)如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD.证明(1)取PC的中点G,连接FG、EG,∴FG为△CDP的中位线,∴FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD,∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG.又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE.(2)∵PA=AD,∴AF⊥PD,∵PA⊥平面ABCD,∴PA⊥CD.又∵CD⊥AD,AP∩AD=A,∴CD⊥平面PAD,∴CD⊥AF.又∵CD∩PD=D,∴AF⊥平面PDC.由(1)得EG∥AF,∴EG⊥平面PDC.又EG⊂平面PCE,∴平面PCE⊥平面PCD.4.(2018某某某某模拟,19)如图,在四棱锥S-ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=AB,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S-BCD的体积为,求侧面△SAB的面积.解析(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=AB,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,在△ABD中,AD==a,所以AD2+BD2=AB2,所以BD⊥AD,由平面SAD⊥底面ABCD可得BD⊥平面SAD.又BD⊂平面SBD,所以平面SBD⊥平面SAD.(2)∠SDA=120°,且三棱锥S-BCD的体积为,在△SAD中,由AD=SD=a,可得SA=2SDsin 60°=a,作SH⊥AD,则SH=SDsin 60°=a,由SH⊥平面BCD,可得V S-BCD=×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,故SB===2.又AB=2,所以SB=AB,在等腰三角形SBA中,边SA上的高为=,则△SAB的面积为×SA×=.5.(2017某某百校联盟4月联考,19)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,AD⊥DC,PD⊥平面ABCD,E、F、M分别是棱PD、PC和BC上的点,且===,N是PA上一点,AD=PD.(1)求当为何值时,平面NEF⊥平面MEF;(2)在(1)的条件下,若AB=DC=2,PD=3,求平面B与平面MEF所成锐二面角的余弦值.解析(1)在AD上取一点G,使得=,连接EG,MG,∵==,∴EG∥PA,MG∥CD,(2分)∵PD⊥平面ABCD,∴PD⊥CD,又∵AD⊥CD,AD∩PD=D,∴CD⊥平面PAD,(3分)∵=,∴EF∥DC,∴EF⊥平面PAD.(4分)若平面NEF⊥平面MEF,则∠NEG=90°,(5分)在Rt△PAD中,AD=PD,∴PA=PD,PN=PD,∴当=2时,平面NEF⊥平面MEF.(6分)(2)以D为坐标原点,建立如图所示的空间直角坐标系D-xyz,则A(3,0,0),B(3,2,0),C(0,4,0),P(0,0,3),N(1,0,2),∴=(2,2,-2),=(3,-2,0),(7分)设平面B的法向量为n=(x,y,z),则即令y=3,则x=2,z=5,∴n=(2,3,5).(9分)∵EF∥AB,FM∥PB,则易知平面MEF∥平面PAB,(10分)易知平面PAB的一个法向量为n1=(1,0,1),∴平面MEF的一个法向量为n1=(1,0,1),(11分)∴|cos<n,n1>|=,即平面B与平面MEF所成锐二面角的余弦值为.(12分)。
高考复习 立体几何大题第一问精练(文科)
高考复习 立体几何大题第一问精练题型1 线线平行、垂直1.(2016新课标Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD , 折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.2.(2015新课标Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由).解 (1)交线围成的正方形EHGF 如图:题型2 线面平行3.(2017新课标Ⅱ卷)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=21AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD.4.(2016新课标Ⅲ卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB.解析 (Ⅰ)由已知得AM=32AD=2.取BP 的中点T ,连结AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=21BC=2.(3分) 又AD ∥BC ,故TN ∥AM ,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(6分)5.(2016四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =21AD.(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD.(1)解 取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM.所以四边形AMCB 是平行四边形,所以CM ∥AB. 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)6.(2014新课标Ⅱ卷)如图,四棱锥PABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB∥平面AEC.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.题型3 线面垂直7.(2017新课标Ⅲ卷)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD.[解析] (1)证明:取AC中点O,连OD,OB,∵AD=CD,O为AC中点,∴AC⊥OD,又∵△ABC是等边三角形,∴AC⊥OB,又∵OB∩OD=O,∴AC⊥平面OBD,BD 平面OBD,∴AC⊥BD;8.(2018新课标Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC.(1)证明:∵AB=BC=22,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;9.(2015广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD .解 (1)因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA.(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD.10.(2016北京卷)如图,在四棱锥PABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC.(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC.又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC.(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC.11.(2014山东卷)如图,四棱锥PABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =21AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC.证明 (1)设AC ∩BE =O ,连接OF ,EC.由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,所以在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP、AC⊂平面PAC,所以BE⊥平面PAC.12.(2016新课标Ⅰ卷)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点.解:(Ⅰ)证明:∵P−ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;题型4 面面垂直13.(2018新课标Ⅲ卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.14.(2018新课标Ⅰ卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC.解:(1)证明:∵在平行四边形ABCM 中,∠ACM=90°,∴AB ⊥AC ,又AB ⊥DA .且AD ∩AB=A ,∴AB ⊥面ADC ,∴AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;15.(2017新课标Ⅰ卷)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD .(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD16.(2015新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED.解 (1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.所以AC ⊥平面BED ,又AC ⊂平面AEC ,所以平面AEC ⊥平面BED.17.(2015湖南卷)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.。
高考数学二轮复习 专题四 立体几何 第2讲 空间中的平行与垂直的证明问题训练 文
专题四立体几何第2讲空间中的平行与垂直的证明问题训练文一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为( )A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是( )A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面ABD,又AB⊂平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC,又AB⊂平面ABC,所以平面ABC⊥平面ADC,故选D.答案 D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC ⊥平面PBC . 其中正确的命题是________(填上所有正确命题的序号). 解析①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC .答案 ②④7.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF =G ,现在沿AE 、EF 、FA 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -AEF 中必有________(填序号).①AP ⊥△PEF 所在平面;②AG ⊥△PEF 所在平面;③EP ⊥△AEF 所在平面;④PG ⊥△AEF 所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴ ⎭⎪⎬⎪⎫AP ⊥PEAP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF .答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________. 解析 如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R+R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案25π4三、解答题9.(2016·北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.(1)证明∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面PAC,AC⊂平面PAC,∴CD⊥平面PAC.(2)证明∵AB∥CD,CD⊥平面PAC,∴AB⊥平面PAC,AB⊂平面PAB,∴平面PAB⊥平面PAC.(3)解棱PB上存在点F,使得PA∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,∴EF为△PAB的中位线,∴EF∥PA.又PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.10.(2015·山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.11.(2016·南昌5月模拟)如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,∵AE ⊂平面ABE ,∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N点,连接MN ,则由比例关系易得CN =13CE . ∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN ,∴平面MGN ∥平面ADE .又MN ⊂平面MGN ,∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.。
(完整版)立体几何证明垂直专项含练习题及答案.doc
精品字里行间精品文档立体几何证明 ------ 垂直一. 复习引入1.空间两条直线的位置关系有: _________,_________,_________三种。
2.(公理 4)平行于同一条直线的两条直线互相 _________.3.直线与平面的位置关系有 _____________,_____________,_____________三种。
4.直线与平面平行判定定理 : 如果 _________的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 _________________________.6.两个平面的位置关系 :_________,_________.7.判定定理 1:如果一个平面内有 _____________直线都平行于另一个平面,那么这两个平面平行 .8.线面垂直性质定理:垂直于同一条直线的两个平面 ________.9.如果两个平行平面同时和第三个平面相交,那么它们的________平行 .10.如果两个平面平行,那么其中一个平面内的所有直线都 _____于另一个平面 . 二.知识点梳理知识点一、直线和平面垂直的定义与判定定义语言描述如果直线l 和平面α内的任意一条直线都垂直,我们就说直线 l 与平面互相垂直,记作 l ⊥α图形判定一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直 .条件 b 为平面α内的任一直线,而 l 对这l ⊥m, l ⊥n,m∩n=B,m ,一直线总有 l ⊥αn结论l ⊥l ⊥要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条垂直于同一个平面的两条直线平行.直线垂直于这个平面内的所有直线图形条件结论知识点三、二面角Ⅰ .二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角-AB-. (简记P-AB-Q)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ .与棱垂直Ⅱ .二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱 l 的射线 OA 和 OB ,则射线 OA 和 OB 构成的AOB叫做二面角的平面角.作用:衡量二面角的大小;范围:001800.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面一个平面过另一个平面的垂线,则这角是直二面角,就说这两个平面垂两个平面垂直直.图形结果α∩β =lα-l-β=90oα⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)三.常用证明垂直的方法立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:( 1)通过“平移”。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。
考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。
(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
高考数学专题复习立体几何之垂直关系精选例题习题
高考数学专题复习 立体几何 之 垂直关系例题讲解:例1:如图,在三棱锥P -ABC 中,AB =BC =CA ,PA ⊥底面ABC ,D 为AB 的中点. (1)求证:CD ⊥PB ;(2)设二面角A -PB -C 的平面角为α,且tan α=7,若底面边长为1,求三棱锥P -ABC 的体积.答案与提示:(2)18例2:已知ABCD —A 1B 1C 1D 1是棱长为a 的正方体,E 、F 分别是棱AA 1和CC 1的中点,G 是A 1C 1的中点. (1)求证平面BFD 1E ⊥平面BGD 1; (2)求点G 到平面BFD 1E 的距离; (3)求四棱锥A 1-BFD 1E 的体积.答案与提示:(2)66a (3) 16a 3例3:四边形ABCD 中.AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿对角线BD 折起,记折起点A 的位置为P ,且使平面PBD ⊥平面BCD . (1)求证:CD ⊥平面PBD ; (2)求证:平面PBC ⊥平面PDC ; (3)求二面角P —BC —D 的大小.答案与提示:(2)先证PB ⊥面PCD (3)arctan 2E备用题在三棱锥S -ABC 中,已知SA =4,AB =AC ,BC =3 6 ,∠SAB =∠SAC =45°,SA 与底面ABC 所的角为30°. (1)求证:SA ⊥BC ;(2)求二面角S —BC —A的大小; (3)求三棱锥S —ABC 的体积. 答案与提示:(2)arctan 23 3 (3)9 2作业1.在四棱锥P -ABCD 中,已知PD ⊥底面ABCD ,底面ABCD 为等腰梯形,且∠DAB =60°,AB =2CD ,∠DCP =45°,设CD =a . (1)求四棱锥P -ABCD 的体积. (2)求证:AD ⊥PB . 答案与提示:(1)34a 32.如图,正三角形ABC 与直角三角形BCD 成直二面角,且∠BCD =90°,∠CBD =30°. (1)求证:AB ⊥CD ;(2)求二面角D —AB —C 的大小; 答案与提示:(2)arctan 23S B。
2016高考立体几何证明垂直的专题训练
高中立体几何证明垂直的专题训练(1) 通过“平移”, 根据若a // b,且b 平面,则a 平面12 1.在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=证:AE⊥平面PDC. DC,E为PD 中点. 求DAEBCP2.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点 E 为棱AB的中点.求证:平面PCE⊥平面PCD;PFA DECB(第 2 题图)3、如图所示,在四棱锥P ABCD 中,AB 平面PAD , AB / /CD , PD AD , E 是PB 的中点, F 是CD 上的点,且 1DF AB , PH 为PAD 中AD 边上的高。
2(1)证明:PH 平面ABCD ;(2)若PH 1,AD 2,FC 1,求三棱锥 E BCF 的体积;(3)证明:EF 平面PAB .14. 如图所示, 四棱锥P ABCD 底面是直角梯形BA AD, CD AD, CD 2 AB, PA 底面ABCD,E为PC的中点, PA=AD。
证明: BE 平面PDC ;(2)利用等腰三角形底边上的中线的性质5、在三棱锥P ABC 中,AC BC 2,ACB 90 ,AP BP AB ,PC AC .P (Ⅰ)求证:PC AB ;(Ⅱ)求二面角 B AP C 的大小;A BC6、如图,在三棱锥P ABC 中,⊿PAB 是等边三角形,∠PAC=∠PBC=90 o证明:AB⊥PC2(3)利用勾股定理7、如图,四棱锥P ABCD 的底面是边长为 1 的正方形,PA CD, PA 1, PD 2. 求证: PA 平面ABCD ;_P_D_A_B_C18、如图1,在直角梯形ABCD 中,AB // CD ,AB AD ,且 1AB AD CD .2现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.(1)求证:AM ∥平面BEC ;(2)求证:BC 平面BDE ;EE D CM FMD CF A AB B39、如图,四面体ABCD中,O、E 分别是BD、BC的中点,CA CB CD BD 2, AB AD 2.A(1)求证:AO 平面BCD;()求异面直线与所成角的大小; 2 ABCDDOCB E10 、如图,四棱锥S A B C D中,AB BC , BC CD ,侧面SAB 为等边三角形,A B B C C D SD .2, 1(Ⅰ)证明:SD 平面SAB ;(Ⅱ)求AB 与平面SBC 所成角的大小.4(4)利用三角形全等或三角行相似11.正方体ABCD—A1B1 C1D1 中O为正方形ABCD的中心,M为BB1 的中点,求证:D1O⊥平面MAC.12.如图,正三棱柱ABC—A1B1C1 的所有棱长都为2,D为CC-1 中点. 求证:AB1⊥平面A1BD;13、. 如图,已知正四棱柱ABCD—A1B1C1D1 中,过点B作B1C的垂线交侧棱CC1 于点E,交B1C于点F,求证:A1C⊥平面BDE;5(5)利用直径所对的圆周角是直角14、如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.PBA . COD15、如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PA 平面ABCD .以BD 的中点O为球心、BD 为直径的球面交PD 于点M .P求证:平面ABM ⊥平面PCD ;.MADOBC6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
E
D C
B
A
高中立体几何证明垂直的专题训练
(1) 通过“平移”,根据若//,,a b b a αα⊥⊥且平面则平面 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=
2
1
DC ,中点为PD E .求证:AE ⊥平面PDC.
2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点.
求证:平面PCE ⊥平面PCD ; 3、如图所示,在四棱锥P ABCD -中,
AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是
CD 上的点,且1
2
DF AB =
,PH 为PAD ∆中AD 边上的高。
(1)证明:PH ABCD ⊥平面;
(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积;
(3)证明:EF PAB ⊥平面.
4.如图所示, 四棱锥P -ABCD 底面是直角梯形
,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD ,
E 为PC 的中点, PA =AD 。
证明: BE PDC ⊥平面;
(2)利用等腰三角形底边上的中线的性质
5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,
AP BP AB ==,PC AC ⊥.
(Ⅰ)求证:PC AB ⊥;
(Ⅱ)求二面角B AP C --的大小;
6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º
证明:AB ⊥PC (3)利用勾股定理
7、如图,四棱锥P ABCD -的底面是边长为1的正方形,
,1, 2.PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;
8、如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且
_ D
_ C
_ B
_ A
_ P
E F
B
A
C
D
P
(第2题图)
A C
B
P
C
A
D
B
O
E
12
1
==
=CD AD AB . 现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 和平面ABCD 垂直,M 为ED 的中点,如图2. (1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ; 9、如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点, 2, 2.
CA CB CD BD AB AD ====== (1)求证:AO ⊥平面BCD ;
(2)求异面直线AB 和CD 所成角的大小;
10、如图,四棱锥S ABCD -中,BC AB ⊥,BC CD ⊥,侧面SAB 为等边三角形,
2,1AB BC CD SD ====.
(Ⅰ)证明:SD SAB ⊥平面;
(Ⅱ)求AB 和平面SBC 所成角的大小. (4)利用三角形全等或三角行相似
11.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1
的中
点,
求证:D 1O ⊥平面MAC.
12.如图,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC -1
中点. 求证:AB 1⊥平面A 1BD ;
13、.如图,已知正四棱柱ABCD —A 1B 1C 1D 1中, 过点B 作B 1C 的垂线交侧棱CC 1于点E ,交B 1C 于点F , 求证:A 1C ⊥平面BDE ;
(5)利用直径所对的圆周角是直角
14、如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . (1)求证:平面PAC ⊥平面PBC ;
(2)若D 也是圆周上一点,且和C 分居直径AB 的两侧,试写出图中所
有互
相垂直的各对平面.
M A
F
B
C
D
E
M
E
D
C
B
A F
O A
C B
P
.
15、如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . 求证:平面ABM ⊥平面PCD ;
.
O
A
P M。