(学案)任意角和弧度制——任意角
北师大版4.1.3 任意角和弧度制及任意角的三角函数导学案

【导学释疑】
1.已知sin = ,cos = ,若 是第二象限角,求实数a的值. .
2.(1)已知扇形的周长为10,面积为4,求扇形圆心角的弧度数;
(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才能使扇形的面积最大?最大面积是多少?
3.设 为第三象限角,试判断 的符号. <0.
4.角 终边上的点P与A(a,2a)关于x轴对称(a≠0),角 终边上的点Q与A关于直线y=x对称,
A.-3B.3或
C.- D.-3或-
答案C
【学生小结】
谈谈学完本节课有什么收获?
教学反思
4、掌握三角函数在各个象限的符号
5.会做出某角的三角函数线
三、教学过程
【温故知新】
一、选择题
1.已知cos ·tan <0,那么角 是()
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角
2.若0<x< ,则下列命题中正确的是()
A.sinx< B. sinx> C. sinx< D. sinx>
答案D
3.与610°角终边相同的角表示为
A.k·360°+230°(k∈Z)B.k·360°+250°(k∈Z)
C.k·360°+70°(k∈Z)D.k·360°+270°(k∈Z)
答案B
4.已知( )sin2 <1,则 所在象限为
A.第一或第二象限B.第二或第四象限
C.第二或第三象限D.第一或第三象限
求sin ·cos +sin ·cos +tan ·tan 的值.-1.
【检测反馈】
5.已知点P(tan ,cos )在第三象限,则角 的终边在第几象限()
人教a版必修4学案:1.1.1任意角(含答案)

第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。
任意角、弧度制、任意角的三角函数教学设计

高三复习课《任意角、弧度制、任意角的三角函数》教学设计一.教学内容解析:这一节的内容主要有任意角的概念,包括正角、负角、零角,终边相同的角,象限角;弧度制,包括1弧度交的定义,角与弧长、半径的关系,角度与弧度的互换,扇形的面积公式;任意角的三角函数,这是这一节的重点,包括任意角的三角函数的定义,诱导公式一,角的三角函数在象限的符号,三角函数线等。
二. 教学目标设置:1.知识目标:(1)了解任意角的概念,掌握终边相同角的关系以及象限角的范围;(2)了解弧度制的概念,能进行角度与弧度的互化,掌握扇形的弧长公式与面积公式;(3)掌握任意角的三角函数的定义,会判断角的三角函数在象限的符号,理解三角函数线的定义,并能简单的运用等。
2.能力目标:(1)培养学生整理知识的能力;(2)培养学生的分析能力、观察能力、理解能力。
(3)培养学生的类比能力、探索能力。
(4)培养学生运用运用数学思想思考问题的能力。
三.学生学情分析:高三学生已经掌握了一定的知识,但知识网络不够完整;能解一些题,但解题方法还有所欠缺。
四.教学策略分析:通过思维导图的形式,展现知识点之间的内在联系;通过对问题的剖析,结合数学思想(化归与转化、数形结合、分类讨论、函数与方程等)探讨如何解题。
五.教学过程:1.知识的整理:画一个直角三角形,引导学生回忆初中三角函数的定义,举出两个特殊的直角三角形(用途:记住特殊的三角函数值)。
再从特殊到一般,让学生挖掘斜三角形的性质(学生课后整理)。
然后类比到扇形,找出相似点,引出1弧度角的定义,弧长、半径与圆心角的关系,弧度与角度的互化。
再把锐角推广的任意角,坐标角,引出象限角,半角的范围,角与角终边的关系。
再类比直角三角形中角的三角函数的定义,推广任意角的三角函数的定义,利用角与角终边的关系,得到诱导公式。
然后根据任意角的三角函数的定义,得到角的三角函数在象限的符号。
再得到三角函数线的定义及应用。
【设计意图】首先培养建立知识体系的能力。
高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。
2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。
二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。
●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。
三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。
●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。
●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。
2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。
●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。
●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。
3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。
●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。
●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。
4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。
《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四教案教案教学目标 1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题. 导入新课复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题. 3.初中的角是如何度量的?度量单位是什么?°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”可以简记为?. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30?k?360??????k?Z?的形式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边相同.从而得出一般规律:所有与角?终边相同的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边相同的角,都可以表示成角?与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,所以,与?120角终边相同的角是240,它是第三象限角;(2)640?280?360,所以,与640角终边相同的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????所以,?95012?角终边相同的角是12948?角,它是第二象限角.??例 2 若??k?360??1575?,k?Z,试判断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边相同,所以,?在第三象限.?例 3 写出下列各边相同的角的集合S,并把S中适合不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适合?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适合?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?Z??S中适合?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??所以,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.二、弧度制与弧长公式 1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴ 1?=?180rad???180 1rad??5718’.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r1801lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式 S?注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad , sin?表示?rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把下列各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30’. 解:(1)/71? (2)? (3) ? (4) ? 56变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)?18720?;(3)?. 63例7 把下列各角从弧度化为度:(1)?;(2) ;(3) 2;(4)35?. 4解:(1)108 o;(2);(3);(4)45o. 变式练习:把下列各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:因为2R+2R=8,所以R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)任意角和弧度制任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
高中数学第一章三角函数11任意角和弧度制111任意角知识巧解学案

1。
1.1 任意角疱工巧解牛知识•巧学一、正角、负角、零角1.一条射线的端点是O,它从初始位置OA旋转到终止位置OB,形成一个角α,点O是角α的顶点,射线OA、OB分别是角α的始边、终边。
我们规定,按逆时针方向旋转形成的角叫正角;按顺时针旋转形成的角叫负角;若射线没有作任何旋转,形成的角叫零角,这样就把角的概念推广到了任意角。
旋转一周角的大小记为360°,如图1—1-1.图1—1-12.由于图1-1-1(1)中的α、β分别是按逆时针、顺时针方向旋转的,所以α=45°,β=—315°;图1—1-1(2)中的α=30°,β=390°,γ=-60°。
显然角的大小与旋转的周数有关,角的正负与旋转的方向有关.图1—1—2如图1-1-2,射线OA绕端点O旋转90°到射线OB的位置,接着再旋转-30°到OC的位置,则∠AOC=∠AOB+∠BOC=90°+(-30°)=60°。
学法一得引入正角、负角的概念后,角的减法运算可以转化为角的加法运算,即可以转化α—β为α+(-β),也就是说各角和的旋转量等于各角旋转量的和。
3。
在画图表示角时,常用带箭头的弧来表示旋转的方向,旋转的周数及角的绝对值的大小,旋转生成的角,又常称为转角。
显然,如果以第一个角的终边为始边作第二个角,以第二个角的终边为始边作第三个角,这样一直作下去,那么所有这些角的和等于以第一个角的始边为始边,以最后一个角的终边为终边的角的大小.二、象限角1。
若把角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除顶点外)在第几象限,我们说这个角是第几象限角.图1—1—3例如:由于图1—1-3甲中的角45°、405°、-315°都是始边与x轴的非负半轴重合,终边落在第一象限的角,所以它们都是第一象限角;同理图1-1-3乙中的角480°是第二象限的角,—70°、290°都是第四象限的角.2。
任意角、弧度制小结学案

1.1.3 任意角、弧度制小结【学习目标】 1.通过小结形成知识网络,更加熟练、系统地掌握和运用本小节的知识点;2.能正确表示某一范围的角;能熟练应用弧度制下的弧长公式、扇形面积公式,能求有关扇形面积的最值等.【学习重点】(1)角的集合表示;(2)弧长公式、扇形面积公式的灵活运用【难点提示】构建知识网络、灵活运用解决实际问题.【学法提示】1.请同学们课前将学案与教材110P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】 一.知识梳理请感悟上面的知识网络(建议自己在电脑自作),主动复习教材中相关知识,并将各知识内容填写在横线上或空白处.二、热身练习1.在直角坐标系中,若角α与角β的终边互相垂直,则角α与角β的关系是( )90;90360();A B k k Z βαβα=+=++⋅∈. .90;90360();C D k k Z βαβα=±=±+⋅∈. .任意角、弧度制任意角弧度制角的概念象限角 同终边上的角 轴上角 正角负角零角弧度制的概念 弧度制与角度制互化弧长、面积公式{}{},,,n Z Y k Z ⋅∈=±⋅∈2.集合Z =x |x=(2n+1)180x |x=(4k 1)180之间的关系是( ).;.;.;..A Z Y B Z Y C Z Y D Z Y ≠≠⊂⊃= 与之间的关系不确定三、典例赏析例1 写出如图(0)y x x =±≥所夹区域内的角的集合.思路启迪 以两条射线为终边上的角是多少度(或弧度)?再看周期性吧!解:解后反思 你是怎样理解题的?求解该题的关键点、易错点在哪里?变式练习 写出终边在四个象限角平分线上的角的集合.解:例2.已知α是第二象限角,试求下列角的范围与所在的象限:(1) 3α;(2) 3α.思路启迪:准确写出α,在33αα、的范围,根据求出的范围,运用数形结合,试试看.解后反思(1)若例2中的α分别是第一象限、第三象限、第四象限的角,怎样确定 33αα、所在象限?有规律吗?各自的周期是多少?(2)解答本题用到了什么数学思想方法?该题中33ααα、、的范围还有不同的写法吗?角的两种制度能用在同一个表达式中出现吗?变式练习 已知α是第三象限角,试求角4α与2α的范围和所在的象限. 解:例3(1)已知扇形OAB 的圆心角α为120,半径6r =,求弧长AB 及扇形面积. (2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?解:解后反思 在第(1)问中,应怎样选择公式更好?第(2)问是一道什么题型,求解时 的入手点在哪里?易错点在哪里?变式练习 已知圆中一条弦的长等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧组成的弓形的面积.解:例4. 2003年10月15日9时,中国首位航天员杨利伟乘坐的“神舟”五号载人飞船, 在酒泉卫星发射中心用“长征二号F ”型运载火箭发射升空,按规定轨道3地球14圈,在太空飞行21小时18分,16日6时23分在内蒙古中部地区成功着陆,中国首次载人航天飞行任务获得圆满成功.视飞船在地面343千米的太空中绕地球做匀速圆周运动,90分钟绕地球一圈,地球的平均半径为6378千米,计算:(1)飞船绕地球14圈共转过的度数是多少?(2)在太空飞行中,杨利伟与家人进行了一次特别的通话,通话时间持续4分50秒,在这段时间内,杨利伟所乘坐的飞船转过的角度是多少?飞船走了多少千米(不考虑其他因素,计算时取 3.14π≈)?解:解后反思 该题是什么题型?求解它的思想方法是什么、步骤如何?变式练习 在以原点为圆心半径为4的圆周上,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟旋转3π弧度,点Q 按顺时针方向每秒钟旋转6π弧度,求P 、Q 第一次相遇时所用的时间,相遇点的坐标及P 、Q 各自走过的弧长.解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:知识网络理解了吗?里面的知识内容都掌握了吗?本节课有哪些题型?运用了哪些思想方法求解的?有哪些需要我们注意的?2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?(学习链接——阅读材料)五、学习评价1将分针拨慢10分钟,则分钟转过的弧度数是( ) A.3π B.-3π C.6π D.-6π2.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A.2B.1sin 2 C.1sin 2 D.2sin 3.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( ) A. A B ⊂ B. B A ⊂ C. B ⊂A D. A ⊂B4.在半径为1的单位圆中,一条弦AB 的长度为3,则弦AB 所对圆心角α是( )A .α=3B .α<3C .α=32π D .α=120 5.若角α与β的终边关于x 轴对称,则α与β的关系是 ; 若角α与β的终边关于y 轴对称,则α与β的关系是 ;若角α与β的终边关于原点对称,则α与β的关系是 ;若角,αβ的终边关于直线y x =对称,则αβ与的关系式是 .6.12弧度的圆心角所对的弦长为2,求此圆心角所夹扇形的面积.解:7.扇形的面积一定,问它的中心角α取何值时,扇形的周长L 最小?解:8.半径为R 的扇形,其周长为R 4,则扇形中所含弓形的面积是多少?解:◆承前启后 现在我们学习了角的推广,角的两种度量制度?在数学中角与三角函数联系最为紧密,那对任意角又怎样定义三角函数呢?【学习链接】(阅读材料)密位制:一种军用的角度计量法.以密位为单位来量角的制度是:把圆周6000等分,每一等分的弧所对圆心角称为1密 位的角,即:1密度位就是圆的16000所对的圆心角(或这条弧)的大小. 密位的写法是在百位数字与十位数字之间画一条短线,如15密位记为“0—15”,读作“零,一五”;1370密位记为“13—70”,读作“一三,七零”。
任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。
2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。
3. 掌握任意角的三角函数值的计算方法。
教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。
2. 学生准备:纸和铅笔。
教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。
提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。
Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。
提醒学生注意正角、负角和零角的特点。
2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。
Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。
2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。
3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。
Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。
2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。
Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。
2. 学生个别或小组合作完成拓展应用题。
Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。
2. 学生将所学知识进行整理和归纳,完成课堂笔记。
Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。
2. 学生完成作业,以便巩固所学知识。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度。
2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。
任意角和弧度制导学案

任意角和弧度制导学案1.1 任意角和弧度制学习目标1、知道任意角的定义,知道正角、负角、零角与象限角的概念2、掌握终边相同角的表示方法,并能解决一些简单问题。
【重点、难点】:1、将0°—360°范围的角推广到任意角,终边相同的角的集合;2、用集合来表示终边相同的角.【知识链接】:角的定义学习过程【探索——任意角的概念】阅读课本回答下面的问题:1、初中时候学习角是怎样定义的?2、在日常生活中,你能举出几个旋转角度大于360度的例子吗?3、按____________方向旋转形成的角叫做;按方向旋转形成的角叫做__________ ;如果____________________________,我们称它形成了一个零角;综上,我们把角的概念推广到__________,任意角包括_____________________。
4、①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.3小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?5、在平面直角坐标系中讨论角时,为了讨论问题的方便,我们____________________,角的始边与x轴的__________重合,那么,___________________,我们就说这个角是_______________;如果角的终边在坐标轴上,我们则认为______________________。
【思考1】60o 角、740o角、-135o角、-510o角,分别在哪一象限?【思考2】在直角坐标系中,给定一个角,就有唯一一条边与这个角相对应吗?反之,在直角坐标系中,给定一条终边,就有唯一一个角与之相对应吗?为什么?【探索——终边相同角的表示】阅读课本第4页上端内容,将课文补充完整,并回答下面的问题:1、在直角坐标系中标出210°,-150°,570o角的终边,你有什么发现?它们之间有何数量关系?2、所有与角α终边相同的角,连同角α在内,怎样用一个集合表示出来?即任一与角α终边相同的角,都可以表示成_________________________________。
学案20任意角、弧度制及任意角的三角函数

3.任意角的三角函数设α是一个任意角,它的终边上任意一点P 的坐标为(x ,y ),|OP |=r >0, 我们规定:①比值 叫做α的正弦,记作sin α,即sin α= ;②比值 叫做α的余弦,记作cos α,即cos α= ;③比值______(x ≠0)叫做α的正切,记作tan α,即tan α= . (1)三角函数值在各象限的符号各象限的三角函数值的符号如以下图所示:口诀:“一全正,二正弦,三正切,四余弦”.*(2)三角函数线(理解)以下图中有向线段MP ,OM ,AT 分别表示____________,__________和__________.二、基础练习训练1.判断下面结论是否准确(请在括号中打“√”或“×”) (1)小于90°的角是锐角.( ) (2)锐角是第一象限角,反之亦然.( ) (3)终边相同的角的同一三角函数值相等.( ) (4)点P (tan α,cos α)在第三象限,则角α终边在第二象限.( )*(5)α为第一象限角,则sin α+cos α>1. ( )2.以下与9π4的终边相同的角的表达式中准确的是________.(填序号)①2k π+45° (k ∈Z );②k ·360°+94π (k ∈Z );③k ·360°-315°(k ∈Z );④k π+5π4 (k ∈Z ).3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________.4.已知sin α<0且tan α>0,则角α是第________象限角.5.已知角α的终边经过点)12,5(--P ,则sin ____,cos ___,tan ____ααα===.6.“α=π6”是“sin α=12”的________条件.三、典型例题分析题型一: 角及其表示例1:(1)终边在直线y =3x 上的角的集合是______________. (2)假如α是第三象限角,那么角2α的终边落在______________.变式训练:(1)终边在直线y x =-上的角的集合是______________. (2)假如α是第一象限角,那么角2α的终边落在______________. (3)已知角α=45°,在区间[-720°,180°]内与角α有相同终边的角β=________.(4)与2010°终边相同的最小正角为________,最大负角为________.(5)已知角x 的终边落在图示阴影局部区域,写出角x 组成的集合.(a )(b )题型二: 三角函数的概念例2:已知角α终边上一点),3(y P -,且y 42sin =α,求αcos 和αtan 的值.变式训练:(1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos θ等于___________________.(2)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为________.(3) 已知角α的终边经过点P (-4a,3a ) (a ≠0),求sin α,cos α,tan α的值.课后作业一轮复习作业纸:4.1任意角、弧度制及任意角的三角函数一、填空题1.角α的终边过点P (-1,2),则cos α等于________.2.若α是第三象限角,则以下各式成立的是________.(填序号) ①sin α+cos α<0; ②tan α-sin α<0; ③cos α-tan α<0; ④tan αsin α>0.3.已知角x 的终边落在图示阴影局部区域,写出角x 组成的集合.(1) (2)4.若α角与8π5角终边相同,则在[0,2π]内终边与α4角终边相同的角是________.5.设α为第二象限角,其终边上一点为P (m ,5),且cos α=24m ,则sin α的值为________. 6.给出以下命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不管是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中准确命题的序号是________.7.已知点P (tan α,cos α)在第二象限,则在[0,2π)内α的取值范围是________. 假如点(sin θ,tan θ)在第三象限,则θ2的终边在第________象限.8.若点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达点Q ,则点Q 的坐标为________.9.已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2.10.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,则圆心角的弧度数为 弦长AB 为 .二、解答题11. 已知角θ的终边经过点P(-3,m) (m≠0)且sin θ=24m,试判断角θ所在的象限,并求cos θ和tan θ的值.12.已知扇形OAB的圆心角α为120°,半径长为6,(1)求AB的弧长;(2)求弓形OAB的面积.3.任意角的三角函数设α是一个任意角,它的终边上任意一点P 的坐标为(x ,y ),|OP |=r >0, 我们规定:①比值 叫做α的正弦,记作sin α,即sin α= ;②比值 叫做α的余弦,记作cos α,即cos α= ;③比值______(x ≠0)叫做α的正切,记作tan α,即tan α= . (1)三角函数值在各象限的符号各象限的三角函数值的符号如以下图所示,三角函数正值歌: 一全正,二正弦,三正切,四余弦.*(2)三角函数线(理解)以下图中有向线段MP ,OM ,AT 分别表示____________,__________和__________.二、基础练习训练1.判断下面结论是否准确(请在括号中打“√”或“×”) (1)小于90°的角是锐角.( × ) (2)锐角是第一象限角,反之亦然.( × ) (3)终边相同的角的同一三角函数值相等.( √ ) (4)点P (tan α,cos α)在第三象限,则角α终边在第二象限.( √ )*(5)α为第一象限角,则sin α+cos α>1. ( √ )2.以下与9π4的终边相同的角的表达式中准确的是________.(填序号)①2k π+45° (k ∈Z );②k ·360°+94π (k ∈Z );③k ·360°-315°(k ∈Z );④k π+5π4 (k ∈Z ).3.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________.4.已知sin α<0且tan α>0,则角α是第________象限角.5.已知角α的终边经过点)12,5(--P ,则sin ____,cos ___,tan ____ααα===.6.“α=π6”是“sin α=12”的________条件.三、典型例题分析题型一: 角及其表示例1:(1)终边在直线y =3x 上的角的集合是______________. (2)假如α是第三象限角,那么角2α的终边落在______________. 答案 (1){α|α=k π+π3,k ∈Z }(2)第一、二象限或y 轴的非负半轴上解析 (1)∵在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为{α|α=π3+k π,k ∈Z }.(2)∵2k π+π<α<2k π+32π,k ∈Z ,∴4k π+2π<2α<4k π+3π,k ∈Z .∴角2α的终边落在第一、二象限或y 轴的非负半轴上. 变式训练:(1)终边在直线y x =-上的角的集合是______________. (2)假如α是第一象限角,那么角2α的终边落在______________. (3)已知角α=45°,在区间[-720°,180°]内与角α有相同终边的角β=________.(4)与2010°终边相同的最小正角为________,最大负角为________.(5)已知角x 的终边落在图示阴影局部区域,写出角x 组成的集合.题型二: 三角函数的概念例2:已知角α终边上一点),3(y P -,且y 42sin =α,求αcos 和αtan 的值.变式训练:(1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos θ等于___________________.2112 (2)()( 442RR R aR +=≤R=αR即α=2时,扇形面积有最大值已知扇形的周长为4 cm,当它的半径为________一轮复习作业纸:4.1任意角、弧度制及任意角的三角函数一、填空题1.角α的终边过点P (-1,2),则cos α等于________.答案-552.若α是第三象限角,则以下各式成立的是________.(填序号) ①sin α+cos α<0; ②tan α-sin α<0; ③cos α-tan α<0; ④tan αsin α>0.答案 ①③3.已知角x 的终边落在图示阴影局部区域,写出角x 组成的集合.(1)(2)4.若α角与8π5角终边相同,则在[0,2π]内终边与α4角终边相同的角是________. 解析 由题意,得α=8π5+2k π(k ∈Z ),α4=2π5+k π2(k ∈Z ).又α4∈[0,2π],所以k =0,1,2,3,α4=2π5,9π10,7π5,19π10. 答案 2π5,9π10,7π5,19π105.设α为第二象限角,其终边上一点为P (m ,5),且cos α=24m ,则sin α的值为________. 答案 104解析 设P (m ,5)到原点O 的距离为r ,则m r =cos α=24m , ∴r =22,sin α=5r =522=104. 6.给出以下命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不管是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中准确命题的序号是________.答案 ③7.已知点P (tan α,cos α)在第二象限,则在[0,2π)内α的取值范围是________.解析 因为tan α<0且cos α>0,又0≤α<2π,所以3π2<α<2π. 答案 ⎝⎛⎭⎫3π2,2π假如点(sin θ,tan θ)在第三象限,则θ2的终边在第________象限.答案 二或四8.若点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达点Q ,则点Q 的坐标为________. 解析 点Q 的坐标为⎝⎛⎭⎫cos 2π3,sin 2π3,即⎝⎛⎭⎫-12,32. 答案 ⎝⎛⎭⎫-12,32 9.已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2.解析 设扇形半径为r cm ,弧长为l cm ,则2r +l =8,S =12rl =12r ×(8-2r )=-r 2+4r =-(r -2)2+4,所以S max =4 (cm 2).答案 410.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .解 设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2. ∴圆心角α=l r=2弧度. 如图,过O 作OH ⊥AB 于H ,则∠AOH =1弧度.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).二、解答题11. 已知角θ的终边经过点P (-3,m ) (m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.解 由题意,得r =3+m 2, 所以sin θ=m 3+m 2=24m . 因为m ≠0,所以m =±5,故角θ是第二或第三象限角. 当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角,所以cos θ=x r =-322=-64, tan θ=y x =5-3=-153;当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角,所以cos θ=x r =-322=-64, tan θ=y x =-5-3=153. 12.已知扇形OAB 的圆心角α为120°,半径长为6,(1)求AB 的弧长;(2)求弓形OAB 的面积.解 (1)∵α=120°=2π3,r =6, ∴AB 的弧长为l =αr =2π3×6=4π.……………………………………………………(4分) (2)∵S 扇形OAB =12lr =12×4π×6=12π,……………………………………………………(8分) S △ABO =12r 2·sin 2π3=12×62×32=93,…………………………………………………(12分) ∴S 弓形OAB =S 扇形OAB -S △ABO =12π-9 3.………………………………………………(14分)。
任意角_弧度制_任意角的三角函数_同角三角函数关系(共7课时)

任意角,弧度制,及同角三角函数关系复习学案知识点1 任意角【学习目标】:1.使学生理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角2.能在0︒到360︒到范围内,找到一个与已知角终边相同的角,并判定其为第几象限角;3.能写出与任一已知角终边相同的角的集合【学习重点】:任意角的概念及终边相同的角的【学习难点】:把终边相同的角用集合和符号语言正确地表示出来 1,角的定义: 说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α 2,角的分类 (1)正角: 负角: 零角:说明:零角的始边和终边重合。
(2)象限角:非象限角(也称轴线角):,3,终边相同的角一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
【新知应用】:例1.写出与下列各角终边相同的角的集合S ,并把S 中在00360~0间的角写出来,并分别判断它们是第几象限角:︒60 (1) ︒21- (2) '︒14633 (3)例2.已知α与2400角的终边相同,试判断2α是第几象限角?例3.(1)终边落在x 轴正半轴上的角的集合如何表示?终边落在x 轴上的角的集合如何表示?(2)终边落在y 轴正半轴上的角的集合如何表示?终边落在y 轴上的角的集合如何表示? (3)终边落在坐标轴上的角的集合如何表示? 【当堂训练】: 一.限时作业1、已知集合=A {第一象限的角},=B {锐角},=C {小于90o 的角},下列四个命题: ①C B A == ②C A ⊆ ③A C ⊆ ④B C A =⊆ 其中正确命题的序号为2、在00360~0间中与-120°角终边相同的角是3、若A={α|α=k·360°,k∈Z};B ={α|α=k·180°,k∈Z}; C ={α|α=k·90°,k∈Z},则A,B,C 三者的关系为4、终边在第二象限的角的集合是5.已知α与1200角的终边相同,判断2α是第几象限角?二,课下作业:1、已知角α的终边与角300的终边关于直线x y =对称,且00720720<<-α,求α的值。
任意角、弧度制及任意角的三角函数复习学案

第21课 任意角、弧度制及任意角的三角函数一、目标导引已知半径为r 的圆O 的圆心与原点重合,角α(0360)α≤<oo的始边与x 轴的非负半轴重合,交圆O 于点A ,终边与圆O 交于点B ,请把下列表格填写完整. 角α的度数角α的的弧度数 OB 旋转的方向 »AB 的长点B 的坐标sin αcos αtan α60o56π-逆时针22(,)22r r -顺时针r π1.根据表格内容填写,回答下面知识梳理 二、知识梳理任意角的三角函数知识框架的横向沟通:角与三角函数.提出问题:理解和比较这两个体系中的内容,思考它们之间有什么内在的联系. 引导学生根据数学对象研究的一般套路,思考表格横向项目与纵向项目的确定. 角三角函数概念 分类 表示 关系 应用过程中核心问题推进:问题1:从概念上看,这两者之间有什么区别和联系?问题2:除了概念,我们还能从哪些方面对角与三角函数进行研究呢?请同学们继续思考并在表格中表述出来.问题3:能否举一些例子来进一步说明它们之间的关系?三、问题研讨 问题1(角及其表示)例题1:已知角α的终边在如图所示阴影表示的范围内,则角α用集合可表示为 .问题2(三角函数的概念)例题2:已知角α的终边过点)30sin 6,8(︒--m P ,且54cos -=α. 求αsin ,αtan .问题3:(扇形弧长、面积公式的应用)例题3:已知一扇形的圆心角为α,半径为R ,弧长为l . (Ⅰ)若︒=60α,cm R 10=,求扇形的弧长l ;(Ⅱ)若扇形的周长为cm 10,面积为24cm ,求扇形的圆心角α;(Ⅲ)若扇形的周长为定值)0(>C C ,当α为多少弧度时,该扇形的面积最大.O300450yx问题4:(三角函数线)例题4:求函数)sin 43lg(2x y -=的定义域.四、总结提升1.回顾刚才的学习过程,想一想,在这些内容的沟通中渗透了哪些数学思想方法?2.提炼复习过程中的方法:回顾本节课的整理的过程,我们经历了怎样的学习过程?五、即时检测1.(三角函数定义)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4)P y ,是角θ终边上的一点,且25sin 5θ=-,则y = . 2.(三角函数定义、弧度、扇形面积公式)已知单位圆(半径为1的圆)的圆心O 为坐标原点,与x 轴的正半轴交于点A ,与角α的终边OB 交于点B ,且点B 在直线3y x =上.(Ⅰ)求α,tan α的值;(Ⅱ)若α为第一象限角,求弧AB 的长及扇形OAB 的面积.校本作业21:任意角、弧度制及任意角的三角函数1.(终边相同的角、象限角的概念)下列说法正确的是( ) A .小于︒90的角是锐角 B .角α是第四象限角,则)(222Z k k k ∈<<-παππC .第二象限的角大于第一象限的角D .若角α与角β的终边相同,那么βα=2.(任意角的三角函数的定义)若角α的终边过点(4,3)P -,则cos αtan α的值为( ) A .35-B .45C .43- D .3-3.(角的象限与三角函数值的正负)如果cos 0θ<,且tan 0θ>,则θ是( ) A .第一象限的角 B .第二象限的角 C .第三象限的角 D .第四象限的角 4.(三角函数线)设0tan35cos55sin 23a b c ===,,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 5.(新定义;三角函数的概念)在直角坐标系xOy 中,已知任意角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,若其终边经过点00(,)P x y ,且||(0)OP r r =>,定义:00cos y x si rθ-=,称“sicos θ”为“θ的正余弦函数”,若cos 0si θ=,则sin(2)3πθ-=_________.6.(扇形弧长与面积)若扇形OAB 的面积是2,它的周长是6,则该扇形圆心角的弧度数是 .7.(任意角的三角函数的定义)已知角α的终边与以坐标原点为圆心,以1为半径的圆交于点)32cos 32(sinππ,P ,则角α的最小正值为 . 8.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在)10(,,此时圆上一点P 的位置在)00(,,圆在x 轴上沿正向滚动.当圆滚动到圆心位于)12(,时,点P 的坐标为 .9.已知A ,B 是单位圆上的两个质点,点B 坐标为)01(,,︒=∠60BOA .质点A 以s rad /1的角速度按逆时针方向在单位圆上运动,质点B 以s rad /1的角速度按顺时针方向在单位圆上运动.(Ⅰ)求经过s 1后,BOA ∠的弧度;(Ⅱ)求质点A ,B 在单位圆上第一次相遇所用的时间.10.(三角函数的定义)已知角α的终边上一点(3)P m -,,且2sin 4mα=,求cos tan αα,的值.11.(三角函数定义、扇形面积)如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(Ⅰ)若点B 的横坐标为54-,求αtan 的值; (Ⅱ)若AOB ∆为等边三角形,写出与角α终边相同的角β的集合; (Ⅲ)若]320[πα,∈,请写出弓形AB 的面积S 与α的函数关系式.12.如图,单位圆(半径为1的圆)的圆心O 为坐标原点,单位圆与y 轴的正半轴交于点A ,与钝角α的终边OB 交于点)(00y x B ,,设β=∠BAO . (Ⅰ)用β表示α; (Ⅱ)如果 54sin =β,求点),(00y x B 坐标; (Ⅲ)求00y x -的最小值.BAyxODCBCA提高题:1.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若βαsin sin =,则α与β的终边相同; ⑤若0cos <θ,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .42.(三角函数的定义)已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(sincos )88P ππ,,则)122sin(πα-等于( )A .32-B .12-C .12D .323.如图,将边长为cm 1的正方形ABCD 的四边沿BC 所在直线l 向右滚动(无滑动),当正方形滚动一周时,正方形的顶点A 所经过的路线的长度为________cm .4.(三角函数值在各个象限内的符号)已知点)sin (tan θθ,P 在第四象限,则角2θ的终边在第__________象限.5.(弧度数、圆的弧长公式)如图,一根长为2米的木棒AB 斜靠在墙壁AC 上,060=∠ABC ,若AB 滑动至DE 位置, 且)23(-=AD 米,木棒AB 中点O 所经过的路程为 米.6.(弧长、扇形面积公式)一扇形的圆心角为2弧度,记此扇形的周长为c ,面积为S ,求1c S-的最大值.。
任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册

第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。
2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。
任意角的概念与弧度制教案

任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。
在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。
在数学中,角的度量方式有两种,分别是度度量和弧度度量。
本教案将重点介绍弧度制的概念与应用。
二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。
弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。
三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。
2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。
3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。
五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。
六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。
以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。
三角函数专题复习 第一讲 任意角、弧度制及任意角的三角函数 同角三角函数的基本关系与诱导公式学案 .docx

三角函数专题复习第一讲学案【知识网络】一、任意角和弧度制及任意角的三角函数【知识梳理】1.角概念的推广角可以看成平而内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
一条射线由原來的位置0A,绕着它的端点0按逆时针方向旋转到终止位置0B,就形成角旋转开始时的射线0A叫做角的始边,0〃叫终边,射线的端点。
叫做叫G的顶点。
(1)按旋转方向不同分为正角、负角、零角;我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没冇做任何旋转,我们称它形成了一个零角。
(2)按终边位置不同分为象限角和轴线角。
角的顶点与原点重合,角的始边与x轴的非负半轴重合。
那么,角的终边(除端点外)在第儿象限,我们就说这个角是第儿彖限角。
耍特别注意:如果角的终边在坐标轴上,就认为这个角不屈于任何一个象限,称为轴线角或非象限角。
①象限角及其集合表示:2.终边相同的角终边相同的角是指与某个角a具有同终边的所有角,它们彼此相差2kn(kez),即卩w{B住!Ji +4 kWZ},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
3.弧度制(1)1弧度的角长度等于半径长的狐所对的闘心角叫做1弧度的角,用符号KK1表示。
角有正负零角之分,它的弧度数也应该有正负零Z 分,如-7T. -2n等等,一般地,正和的弧度数是一个正数,负角的弧度数是一个负数,零角的狐度数是0,角的正负主耍苗角的旋转方向来决定。
(2)角a的呱度数如果半径为r的圆的圆心角a所对弧的长为/,那么角a的弧度数的绝对值是问=?.(3)弧度与角度互换公式:1说=兰2。
心57.30七57°18'、1。
=工=0.01745 (rad)。
n180(4)弧长、扇形面积的公式弧长公式:l=\a\r (a是圆心角的弧度数),扇形面积公式:lr = -\a\r2.2 24.三角函数定义在a的终边上任取一点P(a.b),它与原点的距离r = >Ja2+b2 > 0 .过P作x轴的垂线,垂足为M,则MP b OM a MP b线段OM 的长度为-线段MP 的长度为/?.WiJsina = —= -;cosa = —= -;tana = —= -oOP r OP r OM a利用单位圆左义任意角的三角函数,设Q是一个任意角,它的终边与单位圆交于点P(x,y),那么:(l)y叫做a的止眩,记做sin a,即sin a = y ;⑵x叫做a的余弦,记做cosa Jl|J cos a = x;三角函数线是通过有向线段直观地表示出角的齐种三角函数值的种图示方法。
任意角的概念与弧度制教案

任意角的概念与弧度制教案导言:任意角是初中数学中一个重要的概念,它是我们研究三角函数的基础。
为了更好地理解任意角,我们需要引入弧度制这一概念。
本教案将从任意角的定义开始,逐步介绍弧度制的概念以及如何进行角度与弧度的转换,帮助学生深入理解和掌握这两个概念。
一、任意角的定义在平面直角坐标系中,通过原点O以及一条射线OA,可以确定一个角,这个角叫做任意角。
其中,射线OA称为角的始边,射线OB (OB ≠ OA)称为角的终边,O点叫做角的顶点。
二、弧度制的概念角度制是我们最常用的一种角度单位,但在一些高级数学和物理问题中,常常使用弧度制来度量角的大小。
弧度制定义如下:当半径为r 的圆的圆心角所对的弧长等于半径时,这个角的度数为1弧度,记作1 rad。
三、角度与弧度的转换1. 角度转弧度:已知角的度数α,可以使用如下公式将其转化为弧度:弧度数 = 角度数× π/1802. 弧度转角度:已知角的弧度数β,可以使用如下公式将其转化为角度:角度数 = 弧度数× 180/π四、任意角的性质1. 一个任意角可绘制无数个与之终边相同的角。
2. 一个任意角的终边在平面直角坐标系中的位置决定了该角在坐标系中的唯一性。
3. 弧度制中的任意角大小范围为0≤θ<2π,其中2π的意义相当于360°。
五、任意角的相关公式在三角函数的研究中,任意角的概念是非常重要的。
以下是一些与任意角相关的基本公式。
1. sin任意角和cos任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:sinθ = y/rcosθ = x/r其中,r为OP的长度。
2. tan任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:tanθ = y/x注:当x=0时,tanθ不存在。
3. 值域:在上述公式中,可以发现sinθ、cosθ、tanθ的值与终边上的坐标有关,因此它们的值域都在[-1,1]之间。
学案1任意角和弧度制

∴sin(cosθ)<0,cos(sin2θ)>0,
∴ s in(cos) <0,∴ s in(cos) 的符号是负号.
cos (s in2)
cos (s in2)
【评析】 (1)熟记各个三角函数在每个象限内的符号是 关键.
(2)判断三角函数值的符号就是要判断角所在的象限. (3)对于已知三角函数式的符号判断角所在象限,可 先根据三角函数式的符号确定三角函数值的符号,再判断 角所在象限.
【分析】 (1)由点P所在的象限,知道sinθ·cosθ,2cosθ 的符号,从而可求sinθ与cosθ的符号.
(2)由θ是第二象限角,可求cosθ,sin2θ的范围,进而把 cosθ,sin2θ看作一个用弧度制的形式表示的角,并判断其所在u 的象限,从而sin(cosθ),cos(sin2θ)的符号可定.
= π 弧度.
(5)弧长公式:
S扇形=
1 lr 2
=
l |a|r
1 a r2 2
.
,扇形的面积公式:
考点1 象限角、三角函数值符号的判断
(1)如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ 所在的象限; (2)若θ是第二象限角,则 sin(cos)的符号是什么?
cos(sin2)
做1弧度的角.
(2)规定:正角的弧度数是一个 正数 ,负角的弧度数
l
是一个 负数 ,零角的弧度数是 0 .|α|= r (l是以角α 作为圆心角时所对圆弧的长,r为半径).
(3)用“弧度”做单位来度量角的制度叫做弧度制.
பைடு நூலகம்
比值lr与所取的r的大小无关 ,仅与角的大小 有关.
(4)弧度与角度的换算:360°= 2π弧度; 180°
(教案)任意角和弧度制——任意角

任意角【教学目标】(1)要求学生掌握用“旋转”定义角的概念,理解任意角的概念;(2)学会在平面内建立适当的坐标系来讨论角;(3)并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。【教学重点】理解“正角”“负角”“象限角”“终边相同的角”的含义。【教学难点】“旋转”定义角;终边相同的角的表示。三角函数是基本初等函数,它是描述周期现象的重要数学模型。角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续。为进一步研究角的和、差、倍角、半角关系提供了条件,也为今后学习解析几何、复数等相关知识提供有利的工具。本节课是三角函数的第一节课,学生正确的理解和掌握角的概念的推广尤为重要。【学情分析】(1)初中学生已经接触到角的定义,角的范围仅限于0°~360°;(2)学生在理解终边相同的角的表示方法上,会出现障碍,其原因是:刚刚将角的概念推广,还不是很适应终边相同的角的“周而复始”这个现象的本质;(3)学生在学习了象限角的概念后,怎样用集合和数学符号语言正确地表示象限角(如:第一象限角),会出现障碍,其原因是:对第一象限角是有无数个区间构成,它们的终边是“周而复始”的现象的刻画还不了解,教师要进一步的解释k·360°的运用特点。【设计思路】(1)通过创设情境,类比初中所学的角的概念,从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;(2)通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示。这一设计符合新课程标准强调的加强对数学概念本质的认识,同时在教学中充分运用现代教育技术手段,将抽象的数学知识形象化、直观化,帮助学生理解“正角”“负角”“象限角”“终边相同的角”的含义,和掌握终边相同的角的表示。【教学准备】借助信息技术工具(如:几何画板),(1)角的推广在角的旋转量、旋转方向上给学生以动态的体会;(2)动态的表现角的终边旋转过程,有利于学生观察到角的变化与终边的位置关系,从特殊到一般,让学生发现并验证终边相同的角的表示方法。【教学过程】【教学反思】这堂课从实际问题引入,引起学生的认知冲突。说明角的概念扩展的必要性,然后通过学生的自主探索,得出了定义,为后面的探究打下了基础,体现了新课程理念,教学效果好,是一堂好课。由于学生的计算机技术不高,导致课时安排过紧。。
任意角弧度制教案

任意角弧度制教案教案标题:任意角弧度制教案教案目标:1. 理解任意角的概念和弧度制的基本原理。
2. 掌握任意角与弧度之间的转换关系。
3. 能够在解决相关问题时使用弧度制进行计算。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学投影仪等。
2. 学生准备:教科书、笔记本、计算器等。
教学过程:引入活动:1. 教师可以通过提问来引导学生思考:你们知道什么是角度吗?我们平时常用的角度单位是什么?有没有其他表示角度的方法呢?2. 学生回答后,教师可以简要介绍一下角度的概念和常用的度数制。
概念讲解:1. 教师通过示意图和实例,引导学生理解任意角的概念:任意角是指角的两条边可以是任意长度的角。
2. 教师引导学生思考:在解决一些数学问题时,角度单位常常不够灵活,有时候我们需要更精确的表示角度的方法。
这时,我们就可以使用弧度制。
3. 教师简要介绍弧度制的基本原理:弧度是角度的一种度量方式,表示角所对应的圆的弧长与半径的比值。
一个完整的圆周对应的弧度为2π。
转换关系讲解:1. 教师引导学生思考:如何将角度转换为弧度?如何将弧度转换为角度?2. 教师通过示意图和实例,讲解角度与弧度之间的转换关系:- 角度转弧度:弧度 = 角度× π / 180- 弧度转角度:角度 = 弧度× 180 / π练习活动:1. 学生进行练习题,巩固角度与弧度之间的转换关系。
2. 学生解决一些实际问题,应用弧度制进行计算。
总结:1. 教师对本节课的内容进行总结,强调任意角的概念和弧度制的重要性。
2. 学生回答问题,进行互动讨论。
拓展活动:1. 学生自主学习相关知识,扩展弧度制的应用领域。
2. 学生可以进行小组讨论,分享自己在实际生活中发现的弧度制的应用案例。
评估方式:1. 教师观察学生在课堂上的参与情况和回答问题的准确性。
2. 教师布置作业,检验学生对角度与弧度之间转换关系的掌握程度。
拓展阅读:1. 推荐学生阅读相关教材或网络资料,进一步了解角度与弧度制的应用。
高中数学第五章三角函数5.1.1任意角学案含解析第一册

第五章三角函数5.1任意角和弧度制5.1.1任意角[目标] 1.理解任意角的概念,能区分各类角的概念;2.掌握象限角的概念,并会用集合表示象限角;3。
理解终边相同的角的含义及其表示,并能解决有关问题.[重点] 用集合的形式表示终边相同的角.[难点]会判断角的终边所在的象限.知识点一角的概念的推广和分类[填一填]1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.正角、负角和零角我们规定,一条射线绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有做任何旋转,我们称它形成了一个零角.这样,零角的始边与终边重合.如果α是零角,那么α=0°.1.根据角的新的定义,角的范围有什么变化?提示:角的范围不再是以前学的锐角、直角以及钝角,而是任意的角.2.如图所示,图(1)中,角α的度数为330°,图(2)中,角β的度数为-150°,角γ的度数为570°。
解析:题图(1)中,α=360°-30°=330°;题图(2)中,β=-360°+60°+150°=-150°;γ=360°+60°+(-β)=360°+60°+150°=570°.知识点二象限角[填一填]为了讨论问题的方便,我们在直角坐标系内使角的顶点与原点重合,角的始边与x轴的非负半轴重合.那么,角的终边在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称它为轴线角(或称为象限界角).3.把角的顶点放在平面直角坐标系的原点,角的始边与x 轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?提示:坐标轴上或四个象限内.4.“锐角”、“第一象限角"、“小于90°的角”三者有何不同?提示:锐角是第一象限角也是小于90°的角,而第一象限角可以是锐角,也可以大于360°,还可能是负角,小于90°的角可以是锐角,也可以是零角或负角.知识点三终边相同的角[填一填]所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[答一答]5.终边相同的角相等吗?相等的角终边相同吗?提示:终边相同的角不一定相等,它们相差360°的整数倍;相等的角,终边相同.6.与-2 014°角终边相同的最小正角是146°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角和弧度制——任意角
【学习目标】
1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
【学习重难点】
任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点
【知识链接】
1.初中是如何定义角的?
2.什么是周角,平角,直角,锐角,钝角?
【学习过程】
问题1.按_____方向旋转形成的角叫做正角,按_____方向旋转形成的角叫做负角,如果一条射线没有作_____旋转,我们称它形成了一个零角。
零角的_____与_____重合。
如果是零角,那么=_____。
问题2.
问题3.画出下列各角
(1)780o (2)120-︒ (3)660-︒ (4)1200o
问题4.象限角与象限界角
为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标_____重合;(2)使角的始边和轴_____重合。
这时,角的终边落在第几象限,就说这个角是_____的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做_____,这个角不属于任何一个象限。
问题5.在平面直角坐标系中作出下列各角并指出它们是第几象限角:
ααx 任
意
角
(1)420o (2)75-︒ (3)855o (4)510-︒
问题6.把角放到平面直角坐标系中后,给定一个角,就有唯一的终边与之对应。
反之,对于直角坐标系内任意一条射线,以它为终边的角是否唯一?如果不唯一,终边相同的角有什么关系?为解决这些问题,请先完成下题:
在直角坐标系中作出下列各角:
(1)32-︒ (2)328o (3)392-︒ (4)688o (4)752-︒
问题7.以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做_____。
把与32-︒角终边相同的所有角都表示为_____,所有与角终边相同的角,连同角在内可构成集合为_____。
即任一与角终边相同的角,都可以表示成角与整数个周角的和。
例1.在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:
(1);
(2);
(3)。
变式练习:在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:
(1)420º (2)5418-︒' (3)395º8′ (4)119030-︒'
2.写出与下列各角终边相同的角的集合,并把集合中适合不等式720360β-︒≤<︒的元素写出来:
(1)130318'︒
(2)225-︒
问题8.
(1)写出终边在x 轴上角的集合
(2)写出终边在y 轴上角的集合
变式练习:写出终边在直线y =x 上角的集合s ,并把s 中适合不等式360720β-︒≤<︒元素写出来。
问题9.思考:
第一象限角的集合可表示为___________________。
第二象限角的集合可表示为___________________。
第三象限角的集合可表示为___________________。
第四象限角的集合可表示为___________________。
αααα0︒360︒︒480︒-76003932'︒0︒360︒β
探究:设θ为第一象限角,求2θ,,–θ所在的象限。
【达标检测】
1.以原点为角的顶点,x 轴正方向为角的始边,终边在坐标轴上的角等于( ) (A )0︒、90︒或270︒
(B )360k k Z ⋅︒∈() (C )180k k Z ⋅︒∈() (D )90k k Z ⋅︒∈(
) 2.如果x 是第一象内的角,那么( )
(A )x 一定是正角 (B )x 一定是锐角
(C )-3600<x <-2700或00<x <900 (D )x ∈{x ∣k ⋅3600<x <k ⋅3600+900 k ∈Z } 3.设A={θ∣θ为正锐角},B={θ∣θ为小于900的角},C={θ∣θ为第一象限的角},D={θ∣θ为小于900的正角}。
则下列等式中成立的是( )
(A )A=B (B )B=C (C )A=C (D )A=D
4.在直角坐标系中,若α与β的终边互相垂直,那么α与β的关系为( ) (A )β=α+900(B )β=α±900(C )β=α+900+k·3600(D )β=α±900+ k·3600 k ∈Z
5.设α是第二象限角,则是_____象限角。
6.与角-1560°终边相同角的集合中最小的正角是_____。
7.如果是第三象限角,则x 在第_____象限和_____半轴。
8.若α为锐角,则180°+α在第_____象限,-α在第_____象限。
9.写出与370°23′终边相同角的集合S ,并把S 中在-720°~360°间的角写出来。
10.钟表经过4小时,时针与分针各转了_____度。
【学习小结】
1.任意角的概念与分类。
2.象限角的概念及第一,二,三,四象限角的表示。
3.终边相同角的集合表示。
2θ2α2
x。