烟气脱硫-石灰石石膏湿法脱硫工艺设计计算书(完整版)

合集下载

石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺

石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺

本文主要讲述了工业石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。

①工艺路线(基本原理):CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)22CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2OCa(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2②工艺流程方框图如下:③工艺系统:主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。

④影响因素:主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。

⑤脱硫石膏的运用与发展:主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。

1.1前言二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。

削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。

目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。

但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。

氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。

钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。

钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。

石灰石-石膏法脱硫计算书

石灰石-石膏法脱硫计算书

68987833 25.77 32.08
39922.17
1) 脱硫结晶水 2) 石膏表面水
Mgyc
t/h M4/M10*(2*18)
Mgys
t/h M9*0.1
10.75 0.015
3) FGD废水
Mww
t/h (Bj*0.063%*1000+(Mgyc+Mgys+Mwe)*1000*0.0000 18-Vtgy*0.4*0.000001-M9*1000*0.01%)/0.02/1000
包括冷却水等
八 主要设备选择 1 吸收塔
烟气流速 烟气量 计算直径 液气接触时间 吸收塔高度 液气比 浆液循环量 浆液停留时间 吸收塔浆池容积 2 石灰石粉仓容积 3 石灰石浆池容积
ν
m/s 取值
Q
m3/h V"*(273+50)/273
D
m (4*Q/3.14/ν/3600)0.5
S
s 取值
H
m ν*S
VH2O0+0.0161(alfa'-1)V0 0.21(alfa'-1)V0 VO2'/Vgy' VO2'/Vy' VH20'/Vy'
0.01866Car/Vy' 0.01866Car/Vgy' 0.01866*0.375Sar/Vy' 0.01866*0.375Sar/Vgy' (0.79alfa'V0+0.008Nar)/Vy' (0.79alfa'V0+0.008Nar)/Vgy' Vy'*Bj*1000 Vgy'*Bj*1000
% t/h

石灰石-石膏法脱硫数据计算

石灰石-石膏法脱硫数据计算
脱硫产物中飞灰含量
M5
t/h
m2*2/3
引风机出口飞灰总量
m2
t/h
Vtgy-o2*mh
未反应的CaCO3
M6
t/h
M3/(ca/s)*((ca/s)-1))
CaCO3带入的杂质
M7
t/h
M3'*(1-P/100)
脱硫产物总量
M8
t/h
M4+M5+M6+M7
皮带机出口石膏产量
M9
t/h
M8/
石膏纯度
Vy'
Nm3/kg
Vy0+(alfa'-1)V0+(alfa'-1)V0
4
干烟气量
Vgy'
Nm3/kg
VRO20+VN20+(alfa'-1)V0
烟气含氧量和含湿量计算:
序号
名称
符号
单位
计算公式或数值来源
1
烟气中的水分
VH2O'
Nm3/kg
VH2O0+(alfa'-1)V0
2
烟气中的氧量
VO2'
Nm3/kg
石灰石-石膏法脱硫数据计算
烟气量计算:
序号
名称
符号
单位
计算公式或数值来源
1
理论空气量
V0
Nm3/kg
(Car++
燃烧产物理论体积
Vy0
Nm3/kg
VN20+VRO20+VH2O0
1)
氮气
VN20
Nm3/kg
+
2)
二氧化物

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统设计(部资料)编制:xxxxx环境保护2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟气中的其他污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

(完整word版)⽯灰⽯-⽯膏湿法脱硫系统的设计计算⽯灰⽯-⽯膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8⽉1.⽯灰⽯-⽯膏法主要特点(1)脱硫效率⾼,脱硫后烟⽓中⼆氧化硫、烟尘⼤⼤减少,脱硫效率⾼达95%以上。

(2)技术成熟,运⾏可靠性⾼。

国外⽕电⼚湿法脱硫装置的投资效率⼀般可达98%以上,特别是新建的⼤机组采⽤湿法脱硫⼯艺,使⽤寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

⽆论是含硫量⼤于3%的⾼硫燃料,还是含硫量⼩于1%的低硫燃料,湿法脱硫⼯艺都能适应。

(4)吸收剂资源丰富,价格便宜。

⽯灰⽯资源丰富,分布很⼴,价格也⽐其它吸收剂便宜。

(5)脱硫副产物便于综合利⽤。

副产物⽯膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对⽯灰⽯-⽯膏湿法⼯艺进⾏了深⼊的研究与不断改进,可望使该⼯艺占地⾯积较⼤、造价较⾼的问题逐步得到妥善解决。

(7)占地⾯积⼤,⼀次性建设投资相对较⼤。

2.反应原理(1)吸收剂的反应购买回来⽯灰⽯粉(CaCO3)由⽯灰⽯粉仓投加到制浆池,⽯灰⽯粉与⽔结合⽣成脱硫浆液。

(2)吸收反应烟⽓与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收⼤部分SO2,反应如下:SO2(⽓)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应⼀部分HSO3-在吸收塔喷淋区被烟⽓中的氧所氧化,其它的HSO3-在反应池中被氧化空⽓完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟⽓中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

脱硫系统设计-石灰石 - 石膏湿法脱硫

脱硫系统设计-石灰石 - 石膏湿法脱硫

脱硫系统设计---- 石灰石 - 石膏湿法脱硫1 脱硫系统设计的初始条件在进行脱硫系统设计时,所需要的初始条件一般有以下几个:(1)处理烟气量,单位:m3/h或Nm3/h;(2)进气温度,单位:℃;(3)SO2初始浓度,单位:mg/m3或mg/Nm3;(4)SO2排放浓度, 单位:mg/m3或mg/Nm3;2 初始条件参数的确定2.1 处理风量的确定处理烟气量的大小是设计脱硫系统的关键,一般处理烟气量由业主方给出或从除尘器尾部引风机风量大小去确定。

处理风量还存在标况状态(Nm3/h)和工况状态(m3/h)的换算,换算采用理想气体状态方程:PV = nRT(P、n、R均为定值)V1/T1=V2/T2V1: mg/Nm3,T1:273K; V2: mg/m3,T2:t+273K(t为进气温度);怀化骏泰提供的是工况烟气量是300000m3/h,烟气温度150℃,经上述公式转换得出标况烟气量193600 Nm3/h(液气比计算用标况烟气量)2.2 进气温度的确定进气温度为经过除尘后进入脱硫塔的烟气温度值,进气温度大小关系到脱硫系统烟气量的换算和初始SO2浓度换算。

2.3 SO2初始浓度的确定SO2初始浓度一般由业主方给出,并且由此计算脱硫系统中各项设备参数,也是系统选择液气比的重要依据。

SO2初始量计算公式如下:S+O2→SO232 64C SO2=2×B×S ar/100×ηso2/100×109C SO2-SO2初始量,mg; B-锅炉BMCR负荷时的燃煤量,t/h;S ar-燃料的含S率,%;ηso2-煤中S变成SO2的转化率,%,一般取0.85;怀化骏泰提供的是4000 mg/Nm32.4 SO2排放浓度的确定一般根据所在地区环保标准确定。

二氧化硫排放限值与烧煤、油、气有关,与新建或改造锅炉有关,与地区有关,设计之前需要查看当地环保排放标准。

按照国家标准,污染物排放浓度需按公式折算为基准氧含量排放浓度,所以实测的排放浓度还需要经过折算,燃煤锅炉按基准含氧量O2=6%进行折算,c = c’× (21 - O2) / (21 - O2’)式中c –大气污染物基准氧含量排放浓度 , mg/m3;c’—实测的大气污染物排放浓度, mg/m3; 38 mg/m3O2’-- 实测的含氧量 ,%; 15%O2 -- 基准含氧量 ,%; 6%计算: SO2浓度(6%O2)=38×(21-6)/(21-15)=95mg/m3,结果也是与在线监测值相符根据在线监测电脑上显示实测的大气污染物排放浓度, 实测的含氧量,我们可以自己计算出折算值.当然电脑上也给我们自动折算并且给出了折算值,但是这个值怎么来的,我们需要知道,怀化骏泰的排放浓度是100mg/ m3,折算值,不是实测值,3 脱硫系统的设计计算3.1 参数定义(1)液气比(L/G ):即单位时间内浆液喷淋量和单位时间内流经吸收塔的烟气量之比.单位为L/m3;)/3()/(h m h L 的湿烟气体积流量单位时间内吸收塔入口单位时间内浆液喷淋量液气比石灰石法液气比范围在8l/m3-25l/m3之间,一般认为12.2就可以了(液气比超过某个值后,脱硫效率的提高非常缓慢,而且提高液气比将使浆液循环泵的流量增大,增加循环泵的设备费用,塔釜的体积增大.增大脱硫塔制造成本,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用)通过液气比可以计算出循环浆液量Q 循 = 12.2 × 193600 / 1000 = 2362 m3/h(2)钙硫比(Ca/S ):理论上脱除1mol 的S 需要1mol 的Ca ,但在实际反应设备中,反应条件并不处于理想状态,一般需要增加脱硫剂的量来保证一定的脱硫效率,因此引入了Ca/S 的概念。

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

(完整word版)石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO4+2H2O→CaSO4·2H2O(结晶)(4)其他污染物烟气中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

石灰石-石膏法脱硫数据计算

石灰石-石膏法脱硫数据计算
t/h
估计
泵与风机冷却用水
Mwq
t/h
估计
单套脱硫装置耗水量
Mw
t/h
Mgyc+Mgys+Mww+Mwe+Mgyw+Mwq
总的脱硫装置耗水量
Mw'
t/h
n*Mw
氧化空气量计算:
序号
名称
符号
单位
计算公式或数值来源
需氧量
Vo2
kg/h
SO2---1/2O2
kmol/h
Vo2/32
需空气量
Vk
Nm3/h
Vo2/32*22.41/0.21
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
4
干烟气量
Vgy'
Nm3/kg
VRO20+VN20+(alfa'-1)V0
烟气比热kcal/Nm3.℃100℃
kcal/Nm3.℃200℃
i1kcal/Nm3.℃插值法: tpy
i2插值法求85℃比热
t℃t=126-i2*(85-50)/i1
i3kcal/Nm3.℃插值法: t
塔内烟气放热量
Q1
kJ/h
V ' * i3*4.18*(t-50)

最新2×300MW石灰石石膏湿法脱硫工艺参数设计

最新2×300MW石灰石石膏湿法脱硫工艺参数设计

2×300M W石灰石石膏湿法脱硫工艺参数设计目录1、前言 (3)2、设计原则 (3)3、设计步骤 (6)4、设计计算书 (7)4.1理论空气量的计算 (7)4.1.1碳与氧的作用 (7)4.1.2氢与氧的作用 (8)4.1.3硫与氧的作用 (8)4.2空气过剩系数 (9)4.3水蒸气量的计算 (9)4.4烟气体积计算 (10)4.4.1 理论烟气体积 (10)4.4.2、实际烟气体积V (10)wfg4.4.3、烟气体积和密度的校正 (10)4.4.4 过剩空气较正 (11)5、物料平衡核算 (12)5.1吸收塔的物料平衡 (12)5.2石膏处理系统的物料平衡 (13)5.3烟气系统及石灰石湿磨系统的物料平衡 (14)5.4水平衡 (14)5.5热量平衡的计算 (15)6、设计计算书 (19)7、总结 (26)8、参考文献 (27)2×300MW石灰石/石膏湿法脱硫工艺参数设计1、前言我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。

火电厂以煤作为主要燃料进行发电,煤直接燃烧开释出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加,加大火电厂SO2的控制力度就显得非常紧迫和必要。

SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前烟气脱硫被以为是控制SO2最行之有效的途径。

目前国内外的烟气脱硫方法种类繁多,主要分为干法(或半干法)和湿法两大类。

湿法脱硫工艺绝大多数采用碱性浆液或溶液作为吸收剂,技术比较成熟,是目前使用最广泛的脱硫技术,根据吸收剂种类的不同又可分为石灰石/石膏法(钙法)、氨法、海水法等。

其中钙法因其成熟的工艺技术,在世界脱硫市场上占有的份额超过80%。

截至2011年底,我国脱硫装机超过6亿千瓦,其中85%以上为湿法烟气脱硫,多存系统稳定性差,脱硫效率波动较大等问题。

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统设计(内部资料)编制:xxxxx环境保护有限公司2014年8月1.石灰石-石膏法主要特点(1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。

(2)技术成熟,运行可靠性高。

国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。

无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。

(4)吸收剂资源丰富,价格便宜。

石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。

(5)脱硫副产物便于综合利用。

副产物石膏的纯度可达到90%,是很好的建材原料。

(6)技术进步快。

近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。

(7)占地面积大,一次性建设投资相对较大。

2.反应原理(1)吸收剂的反应购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。

(2)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2(气)+H2O→H2SO3(吸收)H2SO3→H+ +HSO3-H+ +CaCO3→ Ca2+ +HCO3-(溶解)Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶)H+ +HCO3-→H2CO3(中和)H2CO3→CO2+H2O总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2(3)氧化反应一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下:CaSO3+1/2O2→CaSO4(氧化)CaSO 4+2H 2O →CaSO 4·2H 2O(结晶)(4)其他污染物烟气中的其他污染物如SO 3、Cl -、F -和尘都被循环浆液吸收和捕集。

脱硫物料平衡计算

脱硫物料平衡计算

设计煤种校核煤种一、项目概况 、项目设计条件元素分析□□□□□□□□1)规模 2)燃料 75t/h煤3)脱硫工艺 石灰石-石膏湿法 4)吸收剂 石灰石 5)副产品石膏6)脱水系统真空皮带脱水机7)再加热方式:无8)烟气量 112000Nm3/h (湿基)x2(100%BMCR )9)FGD 入口温度135°C(设计),141°C(最大) 10)FGD 入口SO2浓度 40001m3(干基)11)FGD 入口粉尘浓度<200mg/Nm3(干基,6%02)12)FGD 出口温度(进烟囱)>50 13)除雾器出口含水量<75mg/Nm3(干基) 14)吸收剂耗量<7.8t/h15)工艺水消耗量<8.6t/h 16)副产品石膏含水量<15% 17)电力消耗<12700kWh/h18)脱硫效率>92% 19)系统可用率>95%5.1.2设计条件1)煤质分析2.1FGD 装置条件 项目 单位Car 59.95 65.71 Har2.252.36Oar%0.570.9Nar%0.940.74Sar% 2.29 2.29工业分析Var%9.07.0Aar%27.0320.0Mar%7.08.0Mad% 2.17 1.67低位发热量kj/kg2146524668100%BMCR燃煤消耗量t/h(每台134.89134.89炉)2)烟气设计条件项目单位100%BMCR35%BMCR FGD入口烟气流量Nm3/h(湿基)1256682517256 FGD入口烟气流量Nm3/h(干基)1193075492172 FGD入口烟气温度°C131103 FGD入口烟气压力Pa00粉尘浓度mg/Nm3180.5164.6 SO2浓度ppm(dry)17611652Nm3/h2101813烟气含水量Vol%(dry) 5.06 4.85烟气含氧量Vol%(dry)7.468.29 CO2Vol%(dry)12.2911.53 N2Vol%(dry)80.0780.01 HCL ppm(dry)25.223.0HF ppm(dry) 11.2 10.2资料确认注意事项:1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%02\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。

石灰石-石膏法烟气脱硫湿法系统设计

石灰石-石膏法烟气脱硫湿法系统设计

石灰石-石膏法烟气脱硫湿法系统设计2008年12月目录1.概述 (1)2.典型的系统构成 (1)3反应原理 (2)4 系统描述 (5)5.FGD系统设计条件的确认 (14)6.物料平衡计算、热平衡计算 (19)1.概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85%以上。

由于反应原理大同小异,本设计总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。

2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。

图2-13反应原理3.1 吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。

这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。

SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。

为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。

3.2 化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H 2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。

b)采用逆流传质,增加吸收区平均传质动力。

c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。

湿式石灰石-石膏法烟气脱硫设计方法及过程

湿式石灰石-石膏法烟气脱硫设计方法及过程

k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
0
内部审核
修改


设 计 校 核 审 核 审 定 项目经理 日 期
0
内部审核
修改


设 计 校 核 审 核 审 定 项目经理 日 期
清华同方股份有限公司
能源环境公司
0,803[kg / Nm砞
m water 77.800 [Nm³/ h] 0,803[kg / Nm砞 62.500 [kg / h]
燃煤烟气成分
• 烟气密度
assumed data
• Density flue gas → 1,35 [kg/Nm³] • 质量流量
m flue gas,dry Vdry,inlet flue gas,dry
m fluegas,dry 1.002.200 [Nm³/ h]1,35 [kg / Nm砞 m fluegas,dry 1.352.000 [kg / h]
m flue gas,wet m flue gas,dry m water m fluegas,wet 1.352.000 [kg / h] 62.500 [kg / h] m fluegas,wet 1.414.500 [kg / h]
燃煤烟气成分
化学过程
• 输入数据
– SO2 – removal efficiency – S proportion in coal – Coal – S + O2 = SO2
Note atomic mass:
→ 95 [%] → 0,79 [%] → 127 [t/h]

石灰石_石膏湿式法烟气脱硫课程设计

石灰石_石膏湿式法烟气脱硫课程设计

目录第一章绪论 (1)1.1设计背景及意义 (1)1.2国内外研究现状 (1)1.2.1国内研究现状 (1)1.2.2国外烟气脱硫发展状况 (2)1.3课程设计任务及采用技术 (3)1.3.1设计任务与目的 (3)1.3.2脱硫技术简介 (3)第二章脱硫工艺 (4)2.1湿式石灰石石膏脱硫工艺介绍 (4)2.1.1烟气脱硫原理 (4)2.1.2空塔喷淋脱硫工艺 (6)2.1.3脱硫设备说明 (6)2.2物料衡算 (6)2.2.1二氧化硫产生量 (6)2.2.2脱硫量 (10)2.2.3吸收塔的硫平衡 (10)2.2.4系统总钙平衡................ (10)2.2.5副产物和脱硫渣量产生量 (10)2.2.6系统的水平衡 (11)第三章工程内容 (11)3.1主要内容 (11)3.1.1烟气系统 (11)3.1.1.1界面设计 (11)3.1.1.2实际氧化空气的计算 (11)3.1.1.3增压风机的设计 (13)3.1.2SO2吸收系统(喷淋吸收空塔主要工艺设计参数) (13)3.1.2.1烟气流速 (13)3.1.2.2喷淋塔吸收区高度(h1) (13)3.1.2.3喷淋塔除雾区高度(h2) (15)3.1.2.4喷淋塔浆液池高度设计(h3) (17)3.1.2.5喷淋塔烟气进口高度设计(h4) (19)3.1.2.6喷淋塔的直径设计 (19)3.1.2.7喷淋层喷嘴的设计 (20)3.1.2.8喷淋塔的壁厚设计 (21)3.1.2.9氧化风机和氧化吸收池搅拌机设计 (22)3.1.2.10人孔及手孔的设计 (23)3.1.2.11吸收塔喷淋系统的设计 (23)3.1.3管道的保温及防腐 (24)3.1.4脱硫液循环系统 (25)3.1.5吸收剂制备及供给系统 (25)3.1.6石膏脱水系统 (26)3.1.7废水处理系统 (27)3.1.8工艺水系统 (28)3.1.9电气系统 (29)3.1.10监测系统 (29)第四章效益评估 (30)4.1运行费用估算 (30)4.1.1电费 (30)4.1.2水费 (30)4.1.3脱硫剂费用 (31)4.1.4人工费 (31)4.1.5运行费用 (31)4.2环境效益及社会效益 (31)参考文献 (35)结束语 (36)附录第一章绪论1.1 设计背景及意义我国空气污染问题的形成与二氧化硫排放总量居高不下密切相关。

石灰石-石膏法设计计算

石灰石-石膏法设计计算

石灰石——石膏湿法烟气脱硫计算模块一、 设计输入参数:烟气流量、入口烟气SO 2浓度、烟气温度、烟气烟尘浓度、HCl 、HF 、SO 3、含氧量、含水率等。

1、烟气流量Q :(工况,全烟气)m 3/h :用于烟道尺寸、吸收塔径的计算 (标况,干基,实际氧气)m 3/h :液气比计算 (标况,湿基,实际氧气)m 3/h :液气比计算 (标况,干基,6%O 2)m 3/h :SO 2浓度计算 (标况,湿基,6%O 2)m 3/h 2、SO2浓度C SO2计算:SO2SO2M C Q=3、 液气比L/G :3L GV 10L /G V ⨯=V L :循环浆液体积 V G :烟气体积(标态)石灰石洗涤塔的液气比一般在8~25之间。

4、Ca/S=耗钙基的摩尔数/脱除的SO 2摩尔数 典型范围:1.01~1.10石灰石CaCO 3含量超过90%时,Ca/S 不超过1.03。

5、 吸收区烟气流速u :一般为2.5~3.8m/s6、 烟气停留时间t :4s7、 氧化倍率O 2/SO 2:取2.5 二、 烟气量计算 1、完全燃烧产生的烟气量理论干烟气量(mg/Nm 3):d a r a r a r V 1.866C 0.70S 0.80N 0.79V=+++1kg 燃料完全燃烧所需理论空气量V a :a a r a r a r V 8.882C 26.46H 3.332S O=++(-) 理论湿烟气量(mg/Nm 3):w d H2O d ar a a ar V V V V 11.12H 1.24V d M ==+++(+) M ar :燃料收到基中水分的质量分率。

d a :燃料的含湿率。

实际烟气量:d1d aw1w a aV V (1)V V V 111.24d V αα==∙+-+(-)(+)各成分的体积:C O 2a r S O 2a rN 2aa r O 2aH 2O a ra a a r V 1.866C V 0.700S V 0.79V 0.80NV 0.211VV 11.12H 1.24V dM α=====+(-)+(+)烟气密度:ar aw11A 1.293V V ρ=(-)+A ar :灰分 2、不知道煤具体组分状况下的计算:(1)确定燃煤热值H u 、全厂效率η、含硫量(若是发电机组,确定机组功率P )(2)选择合适设计参数1kg 煤燃烧产生的湿烟气量V 含水量η1 c o a lu 3600PM H η=∙ V wet = M coal ·V V dry =V w ·(1-η1)V water =V wet ·η1 (3)水蒸汽密度ρ水蒸气:w a t e rw a t e rm V ρ=水蒸汽 PV=nRTmn M=所以:PMRTρ=水蒸汽 P :标准大气压 101350PaM 水蒸汽的摩尔质量 18 R :阿伏伽德罗常数 8.31 T :标准大气压下温度 273.15K 水蒸汽的质量:m water =ρ水蒸汽 ·V water (4) 烟气密度gas ρ =1.35kg/Nm 3 (5) 烟气质量流量flue gas dry gas dry flue gas wet gas wetm V m V ρρ=∙=∙三、 SO 2相关计算(1) 确定参数:脱硫率:95%;煤种S 含量ηS ;燃煤量m coal (2) SO 2燃烧生成量:coal S SO2SO2Sm M mM η=(3)SO 2浓度C SO2S O 2S O 2d r ymC V = (4)SO 2在6% O 2下浓度C SO2 O2 6% 确定干烟气中O 2含量C O2 dry gas则 S O 2O 2a i r S O 2 O 2 6%O 2 a i r O 2 d r y g a s C (C 6%)C C C ∙=-- 四、 吸收塔计算1、除尘器出口温度T 1,GGH 出口温度T 22、干烟气中水含量计算water1flue gas drym Xm =根据除尘器出口温度及干烟气中水含量计算,在h-x 图上,求出X 1、T 2处的焓,沿等焓线到饱和线可得到饱和温度T 3和x 2蒸发水的质量m water vapourised =(x 2-x 1)m flue gas dry蒸发水体积water vapourisedwater saturation waterm V ρ=(水蒸汽密度)3、 吸收塔出口净烟气烟气含水体积:water1water saturation water V V V =+(燃烧过程中烟气含水量) 出口净烟气量:clean gas wet dry water1V V V =+ 五、 石灰石消耗/石膏产量计算23224221S O C a C O 2H O OC a S O 2C O2H O +++→∙+SO 2=64 [g/mol] CaCO 3=100 [g/mol] H 2O=18 [g/mol] CO 2 =44 [g/mol] O 2=32 [g/mol]CaSO 4·2H 2O=172 [g/mol] (石膏)脱除1t SO 2生成副产物石膏2.69t 。

石灰石石膏湿法烟气脱硫工艺的设计毕业设计

石灰石石膏湿法烟气脱硫工艺的设计毕业设计

题目:50000Nm3/h石灰石-石膏湿法烟气脱硫工艺的设计摘要本设计选择石灰石—石膏湿法脱硫工艺,脱硫能力为50000Nm3/h(标干烟气).该工艺系统共有六大系统,分别是:除尘系统、烟气系统、吸收系统、吸收剂浆液制备系统、石膏脱水系统以及废水处理系统。

吸收系统,石膏脱水系统,除尘系统主要涉及系统工艺设计计算。

除尘系统采用电除尘器法,吸收系统采用的是喷淋塔。

关键字:烟气脱硫;石灰石—石膏湿法;吸收塔This design choice limestone - gypsum wet FGD process, desulfurization capacity for 50000Nm3 / h (standard dry flue gas). The process a total of six systems are: dust removal system, flue gas system, absorption system absorbent slurry preparation systemgypsum dewatering system and wastewater treatment systems. Absorption system, gypsum dewatering system, dedusting system, mainly related to the system process design calculations. The dust removal system using the ESP method, the absorption system is used in the spray tower.Keywords:flue gas desulfurization; wet limestone - gypsum; absorber目录第一章绪论 (1)1.1 烟气脱硫的背景 (1)1.2我国烟气脱硫技术现状 (1)1.3烟气脱硫的目的及意义 (2)第二章烟气脱硫工艺的选择 (3)2.1 烟气脱硫方法分类 (3)2.2 几种常见的脱硫工艺 (3)2.2.1 MgO湿法烟气脱硫工艺 (3)2.2.2 氨法脱硫工艺 (3)2.2.3 石灰石-石膏湿法脱硫工艺 (4)2.3脱硫工艺的确定 (5)2.3.1 石灰石(石灰)/石膏湿法脱硫主要优点 (5)2.3.2 MgO湿法烟气脱硫发主要优点 (5)2.3.3氨法脱硫的主要优缺点 (6)2.4本设计采用的脱硫系统 (6)2.5石灰石-石膏湿法烟气脱硫工艺系统的介绍 (7)2.5.1烟气系统 (7)2.5.2 SO2吸收系统 (7)2.5.3石灰石浆液制备系统 (7)2.5.4 石膏脱水系统 (8)2.5.5供水系统 (8)2.5.6 排放系统 (8)第三章湿法烟气脱硫存在的问题及解决 (8)3.1烟气的预处理 (9)3.2烟气的预冷却 (9)3.3净化后气体再加热 (10)3.4除雾 (10)3.5富液的处理 (11)3.6结垢与堵塞 (11)3.7脱硫装置各腐蚀区域的腐蚀分析 (12)3.7.1 烟气输送机热交换系统腐蚀特点分析 (12)3.7.2 SO2吸收及氧化系统腐蚀特点分析 (14)3.7.3 吸收剂(石灰石浆液)传输及回收系统腐蚀特点分析 (15)第四章物料平衡的计算 (16)4.1《锅炉大气污染物排放标准》 (16)4.2各种设计参数的确定 (17)4.3脱硫效率的计算 (18)4.4吸收剂消耗量的计算 (18)4.4.1 净烟气中SO2浓度 (18)4.4.2 石灰石消耗量 (18)第五章主要设备尺寸及规格的计算 (20)5.1 除尘器 (20)5.1.1 各种除尘器的比较 (20)5.1.2 袋式除尘器的特点 (20)5.1.3 电除尘器的特点 (21)5.1.4 除尘器选择结论 (21)5.2 烟气系统 (22)5.2.1 旁路烟道 (22)5.2.2 FGD入口烟道 (22)5.2.3 FGD出口烟道 (22)5.2.4 烟气换热器 (22)5.3 SO2吸收系统 (23)5.3.1 吸收塔的选择 (23)5.3.2 吸收塔尺寸设计计算 (24)5.3.3 吸收塔附属设备的选型 (26)5.3.4 吸收塔高度的计算 (27)5.3.5 吸收塔附属部件设计 (28)5.4 浆液制备系统的设计计算 (28)5.4.1 浆液制备系统的选择 (28)5.4.2 主要设备的计算 (29)5.5 其他系统设备设计选择 (30)5.5.1 增压风机 (30)5.5.2 搅拌器 (31)5.5.3 石膏处置系统 (32)5.5.4 废水排放系统和处理系统 (32)5.5.5 浆液排放与回收系统 (32)5.5.6 工艺水耗量的计算 (32)第六章工艺布置 (34)6.1 脱硫装置的平面布置 (34)6.2 浆液管道布置要求 (34)6.3 设备一览表 (35)参考文献 (36)谢辞 (37)附录 (39)第一章 绪论1.1 烟气脱硫的背景当今世界上电力产量的60%是利用煤炭资源生产的,我国是世界上少数几个以煤炭为主要能源的国家之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档