2020九年级上学期数学配套作业本答案

合集下载

九年级上册数学配套练习册答案

九年级上册数学配套练习册答案

九年级上册数学配套练习册答案第一章:代数基础习题1:解:设未知数为\( x \),根据题意可得方程 \( 2x + 5 = 13 \)。

解此方程得 \( x = 4 \)。

习题2:解:将\( y \)表示成\( x \)的函数,即 \( y = 3x - 2 \)。

当\( x = 1 \)时,\( y = 1 \)。

习题3:解:根据题意,可列出不等式组:\[ \begin{cases} x + y \geq 10 \\ x - y \leq 6 \end{cases} \] 解不等式组得 \( 2 \leq x \leq 8 \)。

第二章:几何图形习题1:解:已知三角形ABC,其中\( AB = 5 \),\( AC = 7 \),\( BC = 8 \)。

根据勾股定理的逆定理,\( AB^2 + AC^2 = BC^2 \),所以三角形ABC是直角三角形。

习题2:解:已知圆的半径为\( r = 10 \),求圆的面积。

圆的面积公式为\( A = \pi r^2 \),代入数值得 \( A = 100\pi \)。

习题3:解:已知平行四边形的对角线互相平分,设对角线交点为O,根据平行四边形的性质,\( OA = OB = OC = OD \)。

第三章:函数与方程习题1:解:给定函数\( y = 3x + 2 \),求\( x = 1 \)时的函数值。

代入得\( y = 3 \times 1 + 2 = 5 \)。

习题2:解:已知二次方程 \( x^2 - 5x + 6 = 0 \),求根。

因式分解得\( (x - 2)(x - 3) = 0 \),解得 \( x = 2 \) 或 \( x = 3 \)。

习题3:解:根据一元一次不等式的性质,解不等式 \( 2x - 3 > 5 \),得\( x > 4 \)。

结束语:本练习册答案仅供参考,希望同学们能够通过练习加深对数学知识的理解和应用。

人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程 附答案

人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程  附答案

2020年秋季人教版数学九年级上册同步练习21.3 实际问题与一元二次方程一.传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14B.15C.16D.253.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.74.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.5.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.6.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?二.握手问题1.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1260B.2x(x+1)=1260C.x(x﹣1)=1260D.x(x﹣1)=1260×22.某单位要组织篮球邀请赛,每两队之间都要赛一场且只赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,根据题意,可列方程()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=153.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个4.元旦期间,九年(1)班数学研究小组的同学互送新年贺卡,如果研究小组有x名学生,共送出132张贺卡,那么可列出方程为.5.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.三.增长问题1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=63.某校坚持对学生进行近视眼的防治,近视学生人数逐年减少.据统计,今年的近视学生人数是前年近视学生人数的75%,那么这两年平均每年近视学生人数降低的百分率是多少?设平均每年降低的百分率为x,根据题意列方程得()A.1﹣x2=75%B.(1+x)2=75%C.1﹣2x=75%D.(1﹣x)2=75% 4.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为x,则可列方程为.5.某市继续加大对教育经费的投入,2018年投入2500万元,2020年预计投入3600万元,则该市投入教育经费的年平均增长率为.6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?四.利润问题1.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000 B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=100002.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满:当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640 C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86403.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则每天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100﹣2x)=1800B.C.D.x[100﹣2(x﹣20)]=18004.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x 元.请你帮助商场算一算,满足x的方程是..5.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.6.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.五.面积问题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6002.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=323.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设榣栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=3754.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.5.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.6.学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x米.(1)用x表示绿化区短边的长为米,x的取值范围为.(2)学校计划投资25000元用于此项工程建设,求绿化区的长边长.参考答案一.传播问题1.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.2.解:设平均每天一人传染了x人,根据题意得:1+x+(1+x)×x=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.3.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.4.解:依题意,得:1+x+x(1+x)=121.故答案为:1+x+x(1+x)=121.5.解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)2=1691+x=±13x1=12,x2=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.6.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.二.握手问题1.解:依题意,得:x(x﹣1)=1260.故选:C.2.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选:D.3.解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.4.解:设研究小组有x名学生,可列出方程为:x(x﹣1)=132.故答案为:x(x﹣1)=132.5.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.三.增长问题1.解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.3.解:依题意,得:(1﹣x)2=75%.故选:D.4.解:设平均每次降价的百分率是x,根据题意列方程得,6500(1﹣x)2=5265.故答案为:6500(1﹣x)2=5265.5.解:设该市投入教育经费的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.6.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.四.利润问题1.解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.2.解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.3.解:由题意可得,x(100﹣)=1800,故选:C.4.解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.5.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.6.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.五.面积问题1.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.2.解:设剪去的小正方形边长是xcm,则做成的纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32.故选:D.3.解:设榣栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.4.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.5.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m 的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.6.解:(1)路面宽为(14﹣2x)米,则绿化区短边的长为[10﹣(14﹣2x)]÷2=(x﹣2)米,依题意得2≤14﹣2x≤5,解得≤x≤6;(2)设绿化区的长边长为x米.由题意列方程得150×4x(x﹣2)+200[14×10﹣4x(x﹣2)]=25000,整理得x2﹣2x﹣15=0,解得x1=5,x2=﹣3(不合题意,舍去).答:绿化区的长边长为5米.故答案为:(x﹣2),≤x≤6.。

人教版数学2020-2021学年九年级上册精选同步练习及答案:21-2-二次根式的乘除(2)

人教版数学2020-2021学年九年级上册精选同步练习及答案:21-2-二次根式的乘除(2)

2.如图,直线 l 表示草原上一条河,在附近有A、B两个村庄,A、B到 l 的距离分别为AC
=30km, BD=40km,A、B两个村庄之间的距离为50k m.有一牧民骑马从A村出发到B村,途中
B
A
D
C
l
保证原创精品 已受版权保护
要到河边给马饮一次水。如果他 在上午八点出发,以每小 时30km的平均速度前进,那么他 能不能在上午十 点三十分之前到达B村?
(3)
56
14பைடு நூலகம் ; (4)
1 .5 3
0 .1 7 .
3.化简:(1) 27a3b2 = ;(2) 24a 18a3 .
4.计算:(1)
36 y
32
49x2 = ;(2) 27 .
18
5.把 a 化简的结果应是( )
32
3 2a
[来源:学科网]
21.2二次 根式的乘除
基础训练1. x 1 ;2.(1) 20;(2) 9 5 ;(3)2;(4)3;3.(1) 3ab 3a ;(2)12 3a2
6 ;4.(1) 7x
y
;(2)
6 3 ;5.C;6.D;7.C;8.B[来源:学.科.网Z.X.X.K]
32
2
能力提升1.(1)120 ;(2) 13 ;(3)10;(4)1;(5) 4 ;(6)9.2. (1) 6 2 ;
2 3a
(A ) a (B) a (C) 3a 2a (D) a
6.下列计算中,正确的是( )
5
35
3
95 3
53
35
(A) 4 4 (B) 7
77
1 9 1 3 17
(C) 16 25 4 5 20 (D)

2020年人教版初中数学九年级上册课堂同步练习(含答案)

2020年人教版初中数学九年级上册课堂同步练习(含答案)

2020年人教版初中数学九年级上册课堂同步练习《第21章 一元二次方程》同步练习测试1 一元二次方程的有关概念及直接开平方法 学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法. 课堂学习检测 一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______. 4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______.5.若-3=0是关于x 的一元二次方程,则m 的值是______. 6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个B .2个C .3个D .4个8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ).A .2个B .3个C .4个D .5个9.x 2-16=0的根是( ).x x m -m+-222)(542=-x 2122=+x x ,5312+=+x x 322,052222--=+++xx x x axA .只有4B .只有-4C .±4D .±810.3x 2+27=0的根是( ). A .x 1=3,x 2=-3 B .x =3C .无实数根D .以上均不正确三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13. 14.(2x +1)2=(x -1)2.综合、运用、诊断 一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关.25)1(412=+x x x x +=-2232,01=+xx ,5)3(21,42122=+=-+x x xC .与a 的值有关D .与a 的符号有关20.如果是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ).A .B .±1C .±2D .21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ). A .B .C .D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24.25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.21=x 5±2±k k +k k -k k -±.063)4(22=--x测试2 配方法与公式法解一元二次方程 学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程. 课堂学习检测 一、填空题1._________=(x -__________)2. 2.+_________=(x -_________)2. 3._________=(x -_________)2. 4.+_________=(x -_________)2.5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A .B .C .D .8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=29.用公式法解一元二次方程,正确的应是( ). A . B . C .D . 10.方程mx 2-4x +1=0(m <0)的根是( ). A .B .+-x x 82x x 232-+-px x 2x ab x -201322=--x x 98)31(2=-x 98)31(2-=-x 910)31(2=-x 0)32(2=-x x x 2412=-252±-=x 252±=x 251±=x 231±=x 41mm-±42C .D .三、解答题(用配方法解一元二次方程) 11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0. 14.五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3. 16.5x 2+4x =1.综合、运用、诊断 一、填空题17.将方程化为标准形式是______________________,其中a =______,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或620.4x 2+49y 2配成完全平方式应加上( ). A .14xyB .-14xymm-±422mmm -±42.03232=--x x x x x 32332-=++C .±28xyD .021.关于x 的一元二次方程的两根应为( ). A . B ., C .D .三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程) 24.2x -1=-2x 2. 25.26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?ax a x 32222=+22a±-a 2a 22422a±a 2±x x 32132=+测试3 一元二次方程根的判别式 学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测 一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为=b 2-4ac ,(1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7B .25C .±5D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数B .负数C .非负数D .零7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0B .9x 2=4(3x -1)C .x 2+7x +15=0D .8.方程有( ). A .有两个不等实根 B .有两个相等的有理根 C .无实根D .有两个相等的无理根三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.02322=--x x 03322=++x x10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程都有两个不相等的实根.综合、运用、诊断 一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .B .C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ). A .k <1B .k <-1C .k ≥1D .k >114.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .或15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .B .且m ≠1C .且m ≠1D . 16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c 为边长的三角形是( ).A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形02)1(2=++-mx m x 242ac b b -±-ac b 42-2132-23<m 23<m 23≤m 23>m二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax +c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5.______6.______ 7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ). A .x 2=x .两边同除以x ,得x =1. B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2). 12.*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0..03222=-x x .)21()21(2x x -=+.1,3221==∴x x .32x x =四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ). A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ). A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程 23. 24.4(x +3)2-(x -2)2=0.25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0. (1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-.04222=-+-b a ax x测试5 一元二次方程解法综合训练 学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力. 课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________ 2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2B .x 1=x 2=2C .x =4D .x 1=x 2=46.的根是( ). A .x =3B .x =±3C .x =±9D .7.的根是( ). A .B .C .x 1=0,D .8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1D .x =1或x =2三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0.12.2a 2x 2-5ax +2=0.(a ≠0)5.27.0512=+x 3±=x 072=-x x 77=x 77,021==x x 72=x 7=x四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断 一、填空题20.若分式的值是0,则x =______.1872+--x x x21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ). A .都是x =0 B .有一个相同,x =0 C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ). A . B . C .D .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26. 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)bax a b x 2,221==ba x a bx ==21,0,2221=+=x abb a x .02322=+-x x yx yx +-拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________. 32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______. (2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______. (4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:①② ③|x 1-x 2|;④ ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程 学习要求会灵活地应用一元二次方程处理各类实际问题. 课堂学习检测 一、填空题1.实际问题中常见的基本等量关系。

九上数学同步练习册参考答案

九上数学同步练习册参考答案

《新课程课堂同步练习册·数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y三、1. x ≥212. x >-13. x =0 §22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 2 2. x -2 3. 42或(-4)2 27)(或27)(- 4. 1 5. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ·1+n (n ≥3,且n 为正整数)三、1. (1)15 (2)32 (3) -108 2. 1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C二、1.33, 210 2. x =2 3. 6 三、1.(1) 232(2) 3-22 (3) 10 (4) 2 2. 258528=÷nn ,因此是2倍. 3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=. §22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33(3) 1 (4)3-25 (5)25-23 (6)3a -2 2. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2×20×30(或2(20+2x )x +2×30x =30×20 或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21- 4. x 1=-22,x 2=22三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米 §23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=45 2. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7 三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9.2. x=2175+或x=2175-.3. x 1=242q p p -+-,x 2=242q p p ---.§23.2 一元二次方程的解法(四)一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-1 2. 41,1625 3. 4三、1.(1)222±=x ; (2)4173±-=x ; (3)a ac b b x 242-±-=.2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0, 所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251-- 三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21; 5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=20000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)×1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),做一个这样的箱子要花35×20=700元钱). 三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二) 一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x .由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52 .整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得21(5-m ) ×2m=21×5×7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2.. §23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2. 5113. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC . ∵ 矩形DMNC 与矩形ABCD 相似,DM MN AB BC =,∴21AD 2=AB 2,∴ 由AB =4得,AD =42(2)矩形DMNC 与矩形ABCD 的相似比为DM AB =§24.3 相似三角形(一)一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略§24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==ED AC EF AB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°, 又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C 二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4或△BAD ∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BCPN ADAE =,1288x x =-, 解得x =4.8cm.3.(1)8,(2)1:4.§24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4. 712或2三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DE BE CD AB = ,即1850.050.16=⨯=⨯=DE CD BE AB (米).2.(1)△CDP ∽△P AE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°, ∴ ∠PCD=∠EP A . ∴ △CDP ∽△P AE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△P AE 知APCD AE PD =, ∴ AE=233116)3211(32-=-⨯=⋅CD AP PD解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△PAE 知2=AP CD ,∴ 2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A 二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(1(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ·cot α=2×2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. 2.5 3.4. 8三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ·tan ∠CAB =4×0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、12. 2633. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD=AB .又在Rt △ABC 中,tan 60AB BC =,AB BC∴=即BC AB =.BD BC CD =+,AB AB CD ∴=+.∴ CD =AB -33AB =180-180×33=180-603(米). 答:小岛C ,D 间的距离为(180-米.3.有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴ BD =PD =x .在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .xAD 330tan =︒=∵ AD =AB +BD , ∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四)一、1.C 2.A二、1. 30° 2.2+3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F , 在Rt △ABE 中,tan AE B BE =,∴ tan AE BE B ==6tan55. ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°,西东PACBN M 60° 45° ABC D 60°45°所以DF =7=AE ,且FC =12.1, 所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ·sin 15°≈50×0.26=13.0. ∴ CE =BF =BD ·cos 15°≈50×0.97=48.5. ∴ AE =CE ·tan 10°≈48.5×0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10×0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10×0.98=9.8(米)在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米),AB =AD -BD ≈23.33-9.8=13.53≈13.5(米) 答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)一、1. D 2. B 3. C 4. A 5. B 二、1. 20,30 2. 0.18 3.124. 0.2 三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A 二、1.25 2. 35 3.(1)14(2)113 (3)413 4. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是61 2. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1. 13 2. 34 3. 12 4.(1)32;(2)61;(3)21F三、1. 树形图:第一张卡片上的整式 x x -1 2第二张卡片上的整式 x -1x x x 1 所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - 也可用表格表示: 所以P (能组成分式)4263==. 2.(1)设绿球的个数为x .由题意,得21212x =++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.红2 黄 绿 红1 黄 绿 红1 红2 绿 红1 红2 红1 红2 黄 绿 开始 第二次摸球 第一次摸球 黄由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种.∴ P (两次都摸到红球)21126==. 3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利土口 木 开始土(土,土) 口(土,口) 木(土,木) 土(口,土) 口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)§26.2模拟实验——用替代物做模拟实验一、1. A2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理三、1. 略2. 14,后者答案不唯一3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一§26.2模拟实验——用计算器做模拟实验一、1. B2. B二、1.1662.13013三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31 155=.(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84 147=.(3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71 142=;若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42 147=;若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63 147=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为5 14.故甲先摸出“锤子”获胜的可能性最大.3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)

2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)

2020年人教版九年级数学上册课后练习本一元二次方程实际问题-面积问题一、选择题1.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=2002.在一幅长为80 cm.宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=03.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是( )A. B.C. D.4.厦门市某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x米,则可列方程为( )A.x(x-10)=200B.2x-2(x-10)=200C.2x+2(x+10)=200D.x(x+10)=2005.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为x m,则可列方程( )A.x(x-10)=375B.x(x+10)=375C.2x(2x-10)=375D.2x(2x+10)=3756.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5-x)=6C.x(10-x)=6D.x(10-2x)=67.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=08.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm二、填空题9.如图,在宽为30m,长为40m的矩形地面上修建两条宽都是1m的道路,余下部分种植花草.那么,种植花草的面积为 .10.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 m(可利用的围墙长度超过6m).11.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为 .12.如图是我市将要开发的一块长方形的土地,长为xkm,宽为3km,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2km2,则x的值为 .13.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为.14.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.15.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为 .16.《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.三、解答题17.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?18.学校的课外生物小组的实验园地是一块长35米,宽26米的长方形,为了便于行走和管理,现要在中间修同样宽的到路,路宽均为a米,余下的作为种植面积,求种植面积是多少?19.如图,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?20.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中x的取值相同)参考答案1.C2.B3.B4.D5.A6.B7.C8.D9.答案为:113110.答案为:111.答案为:1米.12.答案为:4km或5km13.答案为:x2+40x﹣75=0.14.答案为:(9﹣2x)(5﹣2x)=12.15.答案为:(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).16.答案为:x(x﹣12)=864.17.解:⑴设所围矩形ABCD的长AB为x米,则宽AD为米.依题意,得 即, 解此方程,得∵墙的长度不超过45m,∴不合题意,应舍去. 当时,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.⑵不能.因为由得又∵=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2。

2020-2021学年第一学期人教版九年级上册22.3《二次函数与实际问题》同步练习(含答案)

2020-2021学年第一学期人教版九年级上册22.3《二次函数与实际问题》同步练习(含答案)

《二次函数与实际问题》同步练习1.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A.y =2a(x −1)B.y =2a(1−x)C.y =a(1−x 2)D.y =a(1−x)2 2.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是s =20t −5t 2,汽车刹车后到停下来前进的距离是( )A.10mB.20mC.30mD.40m3.已知直线y =mx +n 和抛物线y =ax 2+bx +c 在同一坐标系中的位置如图所示,且抛物线与x 轴交于点(−1, 0)、(2, 0),抛物线与直线交点的横坐标为1和−32,那么不等式mx +n <ax 2+bx +c <0的解集是( )A.1<x <2B.x <−32或x >1C.−32<x <2D.−1<x <24. y =x 2+(1−a)x +1是关于x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )A.a ≤−5B.a ≥5C.a =3D.a ≥35.在二次函数y =x 2+2x −3中,当−3≤x ≤0时,y 的最大值和最小值分别是( )A.0,−4B.0,−3C.−3,−4D.0,06.一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数解析式是________.(不写定义域)7.已知A(m,n)、B(m+8,n)是抛物线y=−(x−ℎ)2+2018上两点,则n=________.8.两个数的和为6,这两个数的积最大可以达到________.9.抛物线y=x2−4与x轴的两个交点和抛物线的顶点构成的三角形的面积为________.10.二次函数y=ax2−4x−13a有最小值−17,则a=________.11. 已知二次函数y=x2+bx+c的图象与y轴交于点A(0, 4),与x轴交于点B(1, 0)和点C,顶点为D,直线y=mx+n经过点C和D,(1)求二次函数的解析式;(2)根据函数的图象,当x取什么值时,x2+bx+c>mx+n?12.某商店如果将进货单价8元的商品按每件10元售出,每天可销售200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮助店主设计一种方案,使每天的利润为700元吗?(2)将售价定位每件多少元时,能使每天可获的利润最大?最大利润是多少?13.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y (元).(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?参考答案1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】y=x2+6x7.略8.【答案】99.【答案】810.【答案】1或41311.【答案】解:(1)∵ 二次函数y=x2+bx+c的图象与y轴交于点A(0, 4),与x轴交于点B(1, 0),∵ {c=41+b+c=0,解得{c=4b=−5,∵ 二次函数的解析式为:y=x2−5x+4;(2)∵ y=x2−5x+4=(x−1)(x−4),∵ C(4, 0).∵ 当x=−−52=52时,y=4×4−254=−94,∵ D(52, −94).当x<5或x>4时,x2+bx+c>mx+n.212.【答案】解:(1)设每件商品提高x元,则每件利润为(10+x−8)=(x+2)元,每天销售量为(200−20x)件,依题意,得:(x+2)(200−20x)=700.整理得:x2−8x+15=0.解得:x1=3,x2=5.∵ 把售价定为每件13元或15元能使每天利润达到700元;若设每件商品降价x元,则(2−x)(200+20x)=700.整理得:x2+8x+15=0,解得:x1=−3,x2=−5,∵ 把售价定为每件13元或15元能使每天利润达到700元.(2)设利润为y:则y=(x−8)[200−20(x−10)]=−20x2+560x−3200=−20(x−14)2+720,则当售价定为14元时,获得最大利润;最大利润为720元.13.【答案】销售单价为45元时,每星期获得的利润最大,最大利润是4500元.。

九年级上数学作业本答案

九年级上数学作业本答案

九年级上数学作业本答案九年级上数学作业本答案在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

以下是店铺为大家整理的九年级上数学作业本答案,仅供参考,大家一起来看看吧。

九年级上数学作业本答案11、S=1/16C2、B3、(1)开口向上,顶点坐标是(2,-7),对称轴是直线x=2(2)开口向下,顶点坐标是(1,-1),对称轴是直线x=14、(1)y=x-2x-1,即y=(x-2)-3.图象略(2)y=-5/2(3)当x≥2时,y随x的增大而增大;当x≤2时,y随x的增大而减小5、y=x-x-26、有解,x1≈5.2,x2≈0.87、D得m=-4,则y=-6x-4x=-6(x+1/3)+2/3,该抛物线可以由抛物线y=-6x先向左平移1/3个单位,再向上平移2/3个单位得到8、(1)y=-1/90(x-60)+60(2)由-1/90(x-60)+60=0,解得x-60+30<150,不会超出绿化带9、(1)A(1,0),B(3,0),C(0,3),D(2,-1),四边形ACBD的面积是4(2)由3S△ABC=S△ABP,得点P到x轴的距离为9。

把y=±9代入y=x-4x+3,得x=2±。

所以存在点P,其坐标为(2+,9)或(2-,9)10、(1)点A(0,0),B(2,0),关于抛物线的对称轴x=1对称,所以△ABD是等腰直角三角形(2)∵△BOC是等腰三角形,∴OB=OC。

又点C(0,1-m)在y轴的负半轴上,∴m-1=m+1,解得m1=2,m2=-1∵m+1>0,∴m-2,0<x<1(2)不能。

理由如下:由题意,-x+x=1/6,△<0,方程无解。

所以△APQ的.面积不可能为正方形ABCD的面积的1/6九年级上数学作业本答案2基础练习1、902、(1)不正确.反例略(2)不正确.反例略3、(1)能,因为△AOB是直角三角形,∠A = 90°(2)不能.因为由∠B = 30°不能得到∠A = 90°4、略综合运用5、证明AB ⊥ AC6、因为点 O 到 AB,AC,BC 的距离分别为 0.75,0.75,1.5,⊙O 的半径为 0.75,所以⊙O 与 AB,AC 相切,与 BC 相离。

九年级上数学作业本答案浙教版2020

九年级上数学作业本答案浙教版2020

九年级上数学作业本答案浙教版2020一、选择题1.A2.D3.D4.D5.C6.B7.A8.B9.B 10.D二、填空题11.3 12. 13.-1 14.=三、15.解:==.16.解:四、17.方程另一根为,的值为4。

18.因为a+b=2++2-=4,a-b=2+-(2-)=2,ab=(2+)(2-)=1所以=五、19.解:设我省每年产出的农作物秸杆总量为a,合理利用量的增长率是x,由题意得:30%a(1+x)2=60%a,即(1+x)2=2∴x1≈0.41,x2≈-2.41(不合题意舍去)。

∴x≈0.41。

即我省每年秸秆合理利用量的增长率约为41%。

20.解:(1)∵方程有实数根∴Δ=22-4(k+1)≥0解得k≤0,k的取值范围是k≤0(5分)(2)根据一元二次方程根与系数的关系,得x1+x2=-2, x1x2=k+1x1+x2-x1x2=-2 + k+1由已知,得 -2+ k+1-2又由(1)k≤0 ∴ -2∵ k为整数∴k的值为-1和0. (5分)六、21. (1)由题意,得解得∴ (3分)又A点在函数上,所以,解得所以解方程组得所以点B的坐标为(1, 2) (8分)(2)当02时,y1当1y2;当x=1或x=2时,y1=y2. (12分) 七、22.解:(1)设宽为x米,则:x(33-2x+2)=150,解得:x1=10,x2= 7.5当x=10时,33-2x+2=1518,不合题意,舍去∴鸡场的长为15米,宽为10米。

(5分)(2)设宽为x米,则:x(33-2x+2)=200,即x2-35x+200=0Δ=(-35)2-4×2×200=1225-1600<0方程没有实数解,所以鸡场面积不可能达到200平方米。

(9分)(3)当0当15≤a<20时,能够围成一个长方形鸡场;当a≥20时,能够围成两个长宽不同的长方形鸡场;(12分)八、23.(1)画图(2分)(2)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF .∴∠DAB=∠EAB ,∠DAC=∠FAC ,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°∠F=∠ADC=90°.又∵AE=AD,AF=AD∴AE=AF.∴四边形AEGF是正方形. (7分)(3)解:设AD=x,则AE=EG=GF=x.∵BD=2,DC=3∴BE=2 ,CF=3∴BG=x-2,CG=x-3.在Rt△BGC中,BG2+CG2=BC2∴( x-2)2+(x-3)2=52.化简得,x2-5x-6=0解得x1=6,x2=-1(舍去),所以AD=x=6. (12分)。

九年级上册数学作业本答案浙教版2020

九年级上册数学作业本答案浙教版2020

九年级上册数学作业本答案浙教版2020
九年级上册数学作业本答案浙教版2020
一.帮你学习
(1)-1 (2)B
二.双基导航
1-5 CCDAB
(6)1;-6;7 (7)k≤2 (8)①③ (9)3/4 (10)
(11)解:设应降价x元.
(40-x)(20+2x)=1200
解得x1=10(舍去)
x2=20
∵为了尽快减少库存
∴答:每件衬衫应降价20元.
(12)解:①∵方程有两个不相等的实数根
∴b2-4ac>0 ∴(-3)2-4(m-1)>0
∴m0
2(x2+2x)>-3
2(x2+2x+1)>-3+2
2(x+1)2>-1
(x+1)2>-1/2
∵(x+1)2≥0
∴无论x为任意实数,总有2x2+4x+3>0
②3x2-5x-1>2x2-4x-7
3x2-2x2-5x+4x-1+7>0
x2-x+6>0
x2-x>-6
(x-1/2)2>-23/4
∵(x-1/2)2≥0
∴无论x为任意实数,总有3x2-5x-1>2x2-4x-7
(16) (6,4)
三.知识拓展
1-4 CCDA
(5)6或12 (6)1:1
(8)①PA=1/6 PB=2/6=1/3 PC=2/6=1/3 PD=1/6
②不公平,因为棋子移动到每个点的概率不同
若想尽可能获胜,应选B点或C点
③PA=8/36=2/9
(9)①如果一个四边形的对角线相互垂直,那么这个四边形的面积等于对角线乘积的一半
P15 CDDABC P17 CACA。

2020年人教版九年级数学上册同步练习 22.3《实际问题与二次函数》(含答案)

2020年人教版九年级数学上册同步练习 22.3《实际问题与二次函数》(含答案)

100 万元的销售投资,则 5 年所获利润的最大值是
.
3.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲 种水果的销售利润 y 甲(万元)与进货量 x(吨)近似满足函数关系 y 甲=0.3x;乙种水果的销售 利润 y 乙(万元)与进货量 x(吨)近似满足函数关系 y 乙=ax2+bx(其中 a≠0,a,b 为常数),且 进货量 x 为 1 吨时,销售利润 y 乙为 1.4 万元;进货量 x 为 2 吨时,销售利润 y 乙为 2.6 万元. (1)求 y 乙(万元)与 x(吨)之间的函数关系式; (2)如果市场准备进甲、乙两种水果共 10 吨,设乙种水果的进货量为 t 吨,请你写出这两种 水果所获得的销售利润之和 W(万元)与 t(吨)之间的函数关系式,并求出这两种水果各进多 少吨时获得的销售利润之和最大,最大利润是多少?
2020 年人教版九年级数学上册同步练习
22.3《实际问题与二次函数》
第 1 课时 二次函数与图形面积 01 基础题 知识点 二次函数与图形面积 1.如图,假设篱笆(虚线部分)的长度为 16 m,则所围成矩形 ABCD 的最大面积是( )
A.60 m2
B.63 m2 C.64 m2
D.66 m2
2.用长 8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大
均以 1 cm/s 的速度向点 B,C,D,A 匀速运动,当点 E 到达点 B 时,四个点同时停止运动,
在运动过程中,当运动时间为 3s 时,四边形 EFGH 的面积最小,其最小值是
cm2.
10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为 60 cm,菱形的面积 S(单位:cm2)随其中一条对角线的长 x(单位:cm)的变化而变化. (1)请直接写出 S 与 x 之间的函数关系式(不要求写出自变量 x 的取值范围); (2)当 x 是多少时,菱形风筝面积 S 最大?最大面积是多少?

九年级数学作业本答案北师大版2020

九年级数学作业本答案北师大版2020

九年级数学作业本答案北师大版20201、第一章基本知识和技能1.1 四则运算1(1)∵3 − 4 = −1,故3 + (−1) = 42(2)∵2x + 3y = 6,故2x + 3(−2x) = 6,即−x = 6,故x = −63(3)∵2x − 3y = 0,故2(x + 1) − 3y = 2,即3y = 2 − 2x,故y = (2 − 2x)/34(4)2(3 − 2x)(3 + x) = 2(3 − 2x)(x + 3),故9 − 6x + x2 − 6x2 − 3x2 = 0,即x2 + 3x − 6 = 0,故x = [−3 ± √(32 − 4〖・〗〖・〗(3)(-6))]/(2) = [−3 ± √57]/22、第二章练习2.1 填空1. (2)2. (−6)3. (2-2x)/34. [−3±√57]/23、第三章习题3.1 习题一(1)解:设A=(x1,y1),B=(x2,y2),则AB的距离为d=√(x2−x1)2+(y2−y1)2(2)解:∵满足⁡〖〖〖〖〖2(x-2)〗〗〗〗〗^2+(y+3)^2=9,①将两边同平方2x2-4x+4+y2+6y+9=9②把变量都放在一边,其他的放在另一边y2+6y+2x2-4x+13=0③求出y的值y=(-6±√(-6)^2-4(1)(13))/2(1)= [-6±√(-36-52)]/2= [-6±√(-88)]/2= [-6±√88]/2= [-6±2√11]/24、第四章应用题4.1 题型一(1)解:因为六边形外围的圆心角都一样,所以6×θ = 360° θ = 360°/6 = 60°(2)解:由给出的信息可知:R=5,C=4θ=60°因此,外接圆的面积=π×R2=π×52=25π∴内接正六边形的面积=25π/4=6.25π(3)解:设正五边形外径为a,内径为b,原来正六边形面积为S 内接正五边形的面积=2×S=[2ab×cos 30°]/2=ab/2=25π/4∴5b×cos30°=25π∴b=25π/(5×cos30°)令a=4b,则a=4×25π/5×cos30°∴外接正五边形的面积=5a2×cos30°/4=5×(4×25π/5×cos30°)2×cos30°/4=25π2/cos 30°。

2020最新人教版九年级上册数学同步训练答案:第21章一元二次方程一元二次方程解法的相关应用

2020最新人教版九年级上册数学同步训练答案:第21章一元二次方程一元二次方程解法的相关应用

一元二次方程解法的相关应用1. 在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6−b=0有两个相等的实数根,则△ABC的周长=________.2. 如果(x2+y2)(x2+y2−2)=3,则x2+y2的值是________.3. (x2+y2)(x2−1+y2)−12=0,则x2+y2的值是________.4. 已知实数m满足(m2−m)2−4(m2−m)−21=0,则代数式m2−m的值为________.5. 通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2−4ac≥0时有两个实数根:x1=−b+√b2−4ac2a,x2=−b−√b2−4ac2a ,于是:x1+x2=−ba,x1⋅x2=ca、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为________.6. 已知关于x的一元二次方程x2+(3−k)x−3k=0有一个实数根是1,则这个方程的另一个实数根是________.7. 如果1x2−2x−8=0,则1x的值是________.8. 小刚按照某种规律写出4个方程:①x2+x−2=0;②x2+2x−3=0;③x2+3x−4=0;④x2+4x−5=0… (1)按照此规律,请你写出第100个方程:________;(2)按此规律写出第n个方程是________;这个方程是否有实数解?若有,请求出它的解;若没有,请说明理由.9. 阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程x2=−1时,突发奇想:x2=−1在实数范围内无解,如果存在一个数i,使i2=−1,那么当x2=−1时,有x=±i,从而x=±i是方程x2=−1的两个根.据此可知:(1)i可以运算,例如:i3=i2⋅i=−1×i=−i,则i4=________,i2012=________,i 2013=________;(2)方程x 2−2x +2=0的两根为________(根用i 表示).10. 关于x 的一元二次方程(m −2)x 2+5x +2m 2−8=0有一个根是0,则m =________,另一个根是________.11. 方程x 2=|x|的根是________.12. 若2x 2+9xy −5y 2=0,求x y =________.13. 方程x 2−4=|2x +1|的解是________.14. 已知关于x 的一元二次方程(k +4)x 2+3x +k 2+3k −4=0的一根为0,则k 的值是________,另一根是________15. 已知关于x 的方程(m −1)x 2−(2m +1)x +m =0有实数根,则m 的取值范围是________.16. 当x =________时,代数式x 2−8x +12的值是−4.17. 已知m ,n 是一元二次方程x 2−2x −4=0的两个数根,且(7m 2−14m +a)(3n 2−6n −7)=100,则a =________.18. 将4个数a ,b ,c ,d 排成2行2列,两边各加一条直线记成|a b c d |,定义|a b c d |=ad −bc ,上述记号就叫做二阶行列式.若|x +11−x x −1x +1|=6,则x =________.19. 已知(x −2)(2x +1)=0,则2x +1的值为________.20. 已知x =−b+√b 2−4c 2(b 2−4c >0),则x 2+bx +c 的值为________.参考答案与试题解析一元二次方程解法的相关应用一、填空题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】122.【答案】33.【答案】44.【答案】75.【答案】−16.【答案】−37.【答案】4或−28.【答案】x2+100x−101=0;x2+nx−(n+1)=0.9.【答案】1,1,ix1=1+i,x2=1−i10.【答案】−2,5411.【答案】x1=0,x2=1,x3=−112.【答案】1或−5213.【答案】x=1+√6或x=−3 14.【答案】1,−3515.【答案】m≥−1 816.【答案】417.【答案】−818.【答案】±√2 19.【答案】5或0 20.【答案】0。

九年级上册数学作业本答案人教版 (3)

九年级上册数学作业本答案人教版 (3)

九年级上册数学作业本答案(人教版)第一章有理数1.1 有理数的概念和性质1. 课后练习题1. 将下列数按从小到大的顺序排列,并写出比较它们大小的符号:-2, -3, 0, 4, 6, -1答案:-3 < -2 < -1 < 0 < 4 < 62. 判断下列各式的真假:-2 < 1 - 2答案:真3. 比较下列各组数的大小,打“>”、“<”或“=”号:-4, 2, -4.8-12, -12.0001, -12.0010.12, 0.3333, 0.33… (循环小数)答案:-4 < 2 < -4.8-12 = -12.0001 < -12.0010.33... < 0.3333 < 0.121.2 有理数的加法和减法2. 课后练习题1. 计算下列各题的结果:-3 + 4 + (-1) - 21 -2 - 4 + 3-5 + (-4) - 2 + 3答案:-2-2-82. 用有理数计算两车分别从同一点分别向东、西两个方向行驶,东行的每小时90公里,西行的每小时80公里,东行的时间比西行多0.5小时,求两车离同一出发点距离。

答案:设两车离同一出发点的距离为x公里,则东行车行驶时间为(x/90)小时,西行车行驶时间为(x/80)小时。

由题意可得方程:(x/90) - (x/80) = 0.5解方程得:x = 720所以,两车离同一出发点的距离为720公里。

1.3 有理数的乘法和除法3. 课后练习题1. 简化下列各式,使分母为正数:(-2/3) ÷ (-4/5)-(5/8) ÷ (-3/4)(-3/4) ÷ (-5/8)答案:(2/3) ÷ (4/5)`(5/8) ÷ (3/4)``(3/4) ÷ (5/8)`第二章整式2.1 整式的概念和加法1. 课后练习题1. 计算下列各式的值:3a + 2b - a - b2a - 3b + 2a + b + 3b4xy - 3y^2 + (xy + y^2)答案:3a + 2b - a - b = 2a + b`2a - 3b + 2a + b + 3b = 4a``4xy - 3y^2 + (xy + y^2) = 5xy - 2y^2`2.2 整式的减法和乘法2. 课后练习题1. 计算下列各题:(5a - 2b) - (3a + b)(2x - 3y)^2(4ab + 2a) × 3b答案:(5a - 2b) - (3a + b) = 2a - 3b `(2x - 3y)^2 = 4x^2 - 12xy + 9y^2` `(4ab + 2a) × 3b = 12ab^2 + 6ab`2.3 因式3. 课后练习题1. 求下列各式的最大公因式:2xy - 4x^2y^24a^2b + 2ab^26x^3 - 9x^2 + 12x答案:2xy - 4x^2y^2的最大公因式为2xy`4a^2b + 2ab^2` 的最大公因式为 `2ab``6x^3 - 9x^2 + 12x` 的最大公因式为 `x`第三章方程式3.1 方程的解1. 课后练习题1. 解下列方程:2x + 3 = 4x - 13(y - 2) = 4y - 55(2x - 1) - (3x - 4) = 2(3 - x)答案:2x + 3 = 4x - 1的解为x = 2`3(y - 2) = 4y - 5` 的解为 `y = -1``5(2x - 1) - (3x - 4) = 2(3 - x)` 的解为 `x = 0`3.2 列方程2. 课后练习题1. 用代数方式解决下面的问题并列方程:甲的年龄是乙的2倍,乙的年龄比丙的3倍多2岁,现在他们三人的年龄加起来是42岁,求三人的年龄。

2.6 应用一元二次方程 北师大版九年级数学上册同步作业(含答案)

2.6 应用一元二次方程 北师大版九年级数学上册同步作业(含答案)

2.6应用一元二次方程一、单选题1.某公司今年1月份生产口罩250万只,按计划第一季度的总生产量要达到910万只.设该公司2、3两个月生产量的月平均增长率为,根据题意列方程正确的是()A.B.C.D.【答案】D【分析】根据所设未知数,先表示出该公司2、3两个月生产量,再列方程即可.【解析】解:设该公司2、3月的生产量的月平均增长率为x,依题意,得:250+250(1+x)+250(1+x)2=910.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2.某单位要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场)计划安排20场比赛,应邀请多少个球队参加比赛?若设x个球队参加比赛,则可列方程为()A.B.C.D.【答案】A【分析】根据每个球队都要参加场比赛,但是每两队之间都赛一场,所以比赛的总场数为,由此可列出方程.【解析】设x个球队参加比赛,根据题意有故选:A.【点睛】本题主要考查列一元二次方程,读懂题意,找到等量关系是解题的关键.3.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设栅栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=375【答案】A【分析】设栅栏AB的长为x米,根据AD+AB+BC=55且AD=BC可得AD=BC=米,再由长方形的面积公式可得答案.【解析】解:设栅栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是表示出矩形的宽,难度不大. 4.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了()人.A.40B.10C.9D.8【答案】D【分析】设每轮传染中平均一个人传染了x人,则一轮传染后共有(1+x)人被传染,两轮传染后共有[(1+x)+x(1+x)]人被传染,由题意列方程计算即可.【解析】解:设每轮传染中平均一个人传染了x人,由题意,得:(1+x)+x(1+x)=81,即x2+2x﹣80=0,解得:x1=8,x2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D.【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.5.《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是( )A.x2+12=(x+0.68)2B.x2+(x+0.68)2=12C.x2+1002=(x+68)2D.x2+(x+68)2=1002【答案】D【分析】1丈=100寸,6尺8寸=68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【解析】解:1丈=100寸,6尺8寸=68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)2=1002.故选:D.【点睛】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键.6.有一个模拟传染病传播的电子游戏模型:在一个方框中,先放入足够多的白球(模拟健康人),然后在框中同时放入若干个红球(模拟最初感染源),程序设定,每经过一分钟,每个红球均恰好能使方框中个白球同时变成红球(为程序设定的常数),若最初放入的白球数为400个,红球数为4个,从放入红球开始,经过2分钟后,红球总数变为64个,则应满足的方程是()A.4(1+)=64B.4(1+)=400C.4=64D.4=400【答案】C【分析】原有4个红球,1分钟后红球数为个,2分钟新增加的红球数为个,由2分钟后,红球总数变为了64个列方程可得结论.【解析】根据题意得:,即:,故选:C.【点睛】考查了由实际问题抽象出一元二次方程的知识,了解增长率问题是解题的关键.7.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元B.10元C.11元D.9元【答案】B【分析】设应降价x元,根据题意列写方程并求解可得答案.【解析】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【点睛】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.8.一个容器盛满纯药液千克,第一次倒出一部分药液后加满水,第二次又倒出同样多的药液,再加满水,此时容器内的纯药液利下千克,那么每次倒出的药液是()A.千克B.千克C.千克D.千克【答案】B【分析】设每次倒出药液升,根据倒出两次后容器内的纯药液剩下28千克,即可得出关于的一元二次方程,解之即可得出结论.【解析】解:设每次倒出药液升,第一次倒出后剩升药液,第二次倒出后还剩升药液,即列方程为:,解得:,(不合题意,舍去).故选:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( )A.9人B.10人C.11人D.12人【答案】B【解析】试题解析:设这个QQ群共有x人,依题意有x(x-1)=90,解得:x=-9(舍去)或x=10,∴这个QQ群共有10人.故选B.10.如图①,在矩形中,,对角线,相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则对角线的长为()A.3B.4C.5D.6【答案】C【解析】略二、填空题11.某种品牌运动服经过两次降价,每件零售价由600元降为384元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,则可列方程为_________.【答案】600(1﹣x)2=384.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是600(1﹣x),第二次后的价格是600(1﹣x)2,据此即可列方程求解.【解析】解:设每次降价的百分率为x,由题意得:600(1﹣x)2=384,故答案为:600(1﹣x)2=384.【点睛】此题主要考查了一元二次方程的应用,掌握此类问题中的等量关系的确定方法.在存在基础量a的前提下,若连续增长(或降低)n次,且平均增长(或降低)率为x,则增长后的数量为(或降低后的数量为),我们可以把它作为一个固定的公式来理解.12.有1个人得了传染病,传染2轮后共有100人患病,如果不加控制,5轮传染后共有___________人患病.【答案】100000【分析】设一个患者一次传染给x人,由题意得,解方程即可;【解析】设一个患者一次传染给x人,由题意,得,解得(舍去),即平均每轮传染中1个人传染了9个人.如果不加控制,5轮传染后患病的人数是.故答案为:.【点睛】本题主要考查了一元二次方程的应用,准确计算是解题的关键.13.已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,设个位上的数字为,列出关于的方程:______.【答案】【分析】用x表示出十位上数,即可表示出这个两位数,再根据题目条件列出方程化简即可.【解析】∵个位上的数字为,个位上的数字比十位上的数字小4∴十位上的数字为所以这个两位数为∵个位上的数字与十位上的数字的平方和比这个两位数小4∴化简得故答案为.【点睛】本题考查一元二次方程的应用——数字问题,解题的关键是正确的表示出这个两位数,从而建立方程.14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.【答案】20(1﹣20%)(1﹣x)2=11.56.【分析】设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.56万元建立方程.【解析】设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.故答案是:20(1﹣20%)(1﹣x)2=11.56.【点睛】一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.15.某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是个,则每个支干长出的小分支数目为________.【答案】【分析】设支干的数目为x,则小分支的数目为x2,根据题意总数为x2+x+1=91即可得到结论.【解析】解:设支干的数目为x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=-10(不符合题意,舍去);则:x=9;故答案为x=9.【点睛】设未知数是列方程解应用题时的一个重要环节,根据应用题的实际特征,灵活地设出未知数,可使解题过程得到简化,此题设支干的数目为x为关键.16.如图是一个的正方形格子,要求横、竖、对角线上的三个数之和相等,请根据图中提供的信息求出等于_____.【答案】7【分析】用不同字母填满表格,然后根据“横、竖、对角线上的三个数之和相等”列出等式,找出字母间的关系,列方程求解即可.【解析】设表格的数如下图.2a bc6dm1e∵横、竖、对角线上的三个数之和相等,∴2+6+e=a+6+1,∴a=e+1.∵2+a+b=a+6+1,∴b=5.∵m+6+b=a+6+1,∴m=a+1-b=e+1+1-5=e-3.∵m+1+e=1+6+a,∴e-3+1+e=1+6+e+1,∴e=10,∴m=e-3=10-3=7.故答案为:7..【点睛】本题考查了一元一次方程的应用.利用相等关系“横、竖、对角线上的三个数之和相等”列方程是解答本题的关键.17.如图,在Rt△ABC中,∠B=90°,AB=BC=12 cm,点D从点A开始沿边AB以2 cm/s的速度向点B移动,移动过程中始终保持四边形DFCE(点E,F分别在AC,BC上)为平行四边形,则出发________s时,四边形DFCE的面积为20 cm2.【答案】1或5【分析】设点D从点A出发x秒时,四边形DFCE的面积为20cm2.根据S四边形DECF=S△ABC−S△ADE−S△BDF,列出方程求解即可.【解析】设点D从点A出发x s时,四边形DFCE的面积为20 cm2.由题意,得--=20,解得x1=1,x2=5,故答案为1或5.【点睛】本题考查了一元二次方程的运用及等腰直角三角形的性质的运用,三角形的面积公式的运用,解答时运用面积之间的关系建立方程是关键.18.某商场销售一批衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价______元.【答案】20【分析】利用平均每天售出的件数×每件盈利=每天的利润列出方程解答即可.【解析】解:设每件衬衫应降价x元.根据题意,得:(40-x)(20+2x)=1200整理,得x2-30x+200=0解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应略去,∴x=20.故答案为:20.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.19.如图是某月的月历表,在此月历表上可以用一个矩形圈出个位置相邻的数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为_____.【答案】144【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解析】根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=-24(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故答案为144.【点睛】此题主要考查了一元二次方程的应用、数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.20.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A 种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为_____元.【答案】5740【分析】根据题意可得A礼盒的成本价格,进而可求出1个福字饼和1个禄字饼的成本和为40元,再设一个福字饼成本x元,一个禄字饼成本(40﹣x)元,A种礼盒m袋,B种礼盒n袋,列出方程得到xn=20n+250,最后求出每日卖出礼盒的实际总成本即可.【解析】解:设A礼盒成本价格a元,根据题意,得96﹣a=20%a,解得a=80,∵A礼盒装有2个福字饼,2个禄字饼,∴2个福字饼和2个禄字饼的成本价格为80元,∴1个福字饼和1个禄字饼的成本价格为40元,设个福字饼成本价x元,1个禄字饼成本价(40﹣x)元,则1个寿字饼成本价为(40﹣x)元,A种礼盒m袋,B种礼盒n袋,根据题意,得m+n=7880m+n[x+2(40﹣x)+3×(40﹣x)]+500=80m+n[(40﹣x+2x+3×(40﹣x)]∴xn=20n+250设A、B两种礼盒实际成本为w元,则有w=80m+xn+2n(40﹣x)+n×(40﹣x)=80(m+n)﹣500=80×78﹣500=5740.故答案为:5740.【点睛】本题考查了一元二次方程的应用,解决本题的关键是求出A礼盒的成本.三、解答题21.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.(1)求每轮传染中平均每个人传染了几个健康的人;(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?【答案】(1)每轮传染中平均每个人传染了7个健康的人;(2)第三轮传染将又有448个健康的人患病.【分析】(1)设每轮传染中平均每个人传染了x个人,根据一人患病后经过两轮传染后共有64人患病,即可得出关于x的一元二次方程,解之即可得出结论;(2)利用经过两轮传染后的人数乘以每轮平均传染人数,即可求出结论.【解析】(1)设每轮传染中平均每个人传染了x个健康的人.依题意,得,解得(不合题意,舍去).答:每轮传染中平均每个人传染了7个健康的人.(2)(个).答:第三轮传染将又有448个健康的人患病.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.某工厂一种产品2017年的产量是100万件,计划2019年产量达到121万件.假设2017年到2019年这种产品产量的年增长率相同.(1)求2017年到2019年这种产品产量的年增长率;(2)2018年这种产品的产量应达到多少万件?【答案】(1)10%;(2)110.【分析】(1)根据题意设年平均增长率为,则第一年的产量为,第二年产量为,据此进一步列出方程求解即可;(2)根据题意可知,2018年产量为,据此进一步代入计算即可.【解析】(1)2017年到2019年这种产品产量的年增长率,则:,解得:或(舍去),答:2017年到2019年这种产品产量的年增长率10%;(2)2018年这种产品的产量为:(万件),答:2018年这种产品的产量应达到110万件.【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.23.如图,要建一个底面积为130平方米的鸡场,鸡场一边靠墙(墙长16米),并在与墙平行的一边开道1米宽的门,现有能围成32米长的木板.求鸡场的长和宽各是多少米?【答案】鸡场的长和宽分别为13m,10m.【分析】设鸡场的垂直于墙的一边长为x,而与墙平行的一边开一道1m宽的门,现有能围成32m 长的木板,那么平行于墙的一边长为(32-2x+1),而鸡场的面积为130m2,由此即可列出方程,解方程就可以解决问题.【解析】解:设鸡场的垂直于墙的一边长为x,依题意得(32-2x+1)x=130,2x2-33x+130=0,(x-10)(2x-13)=0,∴x1=10或x2=6.5,当x1=10时,32-2x+1=13<16;当x2=6.5时,32-2x+1=20>16,不合题意舍去.答:鸡场的长和宽分别为13m,10m.【点睛】本题考查一元二次方程的应用,解题关键是弄懂题意,找出题目中的等量关系,要注意判断所求的解是否符合题意,舍去不合题意的解.24.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【答案】20【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,由此即可列出方程(40-x)(20+2x)=1200,解方程就可以求出应降价多少元.【解析】如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件;设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得,解之得,因要减少库存,故x=20.答:每件童装应降价20元.【点睛】此题考查一元二次方程的应用,解题关键在于结合实际列出相应的一元二次方程. 25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?【答案】(1);(2)120;(3)该商店可能购进并销售学习机80台或30台【分析】(1)根据如果超出40台,则每超过1台,每台售价均减少5元,可列式;(2)先根据待定系数法计算直线的解析式,在计算x=60时的进价和售价,可得利润;(3)分当x>40,和当x≤40时,分别计算每台的售价,列方程解出即可;【解析】(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.【点睛】本题主要考查了一元二次方程的应用和函数图形的知识点,准确理解是解题的关键.26.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿边CB向点B以2cm/s的速度移动.(1)如果点P、Q同时出发,几秒后,可使△PCQ的面积为8cm2?(2)点P、Q在移动过程中,是否存在某一时刻,使得四边形APQB的面积等于△ABC 的面积的?若存在,求出运动的时间;若不存在,说明理由.【答案】(1)2秒或4秒时,△PCQ的面积为8cm2;(2)不存在;理由见解析.【分析】(1)设秒后,可使△PCQ的面积为8cm2,根据三角形的面积公式即可列式求解;(2)设秒时,四边形APQB的面积等于△ABC的面积的,则△PCQ的面积是△ABC 的面积的,根据三角形的面积公式列方程,根据根的判别式进行判断即可.【解析】解:(1)设秒后,△PCQ的面积为8cm2,由题意,得,解得,,所以,2秒或4秒时,△PCQ的面积为8cm2;(2)不存在.理由如下:设秒时,四边形APQB的面积等于△ABC的面积的,则△PCQ的面积是△ABC的面积的.由题意,得,即,由于,方程没有实数根,所以,不存在某一时刻使四边形APQB的面积等于△ABC面积的.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列式求解.27.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分别比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【答案】(1)50,25;(2)20【分析】(1)先将10.5万元化为105000元,设该乡镇有名高中学生获得了资助,则该乡镇有2x名初中学生受到资助,由题意得一元一次方程,求解即可;(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t,化为关于t的一元二次方程,求解出t,再根据a%=t,求得a即可.【解析】(1)10.5万元=105000元设该乡镇有名高中学生获得了资助,则该乡镇有名初中学生受到资助,由题意得:解得:∴∴该乡镇分别有50名初中学生和25名高中学生获得了资助.(2)由题意得:∴设,则方程化为:∴解得(舍)或∴.【点睛】本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.28.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=6cm;(2)s或s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x 的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴PQ=6cm;∴经过2s时P、Q两点之间的距离是6cm;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤时,则PB=16-3y,∴PB•BC=12,即×(16-3y)×6=12,解得y=4;②当<x≤时,BP=3y-AB=3y-16,QC=2y,则BP•CQ=(3y-16)×2y=12,解得y1=6,y2=-(舍去);③<x≤8时,QP=CQ-PQ=22-y,则QP•CB=(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为12cm2.考点:一元二次方程的应用.29.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加,每户物管费将会减少.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少,求的值.【答案】(1)该小区有250套80平方米住宅;(2)的值为50.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有500×40%=200户参与活动一,80平方米住宅有250×20%=50户参与活动一;50平方米住宅每户所交物管费为100(1-a%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1-a%)元,有50(1+6a%)户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,列出方程求解即可.【解析】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020九年级上学期数学配套作业本答案
解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算
过程或推理步骤,请将解答书写在答题卡中对应的位置上.
19.计算:
20.今年四月份将举行体考,重庆一中为了解初三学生当前体育训练成果,于1月16日举行
了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根
据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计
图.
(1)请补全条形统计图;
(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率. X Kb1 .Co m
四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算
过程或推理步骤,请将解答书写在答题卡中对应的位置上.
21.先化简,再求值:,其中是方程的解.
22.如图,在笔直的公路上有一检查站A,在观测点B的南偏西53° 方向,且与观测点B的
距离为7.5千米.一辆自行车从位于点B南偏西76°方向的点C 处,沿公路自西向东行驶,
2小时后到达检查站A.
(1)求观测点B与公路的距离;
(2)求自行车行驶的平均速度.
(参考数据:
,,,,, )
23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2020年采购的书桌价格为
120元/张,椅子价格为40元/张,总支出费用34000元;2020年采购的书桌价格上涨为
130 元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2020年分别相同,总支出
费用比2020年多2000元.
(1)求2020年采购的书桌和椅子分别是多少张?
(2)与2020年相比,2020年书桌的价格上涨了 (其中 ),椅子的价格上
涨了,但采购的书桌的数量减少了,椅子的数量减少了50张,且2020
年学校桌子和椅子的总支出费用为34720 元,求的值.
24. 如图,在□ABCD中,CE AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,
连接BF交CE于点G.
(1)若,CF= ,求CG的长;
(2)求证:AB=ED+CG。

相关文档
最新文档