特殊的平行四边形-人教版八年级下
人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件
(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1
人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件
10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线
人教版八年级下册数学作业课件 第十八章 解题技巧专题:特殊平行四边形中的定值最值问题
的长度为
37 2
.
4.如图,点 E 是矩形 ABCD 的对角线 BD 上的一点, 且 BE=BC,AB=3,BC=4,点 P 为直线 EC 上的 一点,且 PQ⊥BC 于点 Q,PR⊥BD 于点 R.如图①, 当点 P 为线段 EC 中点时,易证得 PR+PQ=12.
5
(1)如图②,当点 P 为线段 EC 上的任意一点(不与点
(2)如图,矩形 ABCD 中,AB=8,BC=15,P 是边
AD 上的动点,PE⊥AC 于点 E,PF⊥BD 于点 F,
则 PE+PF 的值为
120 17
.
3.如图,矩形 ABCD 中,BC=6,AB=3,R 在 CD
边上,且 CR=2,P 为 BC 上一动点,E、F 分别是
AP、RP 的中点,当 P 从 B 向 C 移动时,线段 EF
AD2+AE2= 12+12= 2, ∴OD 的最大值为 2+1.故选 A.
7.(2021·眉山中考)如图,在菱形 ABCD 中,AB=
AC=10,对角线 AC、BD 相交于点 O,点 M 在线
段 AC 上,且 AM=3,点 P 为线段 BD 上的一个动
点,则 MP+1PB 的最小值是 7 3 .
2
2
提示:分别过点 P、点 M 作 BC 边的垂线.
8.如图,在正方形 ABCD 中,E 是对角线 AC 上的 动点,以 DE 为边作正方形 DEFG,H 是 CD 的中 点,连接 GH.若 GH 的最小值是 1,则正方形 ABCD 的边长为 2 2 .
9.如图,已知菱形 ABCD 的对角线相交于 O,点 E、 F 分别在边 AB、BC 上,且 BE=BF,射线 EO、FO 分别交边 CD、AD 于 G、H. (1)求证:四边形 EFGH 为矩形; 证明:∵四边形 ABCD 是菱形, ∴OA=OC,OB=OD, AB∥CD,AD∥BC. ∴∠BAO=∠DCO.
人教版八年级数学下册知识点第十八章《平行四边形》
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
2020-2021学年八年级数学下学期期末复习:1.4 特殊平行四边形【知识梳理+真题演练】(人教
专题1.4 特殊平行四边形知识归纳 知识点1:菱形1. 定义:一组邻边相等的平行四边形叫做菱形.2. 性质:菱形的四条边相等,两条对角线互垂直平分,且每一条对角线平分一组对角.3. 判定方法:①一组邻边相等的平行四边形是菱形;①对角线互相垂直的平行四边形是菱形;①四条边都相等的四边形是菱形.4. 设菱形对角线长分别为l 1,l 2,则S 菱形=21l 1l 2.1.(2020•荆门)如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若EF =5,则菱形ABCD 的周长为( )A .20B .30C .40D .502.(2020•黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4:1B .5:1C .6:1D .7:13.(2020•牡丹江)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,AD ①x 轴且AD =4,①A =60°,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A.(0,2√3)B.(2,﹣4)C.(2√3,0)D.(0,2√3)或(0,﹣2√3)4.(2020•盐城)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.125B.52C.3D.55.(2020•辽阳)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD 上一点,连接OE,若OE=CE,则OE的长是()A.2B.52C.3D.46.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.√13D.67.(2020•黑龙江)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH①AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72B.24C.48D.968.(2020•贵阳)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.329.(2020•福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:①BAE=①DAF.10.(2020•滨州)如图,过①ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:①PBE①①QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.11.(2020•郴州)如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.求证:四边形BEDF是菱形.12.(2020•连云港)如图,在四边形ABCD中,AD①BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.知识点2:矩形1.定义:有一个内角是直角的平行四边形叫做矩形.2.性质:矩形的对角线互相平分且相等,四个角都是直角.3.判定方法:①有三个角是直角的四边形是矩形;①对角线相等的平行四边形是矩形;①有一个角是直角的平行四边形是矩形.4. 设矩形的长和宽分别为a,b,则S矩形=ab.1.(2020秋•西安期末)如图,矩形ABCD的对角线AC、BD相交于点O,①ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3B.4C.2D.32.(2020春•漳州期末)如图,将矩形纸片右侧部分的四边形ABCD沿线段AD翻折至四边形AB′C′D的位置.若①DAB=56°,则①1的度数是()A.34°B.56°C.58°D.68°3.(2020春•复兴区期末)如图,在矩形ABCD中,AC、BD相交于点O,AE平分①BAD交BC于点E,若①CAE=15°,则①BOE的度数为()A.60°B.75°C.72°D.90°4.(2019秋•崂山区期末)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE①BD,垂足为点E,AE=5,且EO=2BE,则OA的长为()A.B.C.3D.5.(2020春•新乐市期末)如图,在①ABC中,点D在BC上,DE①AC,DF①AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若①BAC=90°,则四边形AEDF是矩形C.若AD①BC且AB=AC,则四边形AEDF是菱形D.若AD平分①BAC,则四边形AEDF是矩形6.(2020秋•太原期末)如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.①ABC=90°B.AC=BD C.AD=AB D.①BAD=①ADC7.(2020秋•紫金县期末)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D.AD=BC8.(2020春•南宁期末)如图,在△ABC中,∠ACB=90°,D是AB的中点,且DC=AC,则∠B的度数是()A.25°B.30°C.45°D.60°9.(2020•聊城)如图,在①ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.10.(2020•遂宁)如图,在①ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:①BDE①①F AE;(2)求证:四边形ADCF为矩形.11.(2020•北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF①AB,OG①EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.知识点3:正方形1. 正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形.2. 正方形的性质(1)正方形既有矩形的性质,又有菱形的性质.(2)正方形的四个角都是直角,四条边相等.(3)正方形的对角线相等且互相垂直平分.3. 正方形的判定方法(1)有一组邻边相等的矩形是正方形.(2)对角线互相垂直的矩形是正方形.(3)有一个角是直角的菱形是正方形.(4)对角线相等的菱形是正方形.4. 平行四边形、矩形、菱形与正方形之间的联系1.(2020秋•大东区期末)如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则①CDE的度数为()A.20°B.22.5°C.25°D.30°2.(2020春•十堰期末)如图,在正方形OABC中,点B的坐标是(6,6),点E、F分别在边BC、BA 上,OE=3.若①EOF=45°,则F点的纵坐标是()A.2B.C.D.13.(2020春•漳州期末)如图,在正方形ABCD中,BF①CE于点F,交AC于点G,则下列结论错误的是()A.①BCG①①CDE B.AG=BE C.①OBG=①OCE D.①ABG=①AGB 4.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:①BAE①①CDE;(2)求①AEB的度数.5.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE =DF,连接AE和BF相交于点M.求证:AE=BF.。
初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题
章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
八年级数学下册人教版18.2特殊的平行四边形优秀教学案例
1.培养学生对数学学科的兴趣,树立自信心,形成积极的数学学习态度;
2.培养学生勇于探索、坚持真理的精神,锻炼学生的意志品质;
3.培养学生团队协作、互相帮助的良好品质,提高学生的人际沟通能力;
4.通过对特殊平行四边形的探究,使学生认识到数学在实际生活中的重要性,培养学生的社会责任感。
5.教学内容的逻辑性和连贯性:教师从导入新课到讲授新知,再到学生小组讨论、总结归纳和作业小结,教学内容的安排具有逻辑性和连贯性,使学生能够系统地学习和掌握特殊平行四边形的性质及其应用。
在教学过程中,我以“以人为本”的教育理念为指导,充分考虑学生的认知规律和学习兴趣,采用多元化的教学方法和评价方式,激发学生的学习积极性,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.理解矩形、菱形、正方形的定义及其性质;
2.学会运用特殊平行四边形的性质解决实际问题;
3.掌握平行四边形到特殊平行四边形的判定方法;
3.及时反馈学生的学习情况,指导学生调整学习策略,提高学习效果。
在教学过程中,我将注重学生的反思与评价,帮助学生发现自己的优点和不足,指导学生调整学习方法,提高学生的综合能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的矩形、菱形、正方形实例,如建筑、设计、工程等,引导学生关注特殊平行四边形在现实中的应用;
在教学过程中,我将关注学生的情感态度与价值观的培养,以爱心、耐心和责任心对待每一个学生,营造和谐、民主的课堂氛围,使学生在愉悦的情感状态下学习,提高学生的情感态度与价值观。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的建筑、设计、工程等为例,引入特殊平行四边形的概念,让学生感受到数学与生活的紧密联系;
人教版八年级数学下册第18章平行四边形 知识要点总结
人教版八年级数学下册第18章平行四边形知识要点总结第18章平行四边形复习平行四边形知识点一、平行四边形定义:二、平行四边形的性质边:1.两组对边互相平行且相等;符号语言:角:2.两组对角分别相等;符号语言:对角线:3.对角线互相平分。
符号语言:对称性:中心对称图形但不一定是轴对称图形平行线之间的距离:平行线间的距离都相等符号语言:∵AE∥BF且AB⊥BF,CD⊥BF,EF⊥BF∴AB=CD=EF三、平行四边形的判定边:1. 两组对边分别平行.....的四边形是平行四边形;符号语言:2. 两组对边分别相等......的四边形是平行四边形;符号语言:3. 一组对边平行且相等......的四边形是平行四边形;符号语言:角:4. 两组对角分别相等......的四边形是平行四边形;符号语言:对角线:5.对角线互相平分的四边形是平行四边形;符号语言:四、平行四边形的面积公式S□ABCD=ah(a是边,h是这个边的高);五、与三角形有关的知识点1.三角形中位线定义:连接三角形两边中点的线段..叫做三角形的中位线。
2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半符号语言:3.取值范围:利用三角形的性质:两边之和大于第三边;两边之差小于第三边 如:已知□ABCD 两对角线的长分别为6和8,则较短边长x 的取值范围为1<x<7.4.直角三角形性质定理(1)直角三角形斜边上的中线等于斜边的一半.符号语言:∵在Rt △ABC 中,且AD =CD∴ BD=AD=CD(2)直角三角形中,30°角所对应的直角边等于斜边的一半.符号语言:∵在Rt △ABC 中,且∠A=30°∴BC=12AC 或 2BC=AC特殊的平行四边形知识点—矩形一、矩形的定义:二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的四个角都是直角; 符号语言:3.矩形的对角线平分且相等。
符号语言:三、矩形判定1.有一个角是直角的平行四边形.....叫做矩形。
人教版八年级数学下册-解题技巧专题:特殊平行四边形中的解题方法
解题技巧专题:特殊平行四边形中的解题方法◆类型一特殊四边形中求最值、定值问题一、利用对称性求最值【方法10】1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________.第1题图第2题图2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.二、利用面积法求定值3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________.【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和(1)(2017·眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________.变式题(1)图变式题(2)图(2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE 上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________.◆类型二正方形中利用旋转性解题4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.6.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP.求证:BP+CP=2OP.参考答案与解析1. 245解析:如图,过点Q 作QE ⊥AC 交AB 于点E ,则PQ =PE .∴DP +PQ =DP +PE .当点D ,P ,E 三点共线的时候DP +PQ =DP +PE =DE 最小,且DE 即为所求.当DE ⊥AB 时,DE 最小.∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4,OB =12BD =3,∴AB =5.∵S菱形ABCD =12AC ·BD =AB ·DE ,∴12×8×6=5·DE ,∴DE =245.∴DP +PQ 的最小值为245.2.6 解析:如图,设BE 与AC 交于点P ,连接BD .∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE ,即P 为AC 与BE 的交点时,PD +PE 最小,为BE 的长度.∵正方形ABCD 的边长为6,∴AB =6.又∵△ABE 是等边三角形,∴BE =AB =6.故所求最小值为6.故答案为6.3. 245解析:∵四边形ABCD 为矩形,∴∠ABC =90°.∵AB =6,BC =8,∴AC =10,∴OB =OC =12AC =5.如图,连接OP ,∵S △OBP +S △OCP =S △OBC ,∴OB ·PF 2+OC ·PE 2=S △OBC ,∴5·PF 2+5·PE 2=S △OBC .∵S △OBC =14S 矩形ABCD =14AB ·BC =14×6×8=12,∴5·PF 2+5·PE 2=12,∴PE +PF =245.【变式题】(1)52解析:∵菱形ABCD 的周长为40,面积为25,∴AB =AD =10,S △ABD =252.连接AP ,则S △ABD =S △ABP +S △ADP ,∴12×10(PE +PF )=252,∴PE +PF =52.(2)22解析:连接BP,过点E作EH⊥BC于H.∵S△BPE+S△BPC=S△BEC,∴BE·PM2+BC·PN2=BC·EH2.又∵BE=BC,∴PM2+PN2=EH2,即PM+PN=EH.∵△BEH为等腰直角三角形,且BE=BC=1,∴EH=22,∴PM+PN=EH=22.4.325.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH =∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合,∴AH=AF,∠BAH =∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF=S△AEH =S△ABE+S△ABH=S△ABE+S△ADF.6.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。
新课标人教版初中数学八年级下册第十九章19.2特殊的平行四边形--正方形的判定-精品课件
练习1:判断 (1)四个角都相等的四边形是正方形 (2)四条边都相等的四边形是正方形 (3)对角线相等的菱形正方形 (4)对角线互相垂直的矩形是正方形 (5)对角线垂直且相等的四边形是正方形 (6)四边相等,有一角是直角的四边形是 正方形
例2 已知:在正方形ABCD中,A′、B ′、C ′、 D ′分别从顶点A、B、C、D沿AB、BC、CD、 DA方向同时以同样速度向B、C、D、A移动。
D
M
A
E
F
C
N
B
练习2(2019年山东省济南市中考试题)如图,是 一块在电脑屏幕上出现的矩形色块图,由5种颜色 不同的正方形组成。设中间最小的一个正方形边 长为1,则这个矩形的面积是
练习4 (2019年陕西省中考题)如图,在矩形 ABCD中,点E、F分别在AB、CD上,BF平行 于DE。若AD=12cm,AB=7cm,且AE:EB=5: 2,求阴影部分的面积。
例题3:已知正方形ABCD中,Q在CD上,且 DQ=QC,P在BC上,AP=CD+CP; 求证:AQ 平分∠DAP.
证明:延长AQ交BC延长线与E,
∵四边形ABCD是正方形, ∴AD=CD,AD∥CD;
A
D
∴∠D=∠QCE,∠DAQ=∠E, 又∵DQ=CQ,
Q
∴⊿ADQ≌⊿ECQ (AAS).
∴∴ACDD==CCEE,,又∴AADP==CCDD,+CP=CE+CP=EPB.
①AE与BF相等吗?为什么?
②AE与BF是否垂直?说明你的理由。
A
D
F G
BE
C
练习7:如图,已知正方形ABCD中,
E、F分别为BC和DC上的点,且
人教版八年级数学下册《特殊的平行四边形》复习课件
A.4
)
B. 3
C.10
D.12
A
D
F
G
B
E
C
例
如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别
在正方形ABCD的边上,且AH=2,连接CF.
(1)当DG=2时,求证:菱形EFGH是正方形。
(2)设DG=x,试用含x的代数式表示△FCG的面积。
D
G
C
F
H
A
A
C
O
B
N
)
矩形的探究性问题
A
例 如图,在△ABC中,DE分别是AB,
AC的中点,连接DE并延长至点F,使
E F = D E , 连 接 C F.
(1)求证:四边形DBCF是平行四边形。
(2)探究:当△ABC满足什么条件时,
B
四边形ADCF是矩形,并说明理由。
D
E
F
C
N
A
B
如图,已知AD//BC,AB//CD,∠B=∠BCD.
4、正方形既是矩形,又是菱形;
5、理解矩形、菱形、正方形的关系。
框架
矩形
正方形
平行四边形
菱形
定义
平行四边形:两组对边分别平行的四边形叫平行四边形。
矩形:有一个角是直角的平行四边形叫矩形。(特殊在角)
菱形:有一组邻边相等的平行四边形叫菱形。(特殊在边)
正方形:有一个角是直角且有一组邻边相等的平行四边形叫正方形。
点PQ分别在BD,AD上,则PA+PQ的最小值为_______。
Q
A
D
P
E
B
C
CD在∠MON的内部,顶点A,B分别在射
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,在矩形ABCD中,AE=BF=3, EF⊥ED交BC于点F,矩形的周长为22, 求EF的长。
E
A
B
F
D
C
直角三角形斜边上的高和斜边上的中线分别 是5cm和6cm,则它的面积是——
A
∵∠ACB=90ο,中线CD=6cm
5.菱形的两条对角线的长分别为6cm和8cm, 那么菱形的面积是_____.24cm2
如图,用一长一短两根细木条,在它们的中 点处固定一个小钉,做成一个可转动的十字,四 周围上一根橡皮筋,做成一个四边形,转动木条, 这个四边形什么时候变成菱形?
归纳
菱形的判定定理: 对角线互相垂直的平行四边形是菱形 四边相等的四边形是菱形
判断题
1. 对角线相等且一组对边也相等的四边形是矩形.
(×)
2. 两条对角线交点到四个顶点距离相等的四边形为矩形.( √ )
3. 有一组对边相等,一组对角是直角的四边形是矩形. ( √ )
4. 有三个角都相等的四边形是矩形.
( ×)
课 选择题
堂 5. 具备条件____的四边形是矩形. 练
习
A.两条对角线相等 B.对角线互相垂直 C.一组对角是直角 D.有三个角是直角
设折痕为EF。试确定重叠部分△AEF的面积和
折痕EF的长。
G
A
F
D
B
C
E
练习:如图四边形ABCD中, ∠ABC=∠ADC=900,E是AC中点,EF 平分∠BED交BD于点F, (1)猜想EF与BD具有怎样的关系? (2)试证明你的猜想。
A
E
B
F
D
C
4、已知MN∥PQ,同旁内角的平分线AB、 BC和AD、CD分别相交于点B、D.
菱形是轴对称图形,它的对角线所在的直 线就是它的对称轴.
根据菱形的对称性易得菱形的如下性质: 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条 对角线平分一组对角.
例题
例2.菱形花坛ABCD的边长为20m,ABC=600.沿 着菱形的对角线.修建了两条小路AC和BD,求两条 小路的长(结果保留小数点后2位)和花坛的面积 (结果保留小数点后1位).
∵四边形ABCD是矩形 A
D
∴OA=OD
∴∠OAD=∠ODA
O
E
∵∠DAE=3∠BAE , B ∠DAE+∠BAE=90ο
C
∴∠BAE=22.5ο
∴∠ADO=∠BAE=22.5ο
∴∠EAC=90ο-2×22.5ο=45ο
拓展思维:
1、 如图,矩形纸片ABCD中,AB=4厘米,
BC=8厘米,现将A、C重合,使纸片折叠压平,
6. 能够判断一个四边形是矩形的条件是
[ D] [ C]
A.对角线相等
B.对角线垂直
C.对角线互相平分且相等 D.对角线垂直且相等
返回
1. 下面性质中,矩形不一定具有的是
A.对角线相等 B.四个角都相等 C.是轴对称图形 D.对角线垂直
[ D]
2. 过四边形的各个顶点分别作对角线的平行线,若这四
条平行线围成一个矩形,则原四边形一定是 [ D ]
课 A.对角线相等的四边形 B.对角线互相平分且相等的四边形
堂 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
练 3. 已知矩形的一条对角线与一边的夹角是40°,则两
习 条对角线所夹锐角的度数为
[D ]
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,
作业
P102-103 习题19.2 1,2,3 4,8,9
19.2.2 菱形
衣服花色
菱形幻图
跳 伞 图 案
菱形隔墙
菱形的定义 有一组邻边相等的平行四边形叫做菱形
如图,将一个矩形的纸对折两次,沿图中虚线 剪下,再打开,就得到一个菱形.
D
A
C
B
观察得到的菱形,它是轴对称图形吗?有几条 对称轴?对称轴之间有什么位置关系?你能看出图中 哪些线段或角相等?
B
C
归纳 矩形的性质: 矩形的四个角都是直角;
矩形的对角线相等.
A
D
B
C
归纳 直角三角形斜边上的中线等于斜边的一半
A
D
O
B
C
说明:在矩形ABCD中,设对角线AC和BD交于 点O, 那么AC=BD.又根据平行四边形的性质知 对角线互相平分,即OA=OC,OB=OD. 所以 OA=OC=OB=OD= AC= BD.
A
B
D
C
解:因为花坛ABCD是菱形, 所以AC⊥BD,ABO= ABC= 600=300
在Rt△OAB中AO= AB= 20=10(m)
BO=
(m)
所以花坛的两条小路长为 AC=2AO=20 m BD=2BO≈34.64 m
花坛的面积为 S=4SOAB= ACBD≈346.4 m2
菱形的面积公式
例题
例3 如图平行四边形ABCD的对角线AC、BD相 交于点O,且AB=5,AO=4,BO=3.求证:四边形 ABCD是菱形.
证明:因为AB=5,AO=4,BO=3 所以 AB2=AO2+BO2, 所以 OAB是直角三角形, 所以 AC⊥BD 所以 平行四边形ABCD是菱形.
思考
请你动脑筋
把两张等宽的纸条交叉重叠在一起,你 能判断重叠部分ABCD的形状吗?
思考
由矩形的定义可知,有一个角是直角的平行 四边形是矩形,当平行四边形的一个角变为直角 时,另外三个角都变为直角,并且两条对角线也 变成相等的线段.
还有其他的方法把一个平行四边形变成矩形 吗?
归纳 矩形的判定定理 1.对角线相等的平行四边形是矩形
A
D
O
B
C
已知:平行四边形ABCD中的AC、BD是对角线,且 AC=BD.
求证:四边形ABCD是矩形.
证明:若平行四边形ABCD的对角线AC=BD,再 由AB=AB,AD=BC;易得ABC≌BAD.
所以ABC=BAD; 又ABC+BAD=1800 所以ABC=BAD=900,
所以平行四边形ABCD是矩形.
思考
如图,李芳同学用画“边—直角、边—直角、 边—直角、边”这样四步画出了一个四边形。她 说这就是一个矩形,她的判断对吗?你能证明吗?
19.2 特殊的平行四边形
主要内容
19.2.1 矩形 19.2.2 菱形 19.2.3 正方形
19.2.1 矩形
引言
门窗
书本
地板砖
矩形的定义
有一个角是直角的平行四边形叫做矩形,也 就是长方形.
A
D
B
C
矩形是有一个内角是直角的平行四边形,
其它内角有什么特点呢?两条对角线有什么特 点?
A
D
则∠BAE等于
[A]
A.30° B.45° C.60° D.120°
返回
6、在矩形ABCD中,AB=10cm,AD=5cm,E是 CD上的一点,且AE=10cm,则∠CBE等于 ( )
A
B
D
EC
9.矩形ABCD的两条对角线AC、BD相交于点O,AE 垂直于BD于E,若∠DAE=3∠BAE,则∠EAC=?
归纳 矩形的判定定理 2.有三个角是直角的四边形是矩形
A
D
B
C
1、已知矩形的周长是24,相邻两边之比是1:2, 那么这个矩形的面积是____3_2_______
2、矩形的两条对角线的夹角为60°,
一边长为10,则另一边长为____________
3、请在横线上写出结论,在括号里填理由
∵四边形ABCD是矩形
例题
例1 如图,矩形ABCD的两条对角线相交于点 O,AOB=600,AB=4cm,求矩形对角线的长.
解:因为四边形ABCD是矩形,
所以 AC与BD相等且互相平分.
所以OA=OB.
A
D
又AOB=600. O
所以OAB是等边三角形.B
C
OA=AB=4cm.
所以矩形的对角线长AC=BD=2OA=8cm.
正
方
菱形
形
正方形既是矩形又是菱形.
思考
正方形有哪些性质?如何判断一个四边 形是正方形?把它们写出来,并和同学交流 一下,然后证明其中的一些结论?.
例4 求证:正方形的两条对角线把这个正方 形分成四个全等的等腰直角三角形.
A
D
O
B
C
已知:如图,四边形ABCD是正方形,对角
线AC、BD相交于点O.
求证:ABO、BCO、CDO、DAO是全 等的等腰直角三角形
证明:因为四边形ABCD是正方形, 所以AC=BD,AC⊥BD.
AO=BO=CO=DO. 所以,ABO、BCO、CDO、DAO都是等腰直角 三角形,并且ABO≌BCO≌CDO≌DAO.
思考
正方形、菱形、矩形、平行四边形四者之间 有什么关系?与同学们讨论一下,并列出或用框 图表示这些关系.
1. 四边形ABCD是菱形,点O是两条对角线 的交点,AB=5cm,AO=4cm,求两条对角线AC和BD 的长.
2. 菱形的两条对角线的长分别是6cm和8cm, 求菱形的周长和面积.
3.已知菱形的周长是12cm,那么它 的边长是___3_c_m_.
4.菱形ABCD中∠ABC=60度,则 ∠BAC=___6_0_度__.
A D
BC
练习
P100 练习1,2,3
小结
1. 菱形的性质 2. 菱形的判定
作业
课外作业: P102 习题19.2 5,6,7 拓展练习: P103 习题19.2 10,11,12