车牌图像定位与识别

合集下载

车牌识别原理

车牌识别原理

车牌识别原理
车牌识别是指通过图像处理和模式识别技术,对车辆的车牌进行自动识别和文字提取的过程。

其原理可以概括为以下几个步骤:
1. 图像预处理:从摄像头获取的图像需要进行预处理,包括去噪、灰度化、二值化等操作。

去噪主要是为了减少图像中的干扰信息,而灰度化和二值化则是将图像转换为黑白二值图,方便后续处理。

2. 车牌定位:在经过预处理后的图像中,需要找到车牌所在的位置。

常用的方法有基于边缘检测、颜色分析和形状匹配等。

边缘检测可以提取图像中的边缘信息,颜色分析可以根据车牌的颜色特性进行筛选,形状匹配可以通过匹配车牌的形状特征来定位。

3. 字符分割:在定位到车牌后,需要将车牌上的字符进行分割。

常见的方法有基于边缘投影和垂直投影的字符分割算法。

边缘投影是通过检测字符边缘的变化情况来实现分割,垂直投影则是通过统计字符列中像素的数量来实现分割。

4. 字符识别:分割后得到的单个字符需要进行识别。

字符识别主要是通过模式识别技术,例如用神经网络、SVM等算法进
行训练和匹配。

训练集中包含了各种不同字符的样本,识别时将样本与待识别字符进行比对,找到最匹配的字符。

5. 结果输出:识别出的字符需要进行校验和整理,确保识别准
确无误。

最后将识别结果输出为文字或数字,用于后续的车辆管理和系统应用。

综上所述,车牌识别主要通过图像预处理、车牌定位、字符分割、字符识别和结果输出等步骤实现对车牌的自动识别和文字提取。

通过不同的算法和技术优化,可以提高识别的准确率和实时性,提升车牌识别系统的性能和可靠性。

通过计算机视觉技术实现车牌识别的方法介绍

通过计算机视觉技术实现车牌识别的方法介绍

通过计算机视觉技术实现车牌识别的方法介绍车牌识别是一种应用广泛的计算机视觉技术,它可以通过图像处理和模式识别算法,将车辆的车牌信息自动提取出来。

随着计算机视觉技术的不断发展,车牌识别技术已经成为智能交通系统、停车管理系统、安防监控系统等领域中不可或缺的一部分。

本文将介绍一种基于计算机视觉技术实现车牌识别的方法。

首先,车牌识别的流程可以分为图像获取、图像预处理、车牌定位、字符分割和字符识别等几个步骤。

其中,图像获取是车牌识别的第一步,可以通过摄像机、监控摄像头等设备来获取车辆图像。

在图像预处理阶段,主要是对图像进行去噪、增强等操作,以提高后续步骤的准确性。

常用的图像预处理算法包括灰度化、直方图均衡化、滤波等。

接下来是车牌定位,即在预处理后的图像中准确定位到车牌区域。

车牌通常具有一定的几何特征,如宽高比、颜色、边缘等,可以利用这些特征来进行定位。

常用的车牌定位算法有基于颜色特征的方法、基于纹理特征的方法等。

在车牌定位之后,需要对车牌进行字符分割,将车牌中的字符分割开来。

字符分割是车牌识别过程中一个关键的步骤,准确的字符分割可以提高后续字符识别的准确性。

常用的字符分割算法有基于连通区域的方法、基于边缘检测的方法等。

最后,是字符识别,即对分割后的字符进行识别。

字符识别可以采用基于模板匹配、基于统计模型、基于深度学习等不同的方法。

其中,基于深度学习的字符识别方法,如卷积神经网络(CNN)等,在最近几年取得了很大的突破,能够达到较高的识别准确率。

除了上述几个基本步骤外,还有一些其他的技术可以辅助车牌识别,如目标跟踪、光照补偿等。

目标跟踪可以在车辆行驶过程中对车牌进行实时跟踪,光照补偿可以解决光照变化对车牌识别结果的影响。

总的来说,通过计算机视觉技术实现车牌识别需要经过图像获取、图像预处理、车牌定位、字符分割和字符识别等多个步骤。

每个步骤都有不同的算法和技术可以选择,根据具体的应用场景和需求来设计和优化车牌识别系统。

Report(车牌定位识别几种方法比较)

Report(车牌定位识别几种方法比较)

几种车牌定位识别方法的比较车牌识别系统是智能交通系统的一个重要组成部分,一个典型的车牌识别系统一般包括图像预处理、车牌定位与提取、字符分割和字符识别等几大模块。

其中车牌定位是车牌识别中的关键,车牌定位的成功与否直接影响是否能够进入车牌识别以及车牌识别的准确率。

目前,车牌定位的主要方法有:①基于灰度图像的车牌定位方法;②基于小波变换的车牌定位方法;③基于形态学的车牌定位方法;④基于神经网络的车牌定位方法;⑤基于支持向量机的车牌定位方法等。

这些算法,在某些特定条件下,识别效果较好。

但在恶劣条件下,综合一些诸如天气、背景、车牌磨损和图像倾斜等干扰因素的影响,还不能完全满足实际应用的要求,有待进一步研究。

各种车牌定位方法的思路、方法和优缺点比较:①基于灰度图像的车牌定位方法:灰度数字图像是每个像素只有一个采样颜色的图像。

这类图像通常显示为从黑色到白色的灰度。

为了便于车牌定位,将该图像转换成二值图像,即只有黑色和白色两种颜色的图像。

此方法是应用车牌的如下特点:车牌牌照的字符和背景的对比度比较大,对应于车牌区域的水平灰度变化比较频繁;再者车牌一般挂在汽车的缓冲器上或附近,并靠近图像的下部,干扰一般比较少。

根据以上特点,使用靠近水平方向的一阶差分运算,以突出灰度变化频繁的区域. 其一阶差分运算的算式为:g(i,g)=f(i,i)-f(i,j+1),式中,i=,2,3... m:m为图像的宽度;j=1,2 ,3…,n :n为图像的宽度。

再对图像的水平差分图像g(x ,y) 的灰度值沿水平方向累加后做投影,可得投影图:水平方向累加后投影的算式为:T(i) = ∑n j=1 g(i,j)。

从车牌照是一个矩形这一特点, 我们可以判断它所对应的水平投影图与车牌的形状相仿,是一块较为独立的矩形区域,从水平投影图中可以看车牌位置基本对应子图中从下到上的第一个较大的波蜂,车牌投影值区域大致对应干上述波峰值上、下邻域的波谷之间所包含的投影值区域,且这两个波谷大致对称于波峰,波峰和波谷的变化率较大. 在这个过程中最重要的是确定选择哪个波峰,如果这个波峰的两个波谷之间的值的高度都大于某一个设定的值,并且两个波谷之间的宽度大致等于车牌照的高度,就认定它所确定的区域就是车牌的水平位置. 对于车牌垂直方向的定位算法:一般情况下,车牌的底色和字符的颜色的对比度很大, 而且在一个相对范围较小的范围内变化比较频繁,通过这个特征确定车牌垂直方向. 该方法对质量较高的图像有很好的定位,不过对于图像中车前和车牌附近的车辆背景过多,容易导致错误的车牌定位。

车牌识别流程

车牌识别流程

车牌识别流程
车牌识别是一种通过图像处理技术识别车辆车牌号码的技术,
它可以广泛应用于停车场管理、交通违章监测、智能交通系统等领域。

下面将介绍车牌识别的流程。

首先,车牌识别的流程通常包括图像获取、图像预处理、车牌
定位、字符分割和字符识别五个步骤。

图像获取是车牌识别的第一步,它通过摄像头获取车辆的图像。

在图像获取的过程中,需要考虑光线、角度、距离等因素,以确保
获取清晰、准确的车牌图像。

接下来是图像预处理,这一步是为了提高车牌图像的质量,包
括去噪、灰度化、边缘检测、图像增强等处理。

通过图像预处理,
可以使车牌图像更加清晰,有利于后续的车牌定位和字符识别。

第三步是车牌定位,也称为车牌检测,其目的是在经过预处理
的图像中准确定位出车牌的位置。

车牌定位通常采用边缘检测、形
态学处理、颜色定位等技术,以找到车牌的位置和大小。

然后是字符分割,即将定位到的车牌图像中的字符进行分割。

字符分割是车牌识别中比较困难的一步,因为不同车牌的字符数量和形状各异,需要通过算法来准确分割出每个字符。

最后一步是字符识别,也称为光学字符识别(OCR),其目的是对分割后的字符进行识别。

字符识别通常采用模式识别和机器学习算法,将字符映射成文本信息。

总的来说,车牌识别流程包括图像获取、图像预处理、车牌定位、字符分割和字符识别五个步骤。

通过这些步骤,可以实现对车辆车牌号码的准确识别,为智能交通系统和车辆管理提供便利。

汽车车牌定位识别概述

汽车车牌定位识别概述

汽车车牌定位识别概述汽车车牌定位识别技术的发展得益于计算机视觉技术的进步和硬件设备的不断更新。

自从20世纪80年代末期开始,随着计算机技术的发展,人们开始研究如何利用计算机自动识别车牌。

最初的方法是通过车牌字符的特征提取和模式匹配来实现,但是这种方法在实际应用中存在一些问题,比如对于光照条件、角度和车辆速度的不同会导致识别结果的准确度下降。

随着深度学习技术的兴起,特别是卷积神经网络(Convolutional Neural Network,CNN)的发展,汽车车牌定位识别技术得到了显著的进步。

CNN可以通过学习大量的车牌图像来自动提取图像特征,并通过训练模型来识别不同类型的车牌。

这种方法不仅可以提高识别的准确性,还可以适应不同的光照和角度条件。

汽车车牌定位识别技术的应用非常广泛。

首先,在交通安全领域,汽车车牌定位识别可以帮助交警自动检测和记录违反交通规则的车辆,比如闯红灯、超速等。

这种技术可以大大提高交通管理的效率和准确性,减少人为差错。

其次,在停车场管理中,汽车车牌定位识别可以帮助自动识别道闸前的车牌信息,实现自动出入场的管理。

这不仅方便了车辆的出入,还可以提高停车场的管理效率。

另外,在安防领域,汽车车牌定位识别可以帮助监控系统自动追踪和识别特定车辆的位置和行动轨迹,有助于犯罪侦查和预防。

汽车车牌定位识别技术通常包括以下几个步骤。

首先,对车辆图像进行预处理,包括图像去噪、图像增强等。

然后,利用目标检测算法来定位车牌的位置,常用的方法包括边缘检测、颜色分割等。

接下来,对定位到的车牌进行字符分割,将车牌中的字符单独分离出来。

最后,利用字符识别算法对分割后的字符进行识别,常见的方法包括模板匹配、字符特征提取等。

虽然汽车车牌定位识别技术已经取得了很大的进展,但是在实际应用中仍然存在一些挑战。

首先,不同车牌的形状和颜色差异较大,车牌的角度和光照条件也会导致识别的准确性下降。

其次,特定地区的车牌字符种类较多,字符的形状和位置也有差异,这对识别算法提出了更高的要求。

停车场识别车牌的原理

停车场识别车牌的原理

停车场识别车牌的原理停车场识别车牌是利用计算机视觉技术和图像处理算法来实现的。

下面我们将从图像采集、车牌定位、字符分割、字符识别、比对入库、匹配查询和通道管理等方面来详细介绍停车场识别车牌的原理。

1.图像采集图像采集是停车场识别车牌的第一步。

通常使用高清晰度的摄像头对停车场中的车辆进行拍摄,并获取车辆的图像信息。

在采集图像时,需要注意摄像头的角度和位置,以确保拍摄到的车牌区域清晰可见。

同时,还需要考虑光照条件、车牌所在位置以及车牌区域的背景等因素。

2.车牌定位车牌定位是在图像中确定车牌区域的位置。

首先,可以利用颜色和形状等特征进行初步筛选,排除与车牌无关的区域。

然后,通过车牌的特定形状和字符布局等特点,对筛选后的区域进行进一步的判断和定位。

在实际应用中,车牌定位的精度会受到多种因素的影响,例如光照条件、车牌污损、字符重叠等,这些问题需要算法进行优化和改进。

3.字符分割字符分割是在定位后的车牌区域中对每个字符进行分割。

由于车牌中的字符排列有一定规律,因此可以利用这个特点进行字符分割。

首先,可以通过垂直投影法等算法,将车牌区域中的字符分割成单个字符的候选区域。

然后,利用字符的宽度、高度、倾斜度等特征进行进一步的筛选和确认,排除干扰项,最终得到准确的字符分割结果。

4.字符识别字符识别是将分割后的字符转换成机器可读的字模,并与已知的车牌号码进行比对。

字符识别通常采用深度学习和神经网络等算法来实现。

在训练阶段,利用大量已知的车牌号码数据集进行训练,让模型学会将字符图像转换为数字。

在识别阶段,将分割后的字符输入到已经训练好的模型中进行预测,得到相应的字符编码,再与数据库中的车牌号码进行比对,判断是否匹配。

5.比对入库比对入库是将识别后的车牌信息与数据库中的信息进行比对,实现车辆入库管理。

通常,将识别的车牌号码与数据库中已有的车牌信息进行比对,如果匹配成功,则将车辆信息添加到停车场管理系统中,实现自动化的车辆入库管理。

车牌识别(一)-车牌定位

车牌识别(一)-车牌定位

车牌识别(⼀)-车牌定位在对车牌识别过程中,常⽤的⽅法有:基于形状、基于⾊调、基于纹理、基于⽂字特征等⽅法。

⾸先基于形状,在车牌中因为车牌为形状规格的矩形,所以⽬的转化为寻找矩形特征,常常是利⽤车牌长宽⽐例特征、占据图像的⽐例等。

基于⾊调,国内的车牌往往是蓝底⽩字,可以采⽤图像的⾊调或者饱和度特征,进⼊⽣成⼆值图,定位车牌位置。

基于纹理特征⾃⼰还没有基础到。

基于⽂字特征往往是根据⽂字轮廓特征进⾏识别,原理是基于相邻⽂字轮廓特征、⽐例进⾏定位车牌位置。

⼀、图像⼆值化正如前⾯⽂章所⾔,⾸先进⾏获取图像⼆值化特征,本⽂采取了根据图像亮度特征,提⾼对⽐度,进⾏可以清晰获取⽂字的图像,为下⼀步的⽂字轮廓识别打好基础。

1.1 算法流程伪代码1、图像转化为HSV图像,获取V通道图像2、提⾼对⽐度3、V图像⾼斯滤波,去除噪声4、图像⼆值化程序源码:def get_colorvalue(image):height, width, shape = image.shapeimage_hsv = np.zeros((height,width), np.uint8)image_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)image_hue, image_saturation, image_value = cv2.split(image_hsv)return image_valuedef enhance_contrast(image):kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))img_tophat = cv2.morphologyEx(image, cv2.MORPH_TOPHAT,kernel)img_blackhat = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)image_plus_tophat = cv2.add(image, img_tophat)image_plus_blackhat_minus_blackhat = cv2.subtract(image_plus_tophat, img_blackhat)return image_plus_blackhat_minus_blackhatdef preprocess(srcimage):image_value = get_colorvalue(srcimage)image_enhance = enhance_contrast(image_value)image_blur = cv2.GaussianBlur(image_enhance, (5,5), 0)# _, image_binary = cv2.threshold(image_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)_, image_binary = cv2.threshold(image_blur, 100, 255, cv2.THRESH_BINARY )cv2.imwrite('image_binary.png',image_binary)return image_binary1.2 算法分析在实验中在获取通道图像时,发现可以利⽤图像饱和度图像进⾏定位。

智能交通系统中的车牌识别技术使用教程

智能交通系统中的车牌识别技术使用教程

智能交通系统中的车牌识别技术使用教程智能交通系统的发展使得城市交通管理变得更加高效和准确。

其中,车牌识别技术在智能交通系统中扮演着重要的角色。

它能够识别车辆的车牌号码并与车辆信息进行匹配,提供实时的交通管理和监控。

本文将介绍智能交通系统中车牌识别技术的使用教程,包括设备选择、安装配置、图像处理和使用注意事项等内容。

一、设备选择和安装配置1. 车牌识别相机选择:在选择车牌识别相机时,首先要考虑其适用环境和性能要求。

根据实际情况选择适合的相机类型,包括固定相机和移动相机两种。

固定相机适用于固定道路设备安装,如停车场和路口监控系统。

移动相机适用于移动监控任务,如巡逻车辆和交通事故勘察。

2. 安装配置:在安装车牌识别相机时,需要考虑相机的安装位置和角度,以保证拍摄车牌的清晰度和稳定性。

同时,还要确保相机与其他设备的连接稳定可靠,如服务器和监控中心。

二、图像处理1. 图像采集:车牌识别相机会拍摄车辆经过时的图像。

为了获得清晰的车牌图像,可以采用以下几种方法:合理调整相机的曝光度和对比度;使用红外光源提高夜间拍摄效果;通过设置合适的焦距和光圈来提高图像的清晰度。

2. 图像预处理:车牌识别前需要进行图像预处理,包括去噪、灰度化、边缘检测和图像增强等步骤。

去噪可以使用中值滤波或均值滤波等方法;灰度化可以将彩色图像转化为灰度图像;边缘检测可以使用Sobel、Canny等算法;图像增强可以通过直方图均衡化或灰度拉伸等方法提高图像质量。

3. 车牌定位与分割:车牌识别的关键步骤是车牌定位与分割。

通过利用图像处理技术,可以在图像中准确地定位和分割出车牌区域。

常用的方法包括基于颜色特征的车牌定位和基于形状特征的车牌定位。

4. 字符识别:在车牌分割后,需要对车牌上的字符进行识别。

字符识别可以采用模板匹配、神经网络和机器学习等方法。

其中,机器学习方法如卷积神经网络(CNN)在字符识别中有较好的效果。

三、使用注意事项1. 数据准备:为了提高车牌识别的准确性,需要准备大量的车牌图像数据进行模型训练和测试。

常用的车牌识别算法

常用的车牌识别算法

常用的车牌识别算法包括以下几种:
1. 车牌定位算法:用于确定车辆图像中车牌的位置。

这种算法通常会使用图像处理技术,如梯度信息投影统计、小波变换、车牌区域扫描连线算法等,以识别图像中的车牌区域。

2. 字符分割算法:在车牌定位后,需要将车牌中的字符进行分割。

这种算法通常会使用图像处理技术和机器学习算法,如基于深度学习的字符分割算法,以准确地将各个字符分割开来。

3. 字符识别算法:用于识别分割后的字符。

这种算法通常会使用机器学习算法,如卷积神经网络(CNN)或循环神经网络(RNN),以对字符进行分类和识别。

4. 神经网络识别算法:大规模神经网络识别算法是一种深度学习算法,它能够同时处理车牌定位和字符识别两个任务,具有更高的准确性和鲁棒性。

5. 启发式车牌定位算法:综合利用了图像处理技术和机器学习算法,以提高车牌定位的准确性。

这种算法通常会使用一些特征选择方法,如SVM、HOG等,以将车牌区域和非车牌区域进行区分。

6. 角度偏差和光照波动控制算法:在车牌定位和字符识别过程中,车辆的角度偏差和光照波动会影响算法的准确性。

这种算法通常会使用一些图像处理技术,如滤波、归一化等,以减小这些因素的影响。

这些算法在车牌识别过程中相互配合,以实现准确的车牌识别。

车牌识别原理简介

车牌识别原理简介

车牌识别原理车牌识别是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。

车牌识别过程包括图像采集、预处理、车牌定位、字符分割、字符识别、结果输出等一系列算法运算,其运行流程如下图所示:图像采集:通过高清摄像抓拍主机对卡口过车或车辆违章行为进行实时、不间断记录、采集。

预处理:图片质量是影响车辆识别率高低的关键因素,因此,需要对高清摄像抓拍主机采集到的原始图像进行噪声过滤、自动白平衡、自动曝光以及伽马校正、边缘增强、对比度调整等处理。

车牌定位:车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个车牌识别率的重要因素。

其核心是纹理特征分析定位算法,在经过图像预处理之后的灰度图像上进行行列扫描,通过行扫描确定在列方向上含有车牌线段的候选区域,确定该区域的起始行坐标和高度,然后对该区域进行列扫描确定其列坐标和宽度,由此确定一个车牌区域。

通过这样的算法可以对图像中的所有车牌实现定位。

字符分割:在图像中定位出车牌区域后,通过灰度化、灰度拉伸、二值化、边缘化等处理,进一步精确定位字符区域,然后根据字符尺寸特征提出动态模板法进行字符分割,并将字符大小进行归一化处理。

字符识别:对分割后的字符进行缩放、特征提取,获得特定字符的表达形式,然后通过分类判别函数和分类规则,与字符数据库模板中的标准字符表达形式进行匹配判别,就可以识别出输入的字符图像。

结果输出:将车牌识别的结果以文本格式输出。

车牌识别技术的实现原理和实现方式车辆牌照的识别是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。

识别步骤概括为:车牌定位、车牌提取、字符识别。

三个步骤地识别工作相辅相成,各自的有效率都较高,整体的识别率才会提高。

识别速度的快慢取决于字符识别,字符的识别目前的主要应用技术为比对识别样本库,即将所有的字符建立样本库,字符提取后通过比对样本库实现字符的判断,识别过程中将产生可信度、倾斜度等中间结果值;另一种是基于字符结构知识的字符识别技术,更加有效的提高识别速率和准确率,适应性较强。

车牌识别收费系统原理

车牌识别收费系统原理

车牌识别收费系统原理
车牌识别收费系统的工作原理是通过图像识别技术自动识别车辆的车牌号码,并根据车牌号码信息进行收费或管理。

其主要步骤可以分为图像采集、车牌定位、字符分割和字符识别四个阶段。

首先,系统通过摄像机等设备对经过的车辆进行图像采集。

通常,摄像机会安装在道路或停车场的适当位置,以捕捉车辆车牌的图像。

这些图像会被传输到车牌识别系统进行处理。

接下来,车牌识别系统会使用图像处理算法来进行车牌定位。

该算法会通过识别车辆图像中的车牌区域,将车牌与其他背景区域分离。

车牌定位算法可以通过颜色信息、形状特征或边缘检测等方式进行。

然后,车牌识别系统会采用字符分割算法来将车牌上的字符进行切割。

该算法会根据车牌字符的大小、排列方式等特征,将车牌上的字符区域分离开来。

字符分割算法通常采用基于像素点的分割或基于连通区域的分割等方式。

最后,车牌识别系统会使用字符识别算法来对分割后的字符进行识别。

该算法可以采用传统的模式识别算法,如支持向量机(SVM)、最近邻算法(KNN)等,或者使用深度学习算法,如卷积神经网络(CNN)、长短时记忆网络(LSTM)等。

这些算法会根据字符的特征和模式进行训练和识别,最终输出车牌号码的文本信息。

通过以上步骤,车牌识别收费系统可以实时地对车辆的车牌进行识别,并进行相应的收费或管理操作。

识别结果可以与车牌信息数据库进行比对,以实现车辆管理、违章处理等功能。

同时,该系统还可以通过与收款系统等设备的连接,实现自动收费和数据记录等功能,提高收费效率和准确性。

车牌定位与车牌字符识别算法的研究与实现

车牌定位与车牌字符识别算法的研究与实现

车牌定位与车牌字符识别算法的研究与实现一、本文概述随着智能交通系统的快速发展,车牌识别技术作为其中的核心组成部分,已经得到了广泛的应用。

车牌定位与车牌字符识别作为车牌识别技术的两大关键环节,对于实现自动化、智能化的交通管理具有重要意义。

本文旨在探讨和研究车牌定位与车牌字符识别的相关算法,并通过实验验证其有效性和可行性。

本文首先对车牌定位算法进行研究,分析了基于颜色、纹理和边缘检测等特征的车牌定位方法,并对比了各自的优缺点。

随后,本文提出了一种基于深度学习的车牌定位算法,通过训练卷积神经网络模型实现对车牌区域的准确定位。

在车牌字符识别方面,本文介绍了传统的模板匹配、支持向量机(SVM)和深度学习等识别方法,并对各种方法的性能进行了比较。

在此基础上,本文提出了一种基于卷积神经网络的字符识别算法,通过训练模型实现对车牌字符的准确识别。

本文通过实验验证了所提出的车牌定位与车牌字符识别算法的有效性和可行性。

实验结果表明,本文提出的算法在车牌定位和字符识别方面均具有较高的准确率和鲁棒性,为车牌识别技术的实际应用提供了有力支持。

本文的研究不仅对车牌识别技术的发展具有重要意义,也为智能交通系统的进一步推广和应用提供了有益参考。

二、车牌定位算法的研究与实现车牌定位是车牌字符识别的前提和基础,其主要任务是在输入的图像中准确地找出车牌的位置。

车牌定位算法的研究与实现涉及图像处理、模式识别等多个领域的知识。

车牌定位算法的研究主要集中在两个方面:一是车牌区域的粗定位,即从输入的图像中大致找出可能包含车牌的区域;二是车牌区域的精定位,即在粗定位的基础上,通过更精细的处理,准确地确定车牌的位置。

在车牌粗定位阶段,常用的方法包括颜色分割、边缘检测、纹理分析等。

颜色分割主要利用车牌特有的颜色信息,如中国的车牌一般为蓝底白字,通过颜色空间的转换和阈值分割,可以大致找出可能包含车牌的区域。

边缘检测则主要利用车牌边缘的灰度变化信息,通过算子如Canny、Sobel等检测边缘,从而定位车牌。

基于图像识别的车牌追踪与定位

基于图像识别的车牌追踪与定位

基于图像识别的车牌追踪与定位近年来,随着科技的不断发展,以图像识别技术为代表的人工智能技术已经成为串联各个行业的纽带。

而在交通领域,基于图像识别的车牌追踪与定位成为了一个备受关注的热门话题。

这一技术能够快速准确地追踪车辆,帮助交通部门进行违规行为的监测和执法,优化交通运营,提升城市管理水平。

一、车牌追踪技术的基本原理车牌追踪技术的基本原理是对车辆进行图像采集,并对车辆的车牌进行识别和追踪。

这一过程中,需要充分利用图像识别、计算机视觉、模式识别等技术的优势,快速准确地完成车辆的追踪和车牌的识别,以便进行进一步的分析和处理。

二、车牌追踪技术的应用场景车牌追踪技术的应用场景非常广泛。

在交通领域,它可以用于实现城市交通智能化管理,可以帮助监测车辆的行驶状况,提高路口通行效率,降低道路拥堵状况。

此外,还可以用于实现车辆违规行为的监测和执法,提高城市的治理水平。

在安保领域,车牌追踪技术可以用于实现进出口管理系统,提高采集、查询和比对人员信息的效率和准确性。

同时,在商业智能等领域,也可以利用车牌追踪技术进行客流统计,行为分析,为商业决策提供帮助。

三、车牌追踪技术的优缺点车牌追踪技术的优点在于,它可以快速、准确地进行车辆追踪和车牌识别。

同时,它还可以实现远程监测和控制,在一定程度上取代了人力巡逻。

这一技术可以大幅度提升交通管理和安保管理的效率和精度,减轻了人力和物力的负担,是一项非常重要的技术创新。

然而,车牌追踪技术的应用也存在着一些问题。

首先,由于图像处理的技术复杂度较高,因此车牌追踪技术在开发上相对较难。

其次,存在一些技术难题,如对复杂场景和不同天气条件下的车辆进行追踪和识别,目标物体的形态变化等。

需要专门的算法和技术支撑,这也暴露出技术的不足之处。

四、未来车牌追踪技术的发展方向随着技术的不断创新和发展,基于图像识别技术的车牌追踪技术将有更广阔的发展前景。

未来,这一技术将会更好的应用于城市交通管控、尤其是城市快速路监测等场景,进一步推动智慧城市建设的进程。

基于图像处理的车辆牌照识别与车牌追踪系统

基于图像处理的车辆牌照识别与车牌追踪系统

基于图像处理的车辆牌照识别与车牌追踪系统车辆牌照识别和车牌追踪系统是一种基于图像处理的技术,用于自动识别和追踪车辆牌照。

它的应用范围广泛,涵盖了交通管理、安防监控、智能停车、智能交通等领域。

本文将对基于图像处理的车辆牌照识别与车牌追踪系统进行详细介绍。

一、背景介绍随着车辆数量的快速增长,传统的人工识别车牌的方式已经无法满足实际需求。

因此,车辆牌照识别和车牌追踪系统应运而生。

该系统利用计算机视觉和图像处理技术,将车牌中的字母和数字识别出来,并将识别结果用于后续的车牌追踪任务。

二、车辆牌照识别系统车辆牌照识别系统主要包括图像采集、车牌定位、车牌识别和字符识别等步骤。

首先,需要进行图像采集。

通过摄像头或者视频设备,获取车辆的图像数据。

图像采集过程中需要注意图像质量,以保证后续的车牌识别准确性。

接下来,进行车牌定位。

车牌定位是指从采集的图像中确定车牌的位置。

通常,车牌具有固定的形状和大小,可以通过图像处理算法来提取出车牌的特征并确定其位置。

然后,进行车牌识别。

车牌识别是指从定位的车牌图像中识别出车牌中的字母和数字。

车牌识别算法主要利用图像分割、特征提取和模式识别等技术,对车牌图像进行处理并识别出其中的字符信息。

最后,进行字符识别。

字符识别是指将车牌中的字母和数字转化为文本信息。

通常,字符识别算法采用模式匹配和机器学习等技术,通过训练模型来实现。

三、车牌追踪系统车牌追踪系统主要是基于车辆牌照识别系统的结果,对车辆进行跟踪追踪。

首先,需要建立一个车牌数据库。

将车辆牌照识别系统识别出的车牌信息存储在数据库中,包括车牌号码、车辆类型、颜色等信息。

接下来,进行车辆跟踪。

车辆跟踪是指在连续的图像帧中,根据识别出的车牌信息来追踪车辆的运动轨迹。

车辆跟踪算法通常采用目标检测和运动分析等技术,通过比对连续帧之间的差异来确定车辆的位置和运动信息。

最后,进行车辆识别和属性提取。

根据车牌数据库中存储的信息,对追踪到的车辆进行识别和属性提取,包括车辆品牌、型号、所有人等信息。

车牌识别算法详细设计

车牌识别算法详细设计

车牌识别算法详细设计首先是车牌定位。

车牌定位的目标是从图像中准确地定位出车牌的位置。

这一步骤主要包括图像预处理、边缘检测和车牌区域定位三个过程。

图像预处理主要是对原始图像进行增强和去噪处理,以提高车牌的显著性。

常用的预处理方法包括灰度化、直方图均衡化、高斯模糊等。

边缘检测是通过检测图像中的边缘信息,找出可能是车牌边缘的区域。

常用的边缘检测算法有Sobel算子、Canny算子等。

通过边缘检测,可以找到一些具有明显边缘的区域。

车牌区域定位是通过对边缘信息进行处理,找出符合车牌特征的区域。

一般可以通过设定一些阈值和条件,来选择符合车牌尺寸和形状的区域。

可以使用像素连通分量、形状检测等方法来进行车牌区域的定位。

接下来是字符分割。

字符分割的目标是将定位到的车牌区域分割成单个字符。

这一步骤主要包括二值化、字符连接和字符分割三个过程。

二值化是将车牌区域的图像转换为二值图像,以便进一步处理。

可以使用灰度阈值分割或基于颜色的分割方法进行二值化处理。

字符连接是通过连接相邻的字符轮廓,将字符的各个部分连接起来,形成完整的字符。

常用的字符连接方法有连通区域分析、基于宽度的字符连接等。

字符分割是通过对连接后的字符进行切割,将字符分割成单个的字符。

可以使用统计特征、基于距离的分割等方法进行字符的分割。

最后是字符识别。

字符识别的目标是对分割出的单个字符进行识别。

这一步骤主要包括特征提取和分类识别两个过程。

特征提取是从分割出的字符图像中提取出有区分度的特征,以供后续的分类识别使用。

常用的特征提取方法有灰度共生矩阵、梯度直方图、字母轮廓等。

分类识别是将提取出的特征与已知字符模板进行比较,找到最相似的字符进行识别。

常用的分类识别方法有模板匹配、神经网络、支持向量机等。

综上所述,车牌识别算法主要包括车牌定位、字符分割和字符识别三个步骤。

这些步骤通过一系列的图像处理和特征提取方法,对车牌图像进行处理和分析,并最终实现车牌的识别和提取。

基于图像处理的车牌识别定位算法研究

基于图像处理的车牌识别定位算法研究

目录摘要 (2)文献综述 (4)1车牌定位的研究 (4)2车牌字符识别的研究 (6)1绪论 (8)1.1课题的研究背景 (8)1.2车牌识别系统的原理 (9)1.3本论文的主要工作 (10)2 车辆牌照的定位方法 (10)2.1图像分析与处理的基本方法 (11)2.1.1图像转换 (11)2.1.2边缘检测 (12)2.1.3 灰度图象二值化 (13)2.1.4数学形态学 (14)2.2车辆牌照的预处理 (15)2.3车辆牌照的定位 (19)2.3.1车辆牌照的水平定位 (19)2.3.2车辆牌照的垂直定位 (20)2.4实验结果及分析 (22)3.字符分割方法简介 (22)4.字符的识别 (24)4.1模板设计 (25)4.2识别过程 (26)5.结束语 (28)附录 ................................. 错误!未定义书签。

参考文献. (34)致谢 (36)基于图像处理的车牌定位识别算法研究摘要:随着我国公路交通事业的迅速发展,传统的人工管理方式已越来越不能满足实际工作的需要。

近年来,通信和计算机技术在交通领域的应用受到人们广泛的关注,得到了迅速的发展。

我国的公路交通事业正在步入一个信息化、数字化的时代。

车辆牌照自动识别系统在桥梁路口自动收费、停车场无人管理、违章车辆自动记录等领域有着广泛的应用。

本论文的研究重点主要包括牌照的定位算法、牌照中字符的分割算法和字符识别算法三部分,通过对图像处理和分析技术的综合运用以及对问题本身特点的详细考察,最终实现了基于边缘特征和形态学分析的牌照定位算法。

另外,本文还对拓扑特征识别算法和神经网络识别算法进行了研究。

拓扑特征识别算法原理简单、速度快,无须进行校正;神经网络识别算法容错能力强,但算法复杂。

关键词:车牌识别、图像处理、字符分割、字符识别Based on Image Processing LPR Positioning AlgorithmAN GuangqingCollege of Engineering and Technology, Southwest University, Chongqing 400716, China Abstract:With the development of the road transportation, the traditional transportation management by hand can not meet the practical demands nowadays. More and more attention is being paid to the application of telecommunication and computer technologies in transportation and thus it is developing faster and faster. The transportation in China is going into an information and digital era. Automatic license plate identification plays an important role in Intelligent traffic control system parking lot monitor system and automatic charging system. The license plate identification system has to implement license plate region identification, character segmentation and character recognition. We use edge features and mathematics morphology to locate the plate region. In addition, there are two methods to recognized character. One is topology, which is single and quick. Other is NN, which is complex but robust.Key Words:Vehicle license plate recognition, Image processing, character segmentation,character recognition文献综述车辆牌照识别技术自1988年以来,人们就对它进行了广泛的研究,目前国内外已经有众多的算法,一些实用的LPR技术也开始用于车流监控、出入控制、电子收费等场合。

答辩-车牌识别系统中的牌照定位

答辩-车牌识别系统中的牌照定位
运行时间分析
虽然我们的算法在单张图像处理上达到了实时性要求,但在处理大量图像时仍存在性能瓶颈。为了提 高算法的效率,我们计划采用GPU加速技术进行优化。
05
总结与展望
研究成果总结
牌照定位算法的改

本研究提出了一种基于深度学习 的牌照定位算法,通过改进特征 提取和分类器设计,提高了定位 准确率和鲁棒性。
答辩-车牌识别系统中 的牌照定位
目录 CONTENT
• 引言 • 车牌识别系统概述 • 牌照定位算法 • 实验结果与分析 • 总结与展望
01
引言
主题简介
牌照定位是车牌识别系统中的重要环 节,旨在准确、快速地定位图像中的 车牌区域。
该主题涉及图像处理、计算机视觉和 人工智能等领域,是当前研究的热点 和难点。
感谢您的观看
THANKS
多种数据集的实验
验证
在多个公开数据集和自建数据集 上进行了实验验证,结果表明所 提算法在各种复杂场景下均能取 得较好的效果。
实际应用价值
该研究成果已成功应用于多个实 际场景,如智能交通、停车场管 理等,为相关领域提供了有效的 技术支持。
未来研究方向与展望
算法优化与性能提升
针对现有算法的不足,进一步优化特征提取、分 类器设计等关键环节,提高定位准确率和处理速 度。
我们使用了两个数据集进行实验,分别是LBP-based数据集和CNN-based数据集。LBP-based数据集包含了不 同光照条件、不同角度和不同距离下的车牌图像,共计1000张。CNN-based数据集包含了经过标注的车牌图像, 共计2000张。
实验环境
我们使用了Python编程语言和OpenCV库进行图像处理,使用了TensorFlow框架进行深度学习模型的训练。实 验环境为Windows操作系统,配备了NVIDIA GTX 1080显卡和8GB内存。

车牌识别应用知识点总结

车牌识别应用知识点总结

车牌识别应用知识点总结随着科技的不断进步,车牌识别技术已经被广泛应用于各种场景,如停车场管理、交通违章执法、智能交通系统等。

车牌识别应用在提高工作效率、提升安全性、优化交通流量等方面发挥着重要作用。

本文将对车牌识别应用的相关知识点进行总结,包括技术原理、应用场景、发展趋势等方面。

一、技术原理1. 图像采集:车辆经过摄像头时,摄像头会对车牌进行拍照,获取车牌图像。

2. 图像预处理:对采集的车牌图像进行预处理,包括图像去噪、灰度化、二值化等操作,以提高图像质量。

3. 车牌定位:利用图像处理技术对车牌图像进行定位,确定车牌在图像中的位置。

4. 字符分割:将车牌上的字符进行分割,得到单个字符的图像。

5. 字符识别:利用OCR(Optical Character Recognition)技术对分割后的字符进行识别,得到车牌号码。

6. 车牌识别:将识别出的字符进行组合,得到完整的车牌号码。

二、应用场景1. 停车场管理:车牌识别技术可以用于停车场的出入口管理,实现自动识别车牌信息,提高出入口的通行效率。

2. 交通违章执法:通过车牌识别技术,交通管理部门可以实现对违章车辆的自动识别和记录,提高执法效率。

3. 智能交通系统:车牌识别技术可以与智能交通系统相结合,实现对车辆通行状态的实时监控和管理,优化交通流量。

4. 安防监控:车牌识别技术可以用于安防监控系统,实现对车辆进出的自动记录和识别,提高安全性。

5. 车辆管理系统:车牌识别技术可以用于车辆管理系统,实现对车辆的自动识别和管理,提高管理效率。

三、发展趋势1. 深度学习技术的应用:随着深度学习技术的不断进步,越来越多的车牌识别技术开始采用深度学习算法,提高了识别的准确性和鲁棒性。

2. 多模态融合技术:车牌识别技术开始融合多种传感器和信息源,如摄像头、红外传感器、激光雷达等,提高了识别的稳定性和适应性。

3. 网络化和智能化:车牌识别技术将进一步与互联网、云计算、人工智能等技术相融合,实现对车辆信息的实时获取、分析和应用。

基于图像识别的车牌自动识别技术研究与实现

基于图像识别的车牌自动识别技术研究与实现

基于图像识别的车牌自动识别技术研究与实现摘要:随着交通工具的快速发展和普及,车辆数量的增加导致了交通管理的挑战。

车牌自动识别技术作为一种有效的交通管理手段,受到越来越多的关注。

本文旨在研究和实现基于图像识别的车牌自动识别技术,通过分析和概述相关研究成果,设计和实现一个完整的车牌自动识别系统。

1.引言随着车辆数量的快速增加,交通事故和交通堵塞问题日益严重。

车牌自动识别技术被广泛应用于交通管理、车辆监控、停车场管理等领域,实现对车辆行为和流量的监测与管理。

该技术通过图像识别算法和机器学习方法,能够自动识别和提取车辆的车牌信息。

2.车牌自动识别技术的研究进展车牌自动识别技术的发展经历了几个阶段。

早期的车牌识别技术主要基于传统图像处理算法,如颜色分割、字符分割和字符识别等。

然而,这些方法在复杂背景、光照变化和字符模糊等情况下容易出现误识别。

近年来,随着深度学习算法的兴起,基于卷积神经网络(CNN)的车牌自动识别技术取得了显著的进展。

通过使用深度学习算法,可以有效地提高车牌识别的准确度和鲁棒性。

3.基于图像识别的车牌自动识别技术原理基于图像识别的车牌自动识别技术主要包括以下几个步骤:车牌定位、车牌字符分割和字符识别。

首先,通过图像处理技术,对输入图像进行预处理,包括去除噪声、调整对比度和亮度等。

然后,使用特征提取算法和机器学习方法,对车牌进行定位,将车牌从图像中分割出来。

接下来,对分割得到的车牌进行字符分割,将每个字符分离出来。

最后,通过字符识别算法,对每个字符进行识别,得到完整的车牌号码。

4.基于图像识别的车牌自动识别技术实现为了实现基于图像识别的车牌自动识别技术,需要搭建一个完整的车牌自动识别系统。

系统的核心是图像识别算法模块,包括车牌定位、字符分割和字符识别。

在车牌定位模块中,可以使用基于颜色特征或形状特征的方法来实现车牌的定位。

在字符分割模块中,可以使用基于连通域或基于卷积神经网络的方法来实现字符的分割。

如何利用图像识别技术进行车牌识别(Ⅰ)

如何利用图像识别技术进行车牌识别(Ⅰ)

图像识别技术在现代社会中已经得到了广泛的应用,其中之一就是车牌识别技术。

随着科技的不断发展,车牌识别技术已经变得越来越智能化和便捷化。

在本文中,我们将探讨如何利用图像识别技术进行车牌识别,并分析其在交通管理、安防监控等领域的应用。

一、图像采集与处理车牌识别的第一步是图像采集,通常是通过摄像头对车辆进行拍摄。

然后利用图像处理技术对拍摄到的车牌图像进行预处理,包括图像的去噪、灰度化、边缘检测等操作,以提高后续识别的准确性。

此外,还需要考虑光照、角度等因素对图像的影响,对图像进行校正和增强处理,以确保能够获取清晰、准确的车牌图像。

二、车牌定位与分割在获取到车牌图像后,需要对车牌进行定位和分割。

这一步通常需要利用图像识别技术来识别车辆的位置和角度,然后对车牌进行分割。

车牌分割的关键在于准确地辨别车牌和车辆的边界,以及准确地提取出车牌的图像信息。

这一步的准确性对后续的车牌识别至关重要。

三、字符识别与模式匹配车牌分割完毕后,就进入了字符识别与模式匹配的阶段。

这一步利用图像识别技术对车牌上的字符进行识别,包括数字和字母等,然后进行模式匹配,将识别出的字符与已知的字符模式进行匹配。

这一步通常需要利用深度学习、神经网络等技术来实现对字符的准确识别和匹配,以确保识别的准确性和实时性。

四、应用场景与发展趋势车牌识别技术在交通管理、安防监控等领域具有广泛的应用。

在交通管理方面,车牌识别技术可以用于交通违章抓拍、车辆通行管理等,提高交通管理的效率和准确性。

在安防监控方面,可以利用车牌识别技术对进出车辆进行识别和记录,加强对安全隐患的监控和管理。

随着科技的不断发展,车牌识别技术也在不断完善和改进。

未来,随着深度学习、人工智能等技术的不断成熟,车牌识别技术将更加智能化和自动化,能够更好地适应不同场景和环境,提高对车辆信息的识别准确性和实时性。

总之,利用图像识别技术进行车牌识别已经成为现代交通和安防管理的重要手段之一。

通过对图像的采集、处理、定位、分割和字符识别等步骤的精准处理,将车牌识别技术应用到各个领域,能够提高交通管理和安防监控的效率和准确性,为社会的发展和安全做出积极的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业综合实验报告----数字图像处理专业:电子信息工程班级:姓名:学号:指导教师:2014年7月18日车牌图像定位与识别一、设计目的利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。

同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。

二、设计内容和要求车牌识别系统应包含图像获取、图像处理、图像分割、字符识别、数据库管理等几个部分,能够完成复杂背景下汽车牌照的定位分割以及牌照字符的自动识别。

这里,只要求对给定的彩色车牌图像变换成灰度图像,用阈值化技术进行字符与背景的分离,再提取牌照图像。

三、设计步骤1.打开计算机,启动MATLAB程序;2.调入给定的车牌图像,并按要求进行图像处理;3.记录和整理设计报告四、设计所需设备及软件计算机一台;移动式存储器;MATLAB软件。

五、设计过程车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。

(一)对图像进行图像转换、图像增强和边缘检测等1.载入车牌图像:原图2.将彩图转换为灰度图并绘制直方图:灰度图0灰度直方图3.用roberts 算子进行边缘检测:图像中车辆牌照是具有比较显著特征的一块图象区域,这此特征表现在:近似水平的矩形区域;其中字符串都是按水平方向排列的;在整体图象中的位置较为固定。

正是由于牌照图象的这些特点,再经过适当的图象变换,它在整幅中可以明显地呈现出其边缘。

边缘提取是较经典的算法,此处边缘的提取采用的是Roberts 算子。

roberts 边缘检测图4.图像实施腐蚀操作:腐蚀后图5.平滑图像:对于受噪声干扰严重的图象,由于噪声点多在频域中映射为高频分量,因此可以在通过低通滤波器来滤除噪声,但实际中为了简化算法也可以直接在空域中用求邻域平均值的方法来削弱噪声的影响,这种方法称为图象平滑处理。

平滑图像6.删除二值图像的小对象去除小对象(二)车牌定位:从预处理后的汽车图像中分割出车牌图像。

即在一幅车辆图像中找到车牌所在的位置。

行方向车牌区域定位后车牌区域(三)字符分割与识别1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。

车牌灰度图像before filtering binary licence plateafter average licence plate expansion or corrosion the licence plate1582.字符分割在汽车牌照自动识别过程中,字符分割有承前启后的作用。

它在前期牌照定位的基础上进行字符的分割,然后再利用分割的结果进行字符识别。

字符识别的算法很多,因为车牌字符间间隔较大,不会出现字符粘连情况,所以此处采用的方法为寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割。

在此只进行了归一化处理,然后进行后期处理。

12345671234567六.总结根据车牌特点,一般采用的车牌定位算法有:1.边缘检测定位算法;2.利用哈夫变换进行车牌定位;3.色彩分割提取车牌等。

这里我采用的是边缘检测的方法实现定位的。

字符分割的方法也有多种:1. 基于聚类分析的字符分割;2. 投影分割的方法;3.基于模板匹配的字符分割等。

最常用的是投影分割,主要是针对在车牌定位,图像预处理后比较规则的车牌图像。

优点是程序逻辑设计简单,循环执行功能单一,便于设计和操作,程序执行时间短。

对现实事物的设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。

通过这次设计使我明白了自己原来知识还比较欠缺。

这个设计让我学到了很多东西,涉及到方方面面的知识,在这整个过程中我们查阅了大量的资料,得到了老师和同学的帮助,我在此对他们表示谢意。

七.源代码:(1)主程序:I=imread('car.jpg');figure(1),imshow(I);title('原图');I1=rgb2gray(I);figure(2),subplot(1,2,1),imshow(I1);title('灰度图');figure(2),subplot(1,2,2),imhist(I1);title('灰度直方图');I2=edge(I1,'roberts',0.18,'both');figure(3),imshow(I2);title('roberts边缘检测图');se=[1;1;1];I3=imerode(I2,se);figure(4),imshow(I3);title('腐蚀后图'); se=strel('rectangle',[25,25]);I4=imclose(I3,se);figure(5),imshow(I4);title('平滑图像');I5=bwareaopen(I4,2000);figure(6),imshow(I5);title('去除小对象'); [y,x,z]=size(I5);myI=double(I5);ticBlue_y=zeros(y,1);for i=1:yfor j=1:xif(myI(i,j,1)==1)Blue_y(i,1)=Blue_y(i,1)+1;endendend[temp MaxY]=max(Blue_y);PY1=MaxY;while((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);Blue_x=zeros(1,x);for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)=Blue_x(1,j)+1;endendendPX1=1;while((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向车牌区域');figure(7),subplot(1,2,2),imshow(dw),title('定位后车牌区域');imwrite(dw,'dw.jpg');a=imread('dw.jpg');b=rgb2gray(a);imwrite(b,'gray licence plate.jpg');figure(8);subplot(3,2,1),imshow(b),title('车牌灰度图像');g_max=double(max(max(b)));g_min=double(min(min(b)));T=round(g_max-(g_max-g_min)/3);[m,n]=size(b);d=(double(b)>=T);imwrite(d,'binary licence plate.jpg');subplot(3,2,2),imshow(d),title('before filtering binary licence plate');h=fspecial('average',3);d=im2bw(round(filter2(h,d)));imwrite(d,'after average licence plate.jpg');subplot(3,2,3),imshow(d),title('after average licence plate');-se=eye(2);[m,n]=size(d);if bwarea(d)/m/n>=0.365d=imerode(d,se);elseif bwarea(d)/m/n<=0.235d=imdilate(d,se);endimwrite(d,'expansion or corrosion the licence plate.jpg');subplot(3,2,4),imshow(d),title('expansion or corrosion the licence plate');d=qiege(d);[m,n]=size(d);subplot(3,2,5),imshow(d),title(n);k1=1;k2=1;s=sum(d);j=1;while j~=nwhile s(j)==0j=j+1;endk1=j;while s(j)~=0&&j<=n-1j=j+1;endk2=j-1;if k2-k1>=round(n/6.5)[val,num]=min(sum(d(:,[k1+5:k2-5])));d(:,k1+num+5)=0;endendd=qiege(d);y1=10;y2=0.25;flag=0;word1=[];while flag==0[m,n]=size(d);left=1;wide=0;while sum(d(:,wide+1))~=0-wide=wide+1;endif wide<y1d(:,[1:wide])=0;d=qiege(d);elsetemp=qiege(imcrop(d,[1 1 wide m]));[m,n]=size(temp);all=sum(sum(temp));two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));if two_thirds/all>y2flag=1;word1=temp;endd(:,[1:wide])=0;d=qiege(d);endend[word2,d]=getword(d);[word3,d]=getword(d);[word4,d]=getword(d);[word5,d]=getword(d);[word6,d]=getword(d);[word7,d]=getword(d);figure(9);subplot(2,7,1),imshow(word1),title('1');subplot(2,7,2),imshow(word2),title('2');subplot(2,7,3),imshow(word3),title('3');subplot(2,7,4),imshow(word4),title('4');subplot(2,7,5),imshow(word5),title('5');subplot(2,7,6),imshow(word6),title('6');subplot(2,7,7),imshow(word7),title('7');[m,n]=size(word1);word1=imresize(word1,[40 20]);word2=imresize(word2,[40 20]);word3=imresize(word3,[40 20]);-word4=imresize(word4,[40 20]);word5=imresize(word5,[40 20]);word6=imresize(word6,[40 20]);word7=imresize(word7,[40 20]);subplot(2,7,8),imshow(word1),title('1');subplot(2,7,9),imshow(word2),title('2');subplot(2,7,10),imshow(word3),title('3');subplot(2,7,11),imshow(word4),title('4');subplot(2,7,12),imshow(word5),title('5');subplot(2,7,13),imshow(word6),title('6');subplot(2,7,14),imshow(word7),title('7');imwrite(word1,'1.jpg');imwrite(word2,'2.jpg');imwrite(word3,'3.jpg');imwrite(word4,'4.jpg');imwrite(word5,'5.jpg');imwrite(word6,'6.jpg');imwrite(word7,'7.jpg');(2)子程序:(getword子程序)function [word,result]=getword(d)word=[];flag=0;y1=8;y2=0.5;while flag==0[m,n]=size(d);wide=0;while sum(d(:,wide+1))~=0 && wide<=n-2wide=wide+1;endtemp=qiege(imcrop(d,[1 1 wide m]));[m1,n1]=size(temp);if wide<y1 && n1/m1>y2d(:,[1:wide])=0;if sum(sum(d))~=0d=qiege(d); % 切割出最小范围else word=[];flag=1;-endelseword=qiege(imcrop(d,[1 1 wide m]));d(:,[1:wide])=0;if sum(sum(d))~=0;d=qiege(d);flag=1;else d=[];endendendresult=d;子程序:(qiege子程序)function e=qiege(d)[m,n]=size(d);top=1;bottom=m;left=1;right=n;while sum(d(top,:))==0 && top<=mtop=top+1;endwhile sum(d(bottom,:))==0 && bottom>1bottom=bottom-1;endwhile sum(d(:,left))==0 && left<nleft=left+1;endwhile sum(d(:,right))==0 && right>=1right=right-1;enddd=right-left;hh=bottom-top;e=imcrop(d,[left top dd hh]);。

相关文档
最新文档