粘性流体力学课件
工程流体力学-粘性流体的一维定常流动
动量守恒方程是流体运动的基本方程之一,表示流体在运动过程中动量的增加或减少等于作用在流体 上的外力之和。
详细描述
动量守恒方程的数学表达式为ρdudt=−p+ρg+τx+F,其中p表示流体的压强,g表示重力加速度,τx表示 由于粘性作用在x方向上的应力,F表示作用在流体上的外力。
能量守恒方程
总结词
化提供了重要支持。
能源利用
能源领域如火力发电、 水力发电等涉及到大量 的流体流动问题。通过 一维定常流动理论,可 以深入理解流体在涡轮 机内的流动规律,提高
能源利用效率。
生物医学
在生物医学领域,血液 、淋巴液等生物流体也 存在着一维定常流动的 现象。研究这些流动有 助于深入了解人体生理 机制,为疾病诊断和治
边界层。
边界层的分离
当流体经过弯曲的壁面或突然扩大 的区域时,边界层可能会与壁面分 离。分离后的边界层会形成涡旋, 影响流体的流动特性。
边界层的厚度
边界层的厚度与流体的粘性、流速 和壁面的粗糙度有关。了解边界层 的厚度对于控制流体流动和减小阻 力具有重要意义。
射流流动的实例分析
射流的定义
射流是指流体从一定口径的喷嘴喷出后形成的流动。射流的特性与 喷嘴的口径、流体性质和出口压力有关。
一维定常流动的特性
01
流体参数不随时间变化而变化,只与空间位置有关。
02
流体参数沿流程方向不发生变化,只与流程位置有 关。
03
流体参数在垂直方向上均匀分布,不随高度变化而 变化。
05
粘性流体的一维定常流动 的实例分析
管道流动的实例分析
管道流动的特点
在管道中,流体受到壁面的限制,呈现出一定的流动规律。 由于粘性作用,流体的速度在靠近管壁处较小,而在中心 区域较大。
工程流体力学 第4章 粘性流体动力学基础
沿程损失水头 (hf):
hf
LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u
umax
p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g
64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W
ghf Q
pQ
128 LQ 2 d 4
动能修正系数
1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失
流体力学D课件 第五章
hf
Vd
对数形式为
lg 1.806 lg Re
在尼古拉兹图中为一条斜直线。
(2) 过渡区 (2300 Re 4000) (3) 湍流完全光滑管区
情况复杂,无单一计算公式。
布拉修斯公式 (4000 Re 105 )
0.3164 Re0.25 基于湍流速度分布导出。
水头损失的两种形式
2 p1 v12 p2 v2 z1 1 z2 2 hw g 2g g 2g
hf hj
沿程损失
局部损失
流体克服粘性阻力 而损失的能量,流 程越长,损失越大
流体克服边界形状改变 所产生的阻力而损失的 能量,发生在局部范围
直圆管流动的沿程损失 1 达西公式 不可压缩粘性流体在内壁粗糙的直圆管中作定常流动时,压 强降低(损失)的表达式(可用量纲分析方法确定)
V12 V2 2 1 1 1 2 2 hm ( p1 p2 ) (V1 V2 ) V2 (V2 V1 ) 1 ( ) g 2g g 2g V1
V12 d12 2 V12 (1 2 ) K e1 2g 2g d2
d K e1 1 d
2. 等效粗糙度 穆迪引入等效粗糙度概念 。对实际商用管,粗糙度呈随机分 布,可通过与尼古拉兹实验曲线作对比,确定其等效粗糙度。 材料(新) 铆钉钢 ε(mm) 0.9~9.0
常用商用管的 等效粗糙度列于 右表中。
水泥 木板
铸铁 镀锌铁 镀锌钢 无缝钢
0.3~3.0 0.18~0.9
0.26 0.15 0.25 ~0.50 0.012 ~0.2
1 2
1
(
Re1=4.22×104,查Mooddy图得λ2=0.027 ,重新计算速度
不可压缩粘性流体内流_流体力学
1 ( r vz ) 1 dp r r r dz
(d)
(d)式左边仅是r 的函数,右边仅是z 的函数,只有均等于常数才能相等, dp/dz保持常数。(d)式积分两次可得
vz 1 dp r 2 C1lnr C2 4 dz
(e)
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-3) 当r =0时,管轴上的速度为有限值,由物理上可判断C1=0;当r =R时,vz=0; 可得
上式称为不可压缩流体湍流时均值运动方程或雷诺方程。与层流 N-S方程相比多了三项 。湍流中的应力矩阵为
0 x xy xz uu uv uw p 0 P 0 p 0 yx y yz vu vv vw 0 0 p zx zy z wu wv ww
(c)
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-2) 由(a)式积分得
p g r sin f ( ,z)
上式中f 为任意函数,将上式代入(b)式得
0 g cos gcos 1 f , f 0 r
dp 可见 f 仅是z 的函数,取截面平均压强,其梯度可写成 dz。由(c)式
(2) 轴功率。
(1)由于b << d 可将轴承间隙内的周向流 动简化为无限大平行平板间的流动。
轴承固定, 而轴以线速度U=ωd /2运动, 带动润滑油作纯剪切流动, 即简 单库埃特流动。间隙内速度分布为
U u y b
[例C3.3.2] 圆柱环形缝隙中的流动:库埃特流(2-2) (1) 作用在轴表面的粘性切应力为
C3.4.2
工程流体力学(粘性流体动力学基础公式推导)
2h
u
x
vw0
U 0
不可压连方
u v w 0, u 0, u u( y)
x y z
x
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y 2
2u z2 )
26
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y2
2u z 2
)
简化为
2u y 2
1
p x
13
px
py
pz
3 p
2 ( vx
x
vy y
vz z
)
(8--9)
问题:上式括号内表示什么?
对于不可压缩流体,故有:
p
1 3
(
px
py
pz
)
(8-10)
即对于粘性不可压缩流体,三个互相垂直的法
向应力的算术平均值恰好等于理想流体的压力。
14
将切向应力和法向应力关系式代入(8--5)式得
vx t
vx
Dt
x
y
z
DVz Z 1 ( zx zy pzz )
Dt
x
y
z
(8-5)
单位质量流体的惯性力
单位质量流体的应力
单位质量流体的质量力
这就是应力形式的粘性流体运动微分方程 8
讨论
1.式(8-5)中未知函数:三个速度分量和六个 应力分量;加上连续性方程,只有四个方程,
2.若要求解,需补充方程。
将(d)式代入(a)式,经移项后可得
5-粘性流体力学基础
fm
1
p v2u
v ( u) 3
式(7—5d)是在 Const 条件下对一切牛顿流体都普遍
适用的运动微分方程式,亦称之为纳维—斯托克斯方程。
14
方程的物理意义:
左边 du 为流体质点加速度(单位质量流体的惯性力); dt
右边
f
为作用在流体微团上单位质量的质量力;
m
- 1 p为作用在流体微团上单位质量流体的压强合力;
0.3
将已知数据代入前式得 Q 0.016 cm2 s ,与按同心环形缝隙
流动计算结果相同。
29
§7-5 绕流圆球的小雷诺数流动
在工程实际中,我们经常要研究固体微粒和液体细滴在流体
中的缓慢运动,这里,圆球是经常遇到的几何形状。如炉膛空气
流中的煤粉颗粒,油滴,烟道烟气中的灰尘,水蒸气中的水滴以
及水中沉降的泥砂等,都可以近似看作小圆球。对这些小圆球的
2 z
u y x
ux y
yz
zy
2 x
uz y
u y z
(7—3)
zx
xz
2 y
ux
z
uz x
式(7—3)称为广义牛顿内摩擦定律。
8
在粘性流体中,与角变形速度产生切应力一样,线变形 速度产生附加切应力。根据牛顿内摩擦定律
xx
2
ux x
yy
2
u y y
zz
2
uz z
(7—4)
式(7—3)、(7—4)为本构方程。
2 r2
ur
2 r2
u
2 r2
u
cos
2
r 2 cos
u
ur t
ur
ur r
流体力学ppt课件
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。
《流体力学》 第七章 不可压缩粘性流体的流动
应力与应变的关系--------本构关系
du
dy
对照牛顿实验
pyx
斯托克斯假设
(1). 应力与变形速率之间为线性关系(小变 形(各向同性假设) (3). 趋于零时, 应力状态退化为理想流体 的应力状态(当流体处于静止状态时,符合 静止流体的应力特征)
pyz pzy
pzx pxz
pyx
p y x y
dy 2
pyy
p y y y
dy 2
pxx
pxx x
dx 2
pxy
pxy x
dx 2
y x
pxx
pxx x
dx 2
pxy
pxy x
dx 2
pyx
p y x y
dy 2
pyy
p y y y
dy 2
p y x y
pzx z
)
将pxx pyx pzx 的表达式代入, 设不可压, 则有
同理有
ax
fx
1
p x
(
2u x 2
2u y 2
2u z 2
)
ay
fy
1
p y
(
2v x 2
2v y 2
2v z 2 )
az
fz
1
p z
pzz
p
2
w z
相 加
1 3
(
pxx
pyy
粘性流体力学讲解
z
-px
、v、px、p y、pz、f
牛顿第二定律:
x -py
z
M
z
y
py
p y y
y
ma F
x
y
px
p x x
x
-pz
Dv Dt
x
y
z
f
x
y
z
p x
y
z
(p x
p x x
x)
y
z
p y
x
z
(p
y
p y y
y)
x
z
Dv Dt
fy
1
p y
2v
Dw Dt
fz
1
p z
2w
Discussion:
Dv f 1 p 2 v v
Dt
3
1. 物理意义:单位质量流体惯性力、质量力、压力合力和 粘性力平衡。粘性力包括剪应力与附加法向应力。
0
du
dy
yh
dp h dx
y
h
o -h
umax x
dp 0 dx
压力梯度使速度剖面为抛物型——层流运动的特征。
7.3.2往复振荡平板引起的层流流动
平板运动引起粘性效应的扩散。 流场速度分布:
y o u=Ucos t
u U eky cosky t ——粘性扰动波。 y 2
dp 0 dx
速度分布: (Couette流动)
西北工大875流体力学讲义7-第七章 粘性流体动力学基础
西北工大875流体力学讲义 第七章 粘性流体动力学基础第一节 粘性流体运动的基本方程采用流体力学微元体平衡分析方法可以推导出粘性流体运动的基本方程组,该方法可参考本书的第二章和第三章。
本节将直接由两大守恒定律(质量守恒定律和动量守恒定律)来建立控制流体运动的基本方程组。
首先需要给出空间某点物理量的随体时间导数表达式、雷诺输运方程以及本构关系。
一、随体导数描述流体运动规律有拉格朗日和欧拉两种基本方法。
拉格朗日法着眼于确定的流体质点,观察它的位置随时间的变化规律。
欧拉法着眼于从空间坐标去研究流体流动,它的描述对象是流场。
随体导数的物理意义是:将流体质点物理量q 的拉格朗日变化率以欧拉导数的形式表示出来。
随体时间导数的数学表达式为:()q V tqdt dq ∇⋅+= ∂∂(7-1)式中右边第一项代表由时间的变化所引起的变化率,也就是由于场的时间不定性所造成的变化率,叫做当地导数。
第二项代表假定时间不变时,流体质点在流场中的位置变化所引起的变化率。
这是由于场的不均匀性造成的,叫做迁移导数。
二、雷诺输运方程雷诺输运方程描述了积分形式的拉格朗日法和欧拉法的时间导数的变换关系。
设封闭系统在t 时刻占有体积()t Ω,如图7-1所示。
其中关于物理量q 的总量的随体时间导数有图7-1 封闭系统输运示意图()()()⎰⎰⎰⎰⎰⎰⎰⎰⋅+Ω=ΩΩΩt S t t dS n V q d t qd q dt d ∂∂ (7-2)其中()t S 为封闭体积的曲面,n为曲面的法向向量。
上式表明:封闭系统中,某物理量总和的随体导数等于该瞬间与该系统重合的控制域中该物理量总和的当地时间导数(非定常效应)和通过控制面流出的该物理量的流量(对流效应)之和,此即为流体的雷诺输运方程。
用广义的高斯公式将面积分转换成体积分,上式也可以写成()()()Ω∂∂ΩΩΩd V q tqd q dt d t t ⎰⎰⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡⋅∇+=(7-3)三、连续方程连续性方程反映了流体在运动过程中必须满足质量守恒定律。
《流体力学》第六章_粘性流体绕物体的流动
第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2
、
2 y
p
2
、 2
流体力学5粘性流体湍流流动
1
2.0 lg
d 1.74 2
h f um
2
d (尼古拉兹粗糙管公式) 4lg 3.7 r 1 2.0 lg 0 1.74 若定义 d / 2 r0 ,则
1
2
平方阻力区
层流区
f (Re) 64
0 u*
水力光滑管的流速分布
u0 u* y 1 7 8.74( ) u*
水力粗糙管的流速分布
u0 y 8.5 2.5 ln( ) u*
其中 为层流底层的厚度
d 30 Re
4.3
圆管中的摩擦阻力系数
根据理论和实验分析 ,影响压降的因素有 d , , , v, L, 等, L 依π定理进行推导,得出 p f ( , ) 2 v vd d d
边界层定义:速度梯度很大的薄层。粘性在该薄层内起作用。
U0 y U0 0.99U0
U0
u(x,y) o
(x) x
L
平壁面绕流的边界层
Prandtl边界层模型——全流场分成二个流动区域。 边界层厚度(x)定义:流速从0增至0.99U0处的y值。 外区(y>):速度梯度很小,可略去粘性的作用。 内区(y<):速度梯度很大,考虑粘性。
L v 2 p p1 p2 d 2
在比较广泛的Re数范围内,取尼古拉兹光滑管公式:
10 Re 3 10 :
5 6
0.221 0.0032 0.237 Re
若流动为Re<105的湍流,采用卜拉休斯阻力公式:
4000 Re 105 :
平均流速 v 与Re、构成隐函数的关系,需用迭代方法求解。
工程流体力学 第6章 粘性流体管道内流动
第6章 粘性流体管道内流动
6.4 管内流动的两种损失
不可压粘性流体的总流伯努利方程:
V12 p1 V22 p2 1 gz1 2 gz2 hw 2 2
hw——单位重量流体损失的能量。
1.沿程(水头)损失
渐变流中由于流体微团、层间、流体与管壁间粘性摩擦引
教学内容
第0章 绪论 第1章 流体的主要物理性质 第2章 流体静力学 第3章 流体流动的基本方程 第4章 旋涡理论和势流理论 第5章 相似理论与量纲分析 第6章 粘性流体管内流动 第7章 粘性流体绕物体的流动
第6章 粘性流体管内流动
6.1 粘性流体中的应力分析
理想流体—无粘性,无切向应力; 实际流体—有粘性,存在切向应力,表现为阻碍流体运动的 摩擦力,消耗机械能。
是t时刻的脉动速度但脉动速度的时均量为零即u010tuudtt?在横向也存在横向脉动且第6章粘性流体管道内流动在横向yz也存在横向脉动且0vw依上法湍流中有瞬时压强p时均压强脉动压强p且pppp01tppdtt?010tppdtt?若湍流中各物理量的时均值如不随时间而变仅是空间点的函数即uvwp?第6章粘性流体管道内流动随时间而变仅是间点的函数即uuxyzppxyz?则被称为恒定的湍流运动但湍流的瞬时运动总是非恒定的
时,随着 当逐渐加大玻璃管内流速到达某一上临界值 Vcr 玻璃管内流速的再增大,颜色水与周围清水混合,使整个圆管 都带有颜色,表明此时质点的运动轨迹极不规则,各层质点相 互掺混,称这种流动状态为湍流。
从层流到湍
流的转捩阶段称
为过渡流,一般 将它作为湍流的 初级阶段。
第6章 粘性流体管道内流动
6.3.2 层流和湍流
6.2 不可压缩粘性流体的运动微分方程
粘性流体力学—层流
粘性流体力学—层流粘性流体力学是一门研究物质在流动中受到的内部摩擦力影响的学科,属于流体力学的一部分。
在粘性流体中,流体分子之间存在着相互作用力,导致了流体被剪切时引入了一个内部摩擦力,这个内部摩擦力导致了流体的多种非线性行为。
粘性流体学研究的重点是了解这些非线性行为的本质,并且开发出数学模型,以便更好地描述、预测和控制流体的行为。
粘性流体力学涵盖了许多理论和应用领域,如化学、材料科学、生物医学、能源工程等。
由于粘性流体力学涉及到复杂的非线性问题,因此在不同的流动情况下表现出不同的行为模式,其中最常见的模式之一是层流。
在层流中,流体的运动是分层的,即类似于分层运动的油漆。
流动呈现出的速度和压力分布是有序的,流体分子之间的相互作用导致了流体层的间隔,并降低了交换混合的概率。
层流的行为特征对于液体管道和计量设备具有非常重要的应用价值,如在石油和天然气工业中测量粘度和流量,以及在药品和食品工业中进行计量。
层流的基本特点是流体分子之间存在着相互作用力,这种相互作用力导致了层流内部的运动范围是在一定范围内的,并且层流界面十分清晰。
由于粘性流体的摩擦,流体分子的速度分布变得均匀,因此层流中的速度和压力分布是稳定的。
这就是说,速度和压力是稳定分布的,不会随着液流的时间而改变。
与之相对应的是,皮肤效应是指粘性流体在表面上的速度受到了加强,这意味着粘性流体会发生局部的加速,以使其进入更快的运动,进而在液体中形成一种流动形态。
粘性流体的皮肤效应对层流行为的变化起到了很大的影响,因为它会导致流体的运动逐渐发展为不规则的湍流模式。
在流体的流动中,湍流是一种非常常见的运动形式。
在高速运动的流体中,湍流的产生和发展常常是无法避免的。
所以,对于粘性流体来说,湍流的研究也是粘性流体力学的一个重要方面。
与层流不同,湍流的密度和能量分散在流体中,并且不易预测。
在实际应用中,正确预测流体湍流特性的正确性对于对流动的控制和优化非常关键。
高等流体力学—粘性不可压缩流体运动
1 d du r P r dr dr
d du r rP dr dr
du r C1 P dr 2 r
21
du r2 r P C1 dr 2
(1) 轴对称流动:圆心在原点的圆管中粘性流体运动
du r C1 P dr 2 r P 2 u r C1 ln r C2 4
0
a
半径r处圆环的面积
4
a pa pb Q Pa 8 8l
2
r
Q a 1 pa pb umax u 2 a 8l 2
2
25
(c) 阻力系数
pa pb u r r 2l pa pb r=a时: max a0,u
C1 0 P 2 C2 a 4
pa pb 2 2 P 2 2 u a r a r 4 4l
22
(1) 轴对称流动:圆心在原点的圆管中粘性流体运动
pa pb 2 2 P 2 2 u a r a r 4 4l
2
粘性不可压缩均质流体运动方程组
v 0
dv F divP dt
dU P : S div(kgradT) q dt
连续性方程 运动方程 能量方程 本构方程 状态方程
3
P pI 2S
p f (T ,V )
粘性不可压缩均质流体运动方程组
v 0
2 2
u 1 u 1 u P 2 2 r r r r
2 2
结构轴对称
流动分布轴对称
0 u u (r )
20
(1) 轴对称流动:圆心在原点的圆管中粘性流体运动
粘性流体力学 课件
都是稳定的相态,都呈现出流动性(或易变形性) 区别:密度,体积弹性(可压缩性)
1. 物质结构
1.2 物质的微观性质
• 宏观性质的差异直接与“物质的分子热运动状态和分子间 的相互作用” 有关。
任何物质都不是连续体,而是由处于分离状态的大量粒子所组 成,即分子、原子,它们之间存在相互作用力 物质呈现一定的宏观状态,是由于某种平均能量水平的大量分 子,在分子制约下所采用的排列方式和运动方式的宏观表现
第一章
流体与流体的物理性质
1. 物质结构 2. 连续介质假设 3. 流体的物理性质
3.1 流体的可压缩性与热膨胀性 3.2 流体的输运性质 3.3 表面张力与毛细现象
1. 物质结构
1.1 物质的宏观形态,它的形状及其组成微元之 间相对位置的变化也是微小的。
1. 物质结构
1.2 物质的微观性质
• 固、液、气的微观性质比较
固体 d0 强 <<1 有序 弱 量子统计 液体 d0 中等 ~1 部分有序 强 量子统计+经典 统计 气体 10 d0 弱 >>1 无序 强 经典统计
分子间距 分子间作用力 分子随机热运动振幅 与d0的比值 分子排列 可运动性(mobility) 需用的统计类型
Repulsion
d0
d
Attraction
• 对于简单分子组成的物质,常温常压下,分子间距的量级
气相分子,d~10d0 液相和固相分子, d~d0
1. 物质结构
1.2 物质的微观性质
• 气体
当d>>d0,分子力为弱相互作用,此时,只要分子的平均动能足够 大,单个分子就能克服邻近分子的吸引力而处于一种自由运动状 态,也就是说分子在邻近分子力场中具有的势能远小于分子本身 具有的动能,势能可以被忽略。 在偶尔的场合下,高能量分子也可能在运动过程中与其他分子十 分靠近,出现分子间短暂的强相互作用,通常,这种偶然出现的 强相互作用过程被称为碰撞 对于分子热运动平均能量高的物质,在分子碰撞以外的绝大部分 时间,分子都处于自由状态,大量分子的自由运动就呈现出高度 混乱的情景,这种宏观状态称作气体
《高等流体力学》第7章 粘性流体力学基础
1 v2 ∂v + ∇ + Ω × v= f + ∇ ⋅ P ∂t ρ 2
2 P = − pδ + τ = − p + µ∇ ⋅ v δ + 2 µε 3
v2 1 1 ∂v 1 2 + ∇ + Ω × v= f − ∇p − ∇( µ∇ ⋅ v ) + ∇ ⋅ (2 µε ) ∂t ρ ρ 3 ρ 2
对初始条件的极度敏感性目前只解决了低维系统中的几种转捩方式而湍流场是时间与空间的函数对于每一空间点可看成一维混沌所以湍流是无穷维混沌现有的低维系统理论只能对湍流作定性描述说明湍流是ns方程内在特性的表现从理论上证明了ns方程对湍流的适用性
第七章 粘性流体力学基础
主 讲:刘全忠 单 位:能源科学与工程学院 流体机械及工程研究所 Email:liuquanzhong@
Lamb型方程变为
对上式两边取旋度,得到
整理后得到
这是最一般的涡量输运方程。该式清楚地表明:流 体的粘性、非正压性和质量力无势,是破坏旋涡守 恒的根源。在这三者中,最常见的是粘性作用。
1 2 1 ∂Ω 1 + ∇ × (Ω × v ) = ∇ × f − ∇ × ( ∇p ) − ∇ × ∇( µ∇ ⋅ v ) + ∇ × ∇ ⋅ (2 µε ) ρ ∂t ρ 3 ρ
λδ ijδ kl + µ (δ ik δ jl + δ ilδ jk ) ε kl τ ij = Cijkl ε kl = = λδ ij ε kk + µ ( ε ij + ε ji = ) λδ ijε kk + 2µε ij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dx 0
J 2u2rdru02b02
0
Q 0 2urdr
ve
1 d be dx
0rudr21be ddQ x
(8-5b) (8-6a)
(8-6b) (8-7a) (8-7b)
三、自由平面层流射流的相似解法
对平面层流射流方程和边界条件引入流函数:
u, v
y
x
(8-8)
y
2 xy x
2 y2
2 x y
x
2
2
)
y
A 3 3 2
3
3
y
J A 2 3 2 ( ) 2 d y c o n s t
y
2
y
0, x
0:
x
0, 2 y
0
y , x 0 : 0 y
(8-11)
232132220322
2 3 21,3 1 31
绝对不变量:
y
2
y
2
,
11
x3 x3 x3 x3
(d0:孔口直径,V0:出流速度),就处于湍流状态。
不过为了简单本章首先介绍层流情况。
a) 边界射流 b)自由射流 图8-1 射流
射流可以分为边界射流(图8-1a)和自由射流(图 8-1b)。在射流中,射流中的流体与周围流体之间相 互渗混,流体质量间发生动量传递,形成-自由剪切 层,同时周围的流体也不断被卷进这一剪切层中,这 样射流体的宽度不断增加,射流体中的流量不断加大, 但是射流的动量是不变化的。
f f 2 1
(8-17)
f df 0 1 f 2
1 ln 1 f 2 1 f
tanh1 f
f
tanh
1 e2 1 e2
(8-18)
积分常数q可以根据 J / =常数而决定。
u2q2x13(1tanh2)
3
J u2dy4 q3 (1tanh2)d16 q3
由于外部流动是均匀的,压力沿x方向的梯度为零,
所以流动是有相似性的。
第一节 层流射流和尾迹
一、射流的结构
图8-3 射流的结构
图8-3是从宽度2b0的窄缝或直径为2b0的圆形管 咀中以速度U0喷出的平板射流或圆形射流。
具有均匀速度U0区域由于与周围流体的混合,速 度沿流动方向会小下去。具有均匀速度U0 的区域称为
u y
2q2 3
f ()
x1/3
v
x
2 3
q
x2/3
[
f
()2f
()]
方程与边界条件变换成:
f 2( f 2 ff ) 0
0 : f 0, f 0 : f 0
积分方程,代入 0 边界条件: f2ff0
(8-14) (8-15) (8-16)
再积分一次,并取积分常数为1,即认为:f (0) =1,则得:
0 x
0 y
d
1 dQ
ve dx
udy
0
2
dx
圆形射流基本方程:
u
u x
v
u r
1
1 r
( r
r
)
(8-4) (8-5a)
边界条件:
r0 : uum ax,v0, u r0,0
r :u 0 ,rv b e v e, u r 0 , 0
d
u2rdr 0
x y
y 0:uumax, v0,
u 0, 0
y
(8-1b)
y:u0, vve,
u 0, 0
y
式中,ve称为卷吸速度,表示周围流体向x轴方向的
射流补充流体。 根据式(8-1a)有:
uudyvudydy
0 x
0 y 0y
(8-2a)
| 1du 2 d y(u v u v d y )( )(0 )
无量纲相似变量:
qy , f()
3 x2/3
2qx1/3
2q x1/3 f
(8-12)
x
2q
3
x2/3
[ f ( ) 2 f ( )]
f y
3
q x2/3
f
(
);
2 y
f
2
( 3
q )2 f ( ) x2/3
3 f y3
( 3
q )3 f ( ) x2/3
(8-13)
射流内的速度分布:
a 尖端尾迹 b 方形端尾迹 c 圆形端尾迹 图 8-2 尾迹
尾迹可以分为尖锐后缘的尾迹和钝体后缘的尾迹。
在尖锐绕流体的后缘,上下表面的发达的边界层 在后缘点汇合成一体,流向下游,形成尾迹。由于流 体质点间的动量交换,使流体的最小速度,随着向下 游的流动而加大,尾迹也加宽,出现了速度的平均化。
在有角钝体的后缘,流体与钝体后的死水区之间 形成剪切层,由于剪切层与死水区流体间的相互卷吸, 在层流情况下,会形成稳定卡门涡街,在湍流情况下 形成不稳定的湍流涡团。同时在死水区形成回流。在 离开后缘一段距离后,在上下剪切层中形成湍流(图 8-2b、c)。但不论是层流还是湍流的射流和尾迹,
位势流核心区,具有势流核心区的射流部分是未发达
区,未发达区的长度依管咀的收缩部分的几何形状而
异,在二维射流的情况下约为12b0, 在圆形射流的情 况下约为10b0左右。
未发达区后面为发达区,在此区动量交换的影响
达到射流的中心。在射流中各截面的最大速度随x的增
大而减小,同时宽度b增大。
二、射流的基本方程
2 d x0
0 0 y
d u2dy 0
dx 0
(8-2b)
证明了单位时间通过任何截面的总动量J沿x轴不变:
J u 2 d y 20 u 2 d y 2U 0 2 b 0
(8-2c)
射流中通过任意截面的流量为Q:
Q udy2 udy
0
由连续方程可以得到:
u dy v dy 0
图8-3所示取射流的中心轴为x轴,垂直于流动的 方向为y轴,对N-S方程各项的大小作量阶估计,便可
与边界层方程同样的得到关于射流的基本方程式,而且 由于自由射流的压力与周围流体压力相等,为 p 0 , 因此在定常、二维射流的情况下得到下式: x
u
u x
v
u y
1
y
u
v
0
(8-1a)
边界条件为:
3 y3
J
(
)2 d y
const
y
y
0,
x
0
:
x
0 , 2 = 0 y2
y
, x 0 : y
0
(8-9)
由于边界条件的外部势流速度Ue(x)与x无关,可
以判断存在相似性解。为此引入线性变换群:
xA 1x, yA 2y, A 3 (8-10)
A ( 2 3 1 2 2 y
第八章 射流和尾迹
第一节 层流射流和尾迹 第二节 自由湍流射流 第三节 湍流尾迹
射流与尾迹是自然界和工程中经常遇到的问题, 属于自由剪切层中的流动,这种剪切层中,流体质 点间的动量交换不受壁面的限制,所以非常不稳定。 在绝大多数的情况下都处于湍流状况,例如孔口喷 出的射流,只要雷诺数
Re d0V0 30