(数学)2017年全国高中数学联赛江苏复赛试题+Word版含答案
2017年高考数学江苏试题及解析
![2017年高考数学江苏试题及解析](https://img.taocdn.com/s3/m/b8dafd82a98271fe900ef9be.png)
2017年1.(2017年)集合A={1,2},B={a,a2+3},假设A∩B={1},那么实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年)复数z=(1+i)(1+2i),其中i是虚数单位,那么z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进展检验,那么应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是一样的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年)右图是一个算法流程图,假设输入x的值为116,那么输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年)假设tan(α+π4)=16那么tan α=.5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年)如图,在圆柱O 1O 2有一个球O ,该球与圆柱的上、下底面与母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,那么V 1V 2的值是.6. 32 【解析】设球半径为r ,那么V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年)记函数f 〔x 〕=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,那么x∈D 的概率是.7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x∈D 的概率是3-〔-2〕5-〔-4〕=59.8. (2017年)在平面直角坐标系xOy 中,双曲线x23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,那么四边形F 1PF 2Q 的面积是.8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P 〔31010,3010〕,那么Q 〔31010,-3010〕,F 1〔-10,0〕,F 2〔10,0〕,那么S=210×3010=2 3.9.(2017·高考)等比数列{a n }的各项均为实数,其前n 项和为S n .S 3=74,S 6=634,那么a 8=________.[解析]设等比数列{a n }的公比为q ,那么由S 6≠2S 3,得q ≠1,那么⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a 11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,那么a 8=a 1q 7=14×27=32.[答案]3210.(2017·高考)某公司一年购置某种货物600吨,每次购置x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购置600x次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x+x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年)函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.假设f(a-1)+f(2a 2)≤0,那么实数a 的取值围是___________.11. [-1,12] 【解析】因为f 〔-x 〕=-x 3+2x+1e x - e x=-f 〔x 〕,所以函数f 〔x 〕是奇函数,因为f′〔x 〕=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x ≥0,所以函数f 〔x 〕在R 上单调递增,又f 〔a-1〕+ f(2a 2)≤0,即f(2a 2)≤f〔1-a 〕,所以2a 2≤1-a ,即2a 2+a-1≤0,解得-1≤a≤12,故实数a 的取值围为[-1,12].12. (2017年)如图,在同一个平面,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.假设→OC =m →OA +n →OB(m ,n∈R),那么m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎪⎨⎪⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74,所以m+n=3.13. (2017年)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,假设→PA ·→PB ≤20,那么点P 的横坐标的取值围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P 横坐标的取值围为 [52,1].14. (2017·高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n -1n ,n ∈N *,那么方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此围,当x ∈Q 且x ∉Z 时,设x =q p,q ,p ∈N *,p ≥2且p ,q 互质.假设lg x ∈Q ,那么由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质, 因此10n m =q p,那么10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,故lg x 不可能与每个周期x ∈D 对应的局部相等, 只需考虑lg x 与每个周期x ∉D 局部的交点.画出函数草图(如图),图点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D 的局部,且x=1处(lg x)′=1x ln 10=1ln 10<1,那么在x=1附近仅有一个交点,因此方程f(x)-lg x=0的解的个数为8.答案:815.(2017年)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:〔1〕EF∥平面ABC;〔2〕AD⊥AC.【分析】〔1〕先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;〔2〕先由面面垂直性质定理得BC⊥平面ABD,那么BC⊥AD,再由AB⊥AD与线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.【证明】〔1〕在平面ABC,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.〔2〕∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,∴AD⊥平面ABC.又∵AC ⊂平面ABC ,∴AD ⊥AC .16.(2017年)向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. 〔1〕假设a ∥b ,求x 的值;〔2〕记f (x )=a ·b ,求f (x )的最大值和最小值以与对应的x 的值. 【解析】〔1〕∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .假设cos x =0,那么sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又x ∈[0,π],∴x =5π6.〔2〕f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32. 当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.17.(2017年)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1〔a >b >0〕的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. 〔1〕求椭圆E 的标准方程;〔2〕假设直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:〔1〕设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以c a =12,2a 2c =8,解得a=2,c=1,于是b=a 2-c 2=3,因此椭圆E 的标准方程是x 24+y23=1. 〔2〕由〔1〕知,F 1〔-1,0〕,F 2〔1,0〕.设P 〔x 0,y 0〕,因为P 为第一象限的点,故x 0>0,y 0>0. 当x 0=1时,l 2与l 1相交于F 1,与题设不符.当x 0≠1时,直线PF 1的斜率为y 0x 0+1,直线PF 2的斜率为y 0x 0-1.因为l 1⊥PF 1,l 2⊥PF 2,所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0, 从而直线l 1的方程:y=-x 0+1y 0〔x+1〕, ① 直线l 2的方程:y=-x 0-1y 0〔x-1〕. ②由①②,解得x=-x 0,y=x 02-1y 0,所以Q 〔-x 0,x 02-1y 0〕.因为点Q 在椭圆上,由对称性,得x 02-1y 0=±y 0,即x 02-y 02=1或x 02+y 02=1. 又P 在椭圆E 上,故x 024+y 023=1.由⎩⎪⎨⎪⎧x 02-y 02=1,x 024+y 023=1,解得x 0=477,y 0=377;⎩⎪⎨⎪⎧x 02-y 02=1,x 024+y 023=1,无解.因此点P 的坐标为〔477,377〕.18.(2017年)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm .现有一根玻璃棒l ,其长度为40 cm .〔容器厚度、玻璃棒粗细均忽略不计〕〔1〕将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中局部的长度;〔2〕将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中局部的长度.18.解:〔1〕由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC. 记玻璃棒的另一端落在CC 1上点M 处.因为AC=107,AM=40,所以MC=402-〔107〕2=30,从而sin∠MAC=34,记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC,Q 1为垂足, 那么P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin∠MAC =16.答:玻璃棒l 没入水中局部的长度为16 cm.(如果将“没入水中局部〞理解为“水面以上局部〞,那么结果为24 cm)〔2〕如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O⊥EG. 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK⊥E 1G 1,K 为垂足,那么GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=62-142=24,从而GG 1=KG 12+GK 2=242+322=40.设∠EGG 1=α,∠ENG=β,那么sin α=sin〔π2+∠KGG 1〕=cos∠KGG 1=45.记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,那么P2Q2⊥平面EFGH,答:玻璃棒l没入水中局部的长度为20 cm.(如果将“没入水中局部〞理解为“水面以上局部〞,那么结果为20 cm)19. (2017年)对于给定的正整数k,假设数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n〔n>k〕总成立,那么称数列{a n}是“p〔k〕数列〞.〔1〕证明:等差数列{a n}是“p〔3〕数列〞;〔2〕假设数列{a n}既是“p〔2〕数列〞,又是“p〔3〕数列〞,证明:{a n}是等差数列.19.解:〔1〕因为{a n}是等差数列,设其公差为d,那么a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“p〔3〕数列〞.〔2〕数列{a n}既是“p〔2〕数列〞,又是“p〔3〕数列〞,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,那么a2+a3+a5+a6=4a4,所以a2=a3- d′,在①中,取n=3,那么a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d′, 所以数列{a n }是等差数列.20. (2017年)函数f(x)=x 3+ax 2+bx+1(a >0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.〔极值点是指函数取极值时对应的自变量的值〕 〔1〕求b 关于a 的函数关系式,并写出定义域; 〔2〕证明:b 2>3a ;〔3〕假设f(x),f′(x)这两个函数的所有极值之和不小于-72,求a 的取值围.因为f′(x)的极值点是f(x)的零点.当a=3时,f′(x)>0〔x≠-1〕,故f(x)在R 上是增函数,f(x)没有极值;列表如下:故f(x)的极值点是x 1,x 2.从而a >3.因此b 2>3a.〔3〕由〔1〕知,f(x)的极值点是x 1,x 2,且x 1+x 2=-23a ,x 12+x 22=4a 2-6b9. 从而f(x 1)+f(x 2)=x 13+ax 12+bx 1+1+x 23+ax 22+bx 2+1=x 13(3x 12+2ax 1+b)+x 23(3x 22+2ax 2+b)+13a(x 12+ x 22)+23b(x 1+x 2)+2 =4a 3-6ab 27-4ab9+2=0.记f(x),f′(x)所有极值之和为h(a),因为f′(x)的极值为b-a 23=-19a 2+3a ,所以h(a)=-19a 2+3a ,a >3. 因为h′(a)=-29a-3a 2<0,于是h(a)在〔3,+∞〕上单调递减. 因为h 〔6〕=-72,于是h 〔a 〕≥h〔6〕,故a≤6. 因此a 的取值围为〔3,6].21. (2017年)A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:〔1〕∠PAC=∠CAB; 〔2〕AC 2=AP·AB.解:〔1〕因为PC 切半圆O 于点C ,所以∠PCA=∠CBA, 因为AB 为半圆O 的直径,所以∠ACB=90°. 因为AP⊥PC,所以∠APC=90°,所以∠APC=∠CBA.〔2〕由〔1〕知,△APC∽△ACB,故AP AC =ACAB ,即AC 2=AP·AB.B .[选修4-2:矩阵与变换] 矩阵A=[0 11 0],B=[1 0 0 2].〔1〕求AB ;〔2〕假设曲线C 1:x 28+y22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解:〔1〕因为A=[0 11 0],B=[1 00 2],所以AB=[0 11 0] [1 00 2] = [0 12 0].〔2〕设Q 〔x 0,y 0〕为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P(x ,y),因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.C .[选修4-4:坐标系与参数方程](2017年)在平面直角坐标系xOy 中,直线l 的参考方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s),所以点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455.所以当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离的最小值为455.D .[选修4-5:不等式选讲]a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16.求证:ac +bd ≤8.【证明】由柯西不等式得(ac+bd)2≤(a2+b2)(c2+d2).因为a2+b2=4,c2+d2=16,所以(ac+bd)2≤64,所以ac+bd≤8.22. (2017年)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120°.〔1〕求异面直线A1B与AC1所成角的余弦值;〔2〕求二面角B-A1D-A的正弦值.22.解:在平面ABCD,过点A作AE⊥AD,交BC于点E.因为AA1 平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{→AE ,→AD ,→AA1 }为正交基底,建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=3,∠BAD=120°.那么A〔0,0,0〕,B〔3,-1,0〕,D〔0,2,0〕,E〔3,0,0〕,A1〔0,0,3〕,C1〔3,1,3〕.〔1〕→A1B =〔3,-1,-3〕,→AC1=〔3,1,3〕,那么cos<→A1B ,→AC1>=→A1B ·→AC1|→A1B ||→AC1|=〔3,-1,-3〕·〔3,1,3〕7=-17.设m =〔x ,y ,z 〕为平面BA 1D 的一个法向量,23. (2017年)一个口袋中有m 个白球,n 个黑球〔m ,n∈N *,n≥2〕,这些球除颜色外全部一样.现将口袋中的球随机地逐个取出,并放入如下图的编号为1,2,3,…,m+n 的抽屉,其中第k 次取出的球放入编号为k 的抽屉〔k=1,2,3,…,m+n 〕.〔1〕试求编号为2的抽屉放的是黑球的概率P ;〔2〕随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X 的数学期望,证明:E(X)<n〔m+n 〕〔n-1〕.〔2〕随机变量X 的概率分布为。
2009-2017全国高中数学联赛分类汇编第01讲不等式Word版含解析
![2009-2017全国高中数学联赛分类汇编第01讲不等式Word版含解析](https://img.taocdn.com/s3/m/d2ac6487be23482fb5da4c54.png)
3、( 2011 一试 3)设 a, b 为正实数, 1
1
2 2, (a
2
b)
3
4(ab) ,则
log a
b
.
ab
【答案】 -1
【解析】由 1
1
2 2 ,得 a b
2 2ab .又 (a
2
b)
2
4ab (a b)
3
4ab 4(ab)
3
4 2 ab (ab)
8(ab ) 2 ,
ab
即 a b 2 2ab ①于是 a b 2 2 ab ②
所以 M 2( z x) z x ( 2 1) z x 2 1.
1
当且仅当 y
x
z
y, x
0, z 1, y
时上式等号同时成立
2
. 故 M max
2 1.
3 5、 (2014 一试 2) 设集合 {
b |1
a
b
2} 中的最大值与最小值分别为
M , m ,则 M m =_________.
a
【答案】 5 2 3
⑵1
1 ln 1
n1
n
1 .令 xn n
nk
k2
k1
1
ln n ,则 x1
1 ,
2
n
1
xn xn 1 n2 1 ln 1 n 1
n1 n2 1 n
1 ( n2 1)n 0
因此 xn xn 1
1
x1
.
2
又因为 ln n (ln n ln( n 1)) (ln( n 1) ln( n 2))
(ln 2 ln1)
33 由于直线 CD的方程为 x+3y=6, 直线 GH的方程为 3x+y=6, 故它们的交点 P 的坐标为 ( , ) ,
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)
![2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)](https://img.taocdn.com/s3/m/6fc551c5bb0d4a7302768e9951e79b896802680d.png)
2017年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)1.2017年全国高中数学联赛江苏赛区预赛试卷及详解2.填空题1.已知向量$\overrightarrow{AP}=\begin{pmatrix}1\\3\end{pmatrix}$,$\overrightarrow{PB}=\begin{pmatrix}-3\\1\end{pmatrix}$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角等于$\frac{\pi}{4}$。
2.已知集合$A=\{x| (ax-1)(a-x)>0\}$,且$a\in A$,$3\notin A$,则实数$a$的取值范围是$1\leq a<2$或$2<a\leq 3$。
3.已知复数$z=\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3})$,则$z^3+z^2=\frac{1}{2}-\frac{3}{2}i$。
4.在平面直角坐标系$xOy$中,设$F_1$,$F_2$分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,$P$是双曲线右支上一点,$M$是$PF_2$的中点,且$OM\perp PF_2$,$3PF_1=4PF_2$,则双曲线的离心率为$5$。
5.定义区间$[x_1,x_2]$的长度为$x_2-x_1$。
若函数$y=\log_2x$的定义域为$[a,b]$,值域为$[0,2]$,则区间$[a,b]$的长度的最大值与最小值的差为$3$。
6.若关于$x$的二次方程$mx^2+(2m-1)x-m+2=0(m>0)$的两个互异的根都小于$1$,则实数$m$的取值范围是$\left(\frac{3+\sqrt{7}}{4},+\infty\right)$。
7.若$\tan4x=\frac{3\sin4x\sin2x\sinx}{\cos8x\cos4x\cos4x\cos2x\cos2x\cos x\cos x}$,则$\sin^2x+\sin^24x+\sin^28x=3$。
2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)](https://img.taocdn.com/s3/m/adf35e157cd184254b3535fa.png)
绝密★启用前2017年普通高等学校招生全国统一考试数学试题江苏卷参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球的体积34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.已知复数(1i)(12i)z =++,其中i 是虚数单位,则z 的模是 ▲ .【解析】(1i)(12i)1i 12i z =++=++==【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)a+b c+d =()()i(,)ac bd +ad +bc a,b,c d -∈R .其次要熟悉复数相关概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b (,)a b 、共轭复数为i a b -.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N . 4.右图是一个算法流程图,若输入x 的值为116,则输出y 的值是 ▲ .【答案】2-【解析】由题意得212log 216y =+=-,故答案为2-. 【考点】条件结构的流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5.若π1tan(),46α-=则tan α= ▲ .【答案】75【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的. (3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 6.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 【考点】圆柱的体积、球的体积【名师点睛】空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.记函数()f x D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .【答案】59【考点】几何概型【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8.在平面直角坐标系xOy 中,双曲线2213xy -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线、准线【名师点睛】(1)已知双曲线方程22221x y a b-=求渐近线:22220x y by x a b a -=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.9.等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列的前n 项和公式、通项公式【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 ▲ . 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.12.如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n += ▲ .【答案】3【解析】由tan 7α=可得sin α=cos α=易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100n m m +=⎪⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.13.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【考点】直线与圆、线性规划【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.14.设()f x 是定义在R 上且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1{n D x x n -==,*}n ∈N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况, 在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质,因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)先由平面几何知识证明EF AB ∥,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC ⊥平面ABD ,则BC ⊥AD ,再由AB ⊥AD 及线面垂直判定定理得AD ⊥平面ABC ,即可得AD ⊥AC .试题解析:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .【考点】线面平行判定定理、线面垂直判定与性质定理、面面垂直性质定理【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,取得最大值3;5π6x =时,取得最小值-.【解析】试题分析:(1)先由向量平行的坐标表示得3sin x x =,再根据同角三角函数的基本关系可得5π6x =;(2)先由向量数量积的坐标表示并结合配角公式得π(6))f x x =+,再根据x 的取值范围及余弦函数的性质可求得最值.试题解析:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan3x =-,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b .因为,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤于是,当ππ66x +=,即0x =时,取到最大值3;当π6x +=π,即5π6x =时,取到最小值-.【考点】向量共线、数量积、三角函数的最值【名师点睛】(1)向量平行:1221x y x y ⇒=∥a b ,,,λλ≠⇒∃∈=0R ∥a b b a b ,BA AC OA λ=⇔=111OB OC λλλ+++ ;(2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b ;(3)向量加减乘:±=a b 221212(,),||,||||cos ,x x y y ±±=⋅=⋅<>a a a b a b a b . 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2).试题解析:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b ==E 的标准方程是22143x y+=.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y +-,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得0077x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 【考点】椭圆方程、直线与椭圆的位置关系【名师点睛】直线与圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用根与系数关系或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上(点的坐标满足曲线方程)等. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16;(2)20.【解析】试题分析:(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===.于是4s i 3s555N Eα=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm) 【考点】正、余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.试题解析:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥,所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列. 【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法:①用定义证明:1(n n a a d d +-=为常数);②用等差中项证明:122n n n a a a ++=+;③通项法:n a 为关于n 的一次函数;④前n 项和法:2n S An Bn =+.20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >;(2)见解析;(3)36a <≤.试题解析:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1=3a x -,2=3a x -.列表如下:故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],. 【考点】利用导数研究函数得单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)PAC CAB ∠=∠; (2)2AC AP AB =⋅.【答案】(1)见解析;(2)见解析.(2)由(1)知,APC ACB △∽△,故AP ACAC AB=,即2·AC AP AB =. 【考点】圆的性质、相似三角形【名师点睛】(1)解决与圆有关的成比例线段问题的两种思路:①直接应用相交弦、切割线定理及其推论;②当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握. (2)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等. B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程. 【答案】(1);(2)228x y +=.(2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为点00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2:C 228x y +=. 【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''. C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】试题分析:先将直线l 的参考方程化为普通方程,再根据点到直线距离公式得点P 到直线l 的的距离d ==【考点】参数方程与普通方程的互化【名师点睛】(1)将参数方程化为普通方程,消参数时常用代入法、加减消元法、三角恒等变换法;(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.D .[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤【答案】见解析【考点】柯西不等式【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1120BAD ∠=︒. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17;(2)4. 【解析】试题分析:(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线A 1B 与AC 1的方向向量,根据向量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值. 试题解析:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以1{,,}AE AD AA为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2,AA 1120BAD ∠=︒.则11(0,0,0),1,0),(0,2,0),A B D E A C -.(1)111,AB AC =-= ,则1111111,1cos ,77||||A B AC A B AC A B AC ⋅-⋅===-. 因此异面直线A 1B 与AC 1所成角的余弦值为17.设二面角B -A 1D -A 的大小为θ,则3|cos |4θ=. 因为[0,]θ∈π,所以sin θ==.因此二面角B -A 1D -A. 【考点】空间向量、异面直线所成角及二面角【名师点睛】利用法向量求解空间线面角、面面角的关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”. 23.(本小题满分10分)已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n + 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+ .(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.【答案】(1)nm n+;(2)见解析. 试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n m n n m nn p m n -+-+==+. (2)随机变量X 的概率分布为随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k n m nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++- 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++- 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++- 12221(C C )(1)C n n m n m n nm nn --+-+-+==+- 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p ),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.。
2017年高考江苏数学试题及答案(word解析版)(2)
![2017年高考江苏数学试题及答案(word解析版)(2)](https://img.taocdn.com/s3/m/3b6f3acb915f804d2a16c194.png)
23232017年普通高等学校招生全国统一考试(江苏卷)数学I」、填空题:本大题共 14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上..(1) _________________________________________________________________________________________ 【2017年江苏,1, 5分】已知集合 A {1,2} , B {a,a 2 3} •若AI B 1,则实数a 的值为 ____________________________ . 【答案】1【解析】•••集合 A {1,2} , B {a,a 2 3} . AI B 1 ,.•. a 1 或 a 23 1,解得 a 1 .【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.(2) 【2017年江苏,2, 5分】已知复数z 1 i 1 2i ,其中i 是虚数单位,则z 的模是 _____________________ . 【答案】.10【解析】复数 z 1 i 1 2i 1 2 3i 1 3i , A |z 1 2 3210 .【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.(3)【2017年江苏,3, 5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400, 300,100件•为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60件进行检验,则应从丙种型号的产品中抽取 ________ 件.【答案】18 【解析】产品总数为 200 400 300 100 1000件,而抽取60辆进行检验,抽样比例为【答案】怎佥,则应从丙种型号的产品中抽取 300 —18件. 100【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,即样本容量和总体容量的比值,在各层中进行抽取. 按照一定的比例,(4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为 丄,则输出y 的值是16 【答案】【解析】 【点评】 1 丄 初始值x -,不满足x 1,所以y 2 log ;62 16 本题考查程序框图,模拟程序是解决此类问题的常用方法,基础题. 2 4log 2 2.注意解题方法的积累,属于 ◎丫7-;心(5)【2017年江苏,5,5分】若tan1.则 tan6【解析】 Q tantan叫tan tan 11 tan tan —4 本题考查了两角差的正切公式,属于基础题.1,••• 6tan 6 tan 1,解得 tan6【点评】 (6)【2017年江苏,6, 5分】如如图,在圆柱 QO 2内有一个球O ,该球与圆柱的上、下底面及母线均相切。
2017年全国高中数学联赛江苏赛区复赛参考答案
![2017年全国高中数学联赛江苏赛区复赛参考答案](https://img.taocdn.com/s3/m/fcbd9200a5e9856a561260af.png)
36t2(t2+12) 1 , 不妨设 k>0, 令 t=k+ ,则 t≥2,可化得 PQ2= k (3t2+4)2 6t t2+12 . 即 PQ= 3t2+4 设 B(x0,y0),则切点弦 PQ 的方程是 x0x+3y0y=3. k2-1 1 x- 上,所以 y0=-2. 又 P,Q 在 l:y= 2 4k 3(k2-1) . 从而 x0= 2k k2-1 2 3( ) +12 k 3t2 所以 B 到 PQ 的距离 d= = . 2 k -1 2 2 t2+12 2 ( ) +16 k 6t t2+12 1 9t3 1 3t2 因此△BPQ 的面积 S= ×d×PQ= × × = . 2 2 2 t2+12 2(3t2+4) 3t2+4 ……………………………… 16 分 1 1 9 令 u= ,则 0<u≤ ,化得 S= . t 2 2(4u3+3u) 1 当 0<u≤ 时,4u3+3u 递增. 2 9 1 所以 0<4u3+3u≤2,即 S≥ ,当且仅当 u= ,即 t=2,k=1 时,等号成立. 4 2 9 . 故△BPQ 的面积 S 的取值范围是 [ ,+∞) 4 四、解答题(本题满分 20 分) 1 1 设函数 fn(x)=1+x+ x2+…+ xn. 2! n! (1)求证:当 x∈(0,+∞) ,n∈N* 时,ex > fn(x); (2)设 x>0,n∈N*.若存在 y∈R 使得 ex = fn(x)+ 解: (1)用数学归纳法证明如下: (i) 当 n=1 时,令 f(x)=ex-f1(x)=ex-x-1,则 f ′(x)=ex-1>0,x∈(0,+∞)恒成立, 所以 f(x)在区间(0,+∞)为增函数. 又因为 f(0)=0,所以 f(x)>0,即 ex>f1(x). ……………………………… 5 分 1 xn+1ey,求证:0<y<x. (n+1)! ………………………… 20 分
2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)](https://img.taocdn.com/s3/m/ab7356c0b7360b4c2f3f6463.png)
2x
ex
1 ex ,其中 e 是自然对数的底数. 若 f ( a 1)
f (2a2) ≤ 0 ,则实数 a 的取值
范围是 ▲ .
1 【答案】 [ 1, ]
2
【考点】利用函数性质解不等式
【名师点睛】 解函数不等式时, 首先根据函数的性质把不等式转化为 f ( g( x)) f (h(x)) 的形式, 然后
( 是点集、数集或其他
情形 ) 和化简集合是正确求解的两个先决条件.
( 2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能
会因为不满足“互异性”而导致错误.
( 3)防范空集.在解决有关 A B , A B 等集合问题时,往往容易忽略空集的情况, 一定要先考
虑 时是否成立,以防漏解.
【考点】线面平行判定定理、线面垂直判定与性质定理、面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:( 转化为证明线线平行;( 2)证明线面垂直,需转化为证明线线垂直;( 证明线面垂直. 16.(本小题满分 14 分) 已知向量 a (cos x, sin x), b (3, 3), x [0, π].
5
【答案】
9
▲.
【考点】几何概型 【名师点睛】( 1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. ( 2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要 设出变量,在坐标系中表示所需要的区域.
( 3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,
p
p
lg x Q ,
因此 lg x 不可能与每个周期内 x D 对应的部分相等,
(精校版)2017年江苏数学高考试题文档版(含答案)
![(精校版)2017年江苏数学高考试题文档版(含答案)](https://img.taocdn.com/s3/m/d352d09f83c4bb4cf6ecd1ad.png)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切。
记圆柱O1 O2的体积为V1 ,球O的体积为V2,则12VV的值是7.记函数2()6f x x x=+-的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是8.在平面直角坐标系xoy中,双曲线2213xy-=的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 ,则四边形F1 P F2 Q的面积是9.等比数列{}n a的各项均为实数,其前n项的和为S n,已知36763,44S S==,则8a=10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费之和最小,则x的值是11.已知函数()3xx12x+e-e-f x=x,其中e是自然数对数的底数,若()()2a-1+2a≤f f0,则实数a的取值范围是。
2017年全国高考数学试题及答案-江苏卷
![2017年全国高考数学试题及答案-江苏卷](https://img.taocdn.com/s3/m/43625d230b4e767f5acfce60.png)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1. 已知集合2{1,2},{,3}A B a a ==+,若{1}AB =,则实数a 的值为________2. 已知复数(1)(12)z i i =++,其中i 是虚数单位,则z 的模是__________3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件4. 右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 5. 若1tan()46a π-=,则tan a = 6. 如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下面及母线均相切。
记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 7.记函数()f x = D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8. 在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 9. 等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知36763,44S S ==,则8a = 10. 某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是11. 已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 。
12. 如图,在同一个平面内,向量,,OA OB OC 的模分别为1,1,OA 与OC 的夹角为a ,且t a n 7a =,OB 与OC 的夹角为45°。
2017年全国高中数学联赛江苏赛区复赛参考答案
![2017年全国高中数学联赛江苏赛区复赛参考答案](https://img.taocdn.com/s3/m/fcbd9200a5e9856a561260af.png)
1 1 + 的最小值. (x+y)2 (x-y)2 ………………………… 4 分
1 1 1 1 1 )((x+y)2+(x-y)2) 2 + 2 = ( 2 + 4 (x+y) (x-y) (x+y) (x-y)2
E E E E E
1 ≥ (1+1)2 4
A A E
6k 6 ,y =1- 2 . k2+3 Q k +3
y-yP x-xP (1+3k2)(y+1)-2 (1+3k2)x+6k 所以 直线 l: = ,即 l: = . yQ-yP xQ-xP (1+3k2)(yQ+1)-2 (1+3k2)xQ+6k k2-1 1 化简得 l:y= x- . 2 4k 1 1 直线 l 纵截距是常数- ,故直线 l 过定点(0,- ). 2 2 ……………………… 8 分
(ii) 假设 n=k 时,命题成立,即当 x∈(0,+∞)时,ex>fk(x), 1 1 1 k+1 x ), 则 n=k+1 时,令 g(x)=ex-fk+1(x)=ex-(1+x+ x2+…+ xk+ 2! k! (k+1)! 1 1 所以 g(x)在区间(0, +∞)为增函数. 则 g′(x)=ex-(1+x+ x2+…+ xk)=ex-fk(x)>0, 2! k! 又因为 g(0)=0,所以 g(x)>0,x∈(0,+∞)恒成立,即 ex>fk+1(x),x∈(0,+∞). 所以 n=k+1 时,命题成立. 由(i)(ii)及归纳假设可知,∀n∈N*,当 x∈(0,+∞)时,ex > fn(x). ……………………………… 10 分 1 n+1 y 1 n+1 x e > fn(x)+ x , (2)由(1)可知 ex >fn+1(x),即 fn(x)+ (n+1)! (n+1)! 所以 ey>1,即 y>0.下证:y<x. 1 1 1 - 下面先用数学归纳法证明:当 x>0,ex<1+x+ x2+…+ xn 1+ xnex,n∈N*. 2! n! (n-1)! (i) 当 n=1 时,令 F(x)=1+xex-ex,则 F′(x)=xex>0,x∈(0,+∞), 所以 F(x)在区间(0,+∞)单调增. 又 F(0)=0,故 F(x)>0,即 ex<1+xex. (ii) 假设 n=k 时,命题成立, 1 1 1 - 即当 x∈(0,+∞)时,ex<1+x+ x2+…+ xk 1+ xkex. 2! k ! (k-1)! 1 1 1 k+1 x x 则当 n=k+1 时,令 G(x)=1+x+ x2+…+ xk+ x e -e , 2! k! (k+1)! 1 1 k+1 x x 1 k+1 x 1 x e -e > x e >0, G′(x)=1+x+ x2+…+ xkex+ k! (k+1)! (k+1)! 2! 所以 G(x)在区间(0,+∞)上为增函数,又 G(0)=0,故 G(x)>0,即 1 1 1 k+1 x ex<1+x+ x2+…+ xk+ x e ,x∈(0,+∞). 2! k! (k+1)! 由(i)(ii)及归纳假设, 1 1 1 n+1 x 可知当 x∈(0,+∞)时,ex<1+x+ x2+…+ xn+ x e ,对 n∈N*成立. 2! n! (n+1)! 1 1 1 n+1 y 1 1 1 n+1 x x e <1+x+ x2+…+ xn+ x e, 所以 ex=1+x+ x2+…+ xn+ 2! n! (n+1)! 2! n! (n+1)! 从而 ey<ex,即 y<x.证毕. ……………………………… 20 分
2017年江苏数学高考试卷含答案和解析(2)
![2017年江苏数学高考试卷含答案和解析(2)](https://img.taocdn.com/s3/m/3d517abfa98271fe900ef936.png)
2017年江苏数学高考试卷含答案和解析(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年江苏数学高考试卷含答案和解析(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年江苏数学高考试卷含答案和解析(2)(word版可编辑修改)的全部内容。
2017年江苏数学高考试卷一。
填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是 .5.(5分)若tan(α﹣)=.则tanα= .6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是 .7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是 .8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 .9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= .10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是 .11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f (2a2)≤0.则实数a的取值范围是 .12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= .13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是 .14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是 .二。
2017年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)
![2017年普通高等学校招生全国统一考试数学试题(江苏卷,含答案)](https://img.taocdn.com/s3/m/080d297b3b3567ec102d8a6a.png)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上 1.已知集合{}=1,2A ,{}=+2,3B a a,若AB ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是7.记函数()f x =的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈ D 的概率是8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是9.等比数列{}na 的各项均为实数,其前n 项的和为S n,已知36763,44SS ==, 则8a =10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是11.已知函数()3xx12x+e -e-f x =x ,其中e 是自然数对数的底数,若()()2a-1+2a ≤f f 0,则实数a 的取值范围是 。
2017年江苏省数学联赛初赛试卷及答案
![2017年江苏省数学联赛初赛试卷及答案](https://img.taocdn.com/s3/m/eaf21c47804d2b160b4ec0f6.png)
_‰ 刊)+(%l~%记 ‰ =(夕″ )+… +@2一 钔)+约
(宀 +凡 +… +:+÷ +1
(1+虐
又 铆=1<1+1, 所 以对任 意正整数 昭 ,%(1+莒
12.
・ 法
÷ 钅 …¨ … … … ¨ ¨ … 20分
在平面直 角坐标系 瓦 V中 椭 菌 E的 离 心率为
,设 椭 圆 且
+嗟 =1(夕 >D)0),直 线 几 x+`-3夕 =o.若
⒛ 17年 全国高中数学联赛江苏赛区
初赛参考答案与评分细则
-、 填空题 (本 题共 10小 题 ,每 小题
7分 ,共 η 分 .要 求直接将答案写在横线上 .)
。
1.已 知向量 冫 萨 =(1,币 ),秀 =(— 。 萨 与 Ξ 茁 的夹角等于 雨 ,1),则 向量 Ξ
:畀 。 解
2.已 知 集合
:咭 ,勃 ∪ ,到 ・ 解 ⑿
解 :3。
6.若 关于 艿的二次方程 耐 +@〃 -1》 一昭+2=0⒄ >Φ 的两个互异的根都小于 1,则 实数
昭 的取值范围是
.
).
:ε毕 ,+∞ 解
⒎ 箬tm纭 =f则 龋 解:f3。
在
+瓦ε +贵 蚩 = 轰 答 瓦 尹 石 痣 蚩 戋 盂
8.棱 长为 2的 正方体 zBCD— /1BlClD1在 空间直角坐标系 @一 刀z中 运动 ,其 中顶点
圆 且 唠V=L馘
几 卅 y— ← ⒍ … …¨ … …
8分
±匕D,其 中 tanp=⒉ 四L旦 =堡 ≌望 Ω)设 只2cosa虹 nJ9,则 砒=旦 =止 寺等 詈 黄
2017年全国高中数学联赛江苏复赛试题
![2017年全国高中数学联赛江苏复赛试题](https://img.taocdn.com/s3/m/fa6d578104a1b0717ed5dd05.png)
2017-2018学年全国高中数学联赛江苏赛区复赛一、填空题(每题8分,满分64分,将答案填在答题纸上)1.若数列{}n a 满足*+∈+==N n a a a a n n n ,232,2111,则2017a 的值为 . 2.若函数()()()b ax x x x f ++-=221对于任意R x ∈都满足()()x f x f -=4,则()x f 的最小值是 .3.在正三棱柱111C B A ABC -中,E D ,分别是侧棱11,CC BB 上的点,BD BC EC 2==,则截面ADE 与底面ABC 所成的二面角的大小是 .4.若13cos 2cos cos 3sin 2sin sin =+x x x x x x ,则=x .5. 设y x ,是实数,则9422244+++y x yx 的最大值是 . 6. 设ΛΛΛ,3,2,1,,,2121=+++=∈+++=*m a a a S N n n a m m n ,则201721,,,S S S Λ中能被2整除但不能被4整除的数的个数是 .7. 在直角平面坐标系xOy 中,21,F F 分别是双曲线()01222>=-b by x 的左、右焦点,过点1F 作圆122=+y x 的切线,与双曲线左、右两支分别交于点B A ,,若AB B F =2,则b 的值是 .8. 从正1680边形的顶点中任取若干个,顺次相连成多边形,其中正多边形的个数为 .二、解答题9.已知R y x ∈,,且y x y x ≠=+,222,求()()2211y x y x -++的最小值.10.在平面直角坐标系xOy 中,椭圆13:22=+y x C 的上顶点为A ,不经过点A 的直线l 与椭圆C 交于Q P ,两点,且.0=⋅AQ AP(1)直线l 是否过定点?若是,求出定点坐标;若不是,说明理由.(2)过Q P ,两点分别作椭圆的切线,两条切线交于点B ,求BPQ ∆面积的取值范围. 11.设函数().!1!2112n n x n x x x f ++++=Λ (1)求证:当()*∈+∞∈N n x ,,0时,()x f e n x>;(2)设*∈>N n x ,0,若存在R y ∈使得()()y n n xe x n xf e 1!11+++=,求证:.0x y <<2017年全国高中数学联赛江苏赛区复赛参考答案与评分标准加试1. 已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点CF F ,的延长线交圆O 于点P ,且.ED BC CD AB ⋅=⋅求证:.AE OP ⊥2.设y x ,是非负实数,22,+++=+=y x b y x a ,若b a ,是两个不相邻的整数,求b a ,的值,3.平面上n 2个点()N n n ∈>,1,无三点共线,任意两点间连线段,将其中任意12+n 条线段染成红色.求证:三边都为红色的三角形至少有n 个. 4.设n 为正整数,nn b an =++++131211Λ, 其中n n b a ,为互素的正整数,对素数p ,令集合{}n p a p N n n S ,*∈=, 证明:对每一个素数5≥p ,集合p S 中至少有三个元素.试卷答案1.302612. 16-3. 0454.Z k k ∈,π5.146.2527.1+二、解答题9.解:因为222=+y x ,所以()()422=-++y x y x ,所以()()()()()()()222222114111y x y x y x y x y x y x -++⎪⎪⎭⎫ ⎝⎛-++=-++ ().111412=+≥当0,2==y x 时,()().11122=-++y x y x 所以()()2211y x y x -++的最小值为.1 10.解:(1) 因为0=⋅,所以.⊥直线AQ AP ,与x 轴平行时,P 或Q 与A 重合,不合题意. 设1:+=kx y PA ,则.11:+-=x ky QA 将1+=kx y 代入3322=+y x ,得().063122=++kx x k 所以2262, 1.1313P P k x y k k=-=-++同理.361,3622+-=+=k y k k x QQ 所以,直线:P P Q P Q P y y x x l y y x x --=--,即()()()()()()kx k kx k y k y k l Q Q 63163121312131:2222++++=-++-++, 化简得.2141:2--=x k k y l 直线l 纵截距是常数21-,故直线l 过定点.21,0⎪⎭⎫ ⎝⎛-(2)由 (1) ,223116k k k AP ++=,同理,.31622++=k k AQ 所以 ()()()()()()()()222222222222222223313131363131136+++++⋅+=⎥⎥⎦⎤⎢⎢⎣⎡+++⋅+=k k k k k k k k k k PQ ()()().3103115151362242462++++++=k kk k k k不妨设0>k ,令k k t 1+=,则2≥t ,可化得()()22222431236++=t t t PQ , 即 .4312622++=t t t PQ 设()00,y x B ,则切点弦PQ 的方程是3300=+y y x x ,又Q P ,在2141:2--=x k k y l 上,所以20-=y , 从而().21320kk x -=所以B 到PQ 的距离.122316121213222222+=+⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=t t k k k k d 因此的面积().43294312612232121232222+=++⨯+⨯=⨯⨯=t t t t t t t PQ d S令t u 1=,则210≤<u ,化得().34293u u S += 当210≤<u 时,u u 343+递增, 所以23403≤+<u u ,即49≥S ,当且仅当21=u ,即1,2==k t 时,等号成立,故BPQ ∆的面积S 的取值范围是.,49⎪⎭⎫⎢⎣⎡+∞ 11.解: (1) 用数学归纳法证明如下:(ⅰ)当1=n 时,令()()11--=-=x e x f e x f xx,则()()+∞∈>-=',0,01x e x f x恒成立,所以()x f 在区间()+∞,0为增函数,又因为()00=f ,所以()0>x f ,即().1x f e x>(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,()x f e k x>,则1+=k n 时,令()()()⎪⎪⎭⎫⎝⎛++++++-=-=++121!11!1!211k k x k x x k x k x x e x f e x g Λ, 则()()0!1!2112>-=⎪⎭⎫⎝⎛++++-='x f e x k x x e x g k x k xΛ,所以()x g 在区间()+∞,0为增函数,又因为()00=g ,所以()()+∞∈>,0,0x x g 恒成立,即()()+∞∈>+,0,1x x f e k x,所以1+=k n 时,命题成立.由(ⅰ)(ⅱ)及归纳假设可知,*∈∀N n ,当()+∞∈,0x 时,().x f e n x>(2)由(1)可知()x f e n x1+>,即()()()()11!11!11++++>++n n y n n x n x f e x n x f ,所以1>ye ,即0>y ,下证:.x y <下面先用数学归纳法证明:当().,!1!11!211,012*-∈+-++++<>N n e x n x n x x e x x n n xΛ(ⅰ)当1=n 时,令()xxe xe x F -+=1,则()()+∞∈>=',0,0x xe x F x,所以()x F 在区间()+∞,0单调增,又()00=F ,故()0>x F ,即.1x x xe e +< (ⅱ)假设k n =时,命题成立, 即当()+∞∈,0x 时,().!1!11!21112k k k xe x k x k x x e +-++++<-Λ则当1+=k n 时,令()()x x k k e e x k x k x x x G -++++++=+12!11!1!211Λ,()()()0!11!11!1!211112>+>-++++++='++x k x x k x k e x k e e x k e x k x x x G Λ,所以()x G 在区间()+∞,0上为增函数,又()00=G ,故()0>x G ,即()()+∞∈++++++<+,0,!11!1!21112x e x k x k x x e x k k x Λ.由(ⅰ)(ⅱ)及归纳假设, 可知当()+∞∈,0x 时,(),!11!1!21112x n n xe x n x n x x e +++++++<Λ对*∈N n 成立,所以()()x n n y n n x e x n x n x x e x n x n x x e 1212!11!1!211!11!1!211++++++++<++++++=ΛΛ,从而x y e e <即x y <,证毕.复赛加试答案1.证明:连接.,PE PA因为五边形ABCDE 内接于圆O , 所以EDF ABF DEF BAF ∠=∠∠=∠,, 所以EDF ABF ∆∆~,所以.FD FBED AB = ① 同理,BFPF BC PE =, ②.PFDFPA DC = ③ 由①⨯②⨯③得.1=⋅⋅PADCBC PE ED AB因为ED BC CD AB ⋅=⋅,所以.1=⋅EDDCBC AB所以PA PE =,即点P 是弧AE 的中点,所以.AE OP ⊥2.解:因为b a ,是不相邻的整数, 所以()()()y y x x y x y x a b -++-+=+-+++=-≤22222.32222222222<=+≤+++++=y y x x由于a b -是整数,所以.2=-a b 设Z n n b n a ∈+=-=,1,1,即122,1+=+++-=+n y x n y x ,则122,1+=+-+--=--n y x y x n y x y x ,则122,1+-=+-+--=-n yx y x n y x y x , 于是1122,112+-++=+--+-=n yx n x n y x n x , 从而()()()()()()y x n x n y x n x n -++=++-+-=-221212,112,故()().2121++=+-x n n x n 又因为()().2222=-+x x ①令x t =,得()1212++-=+n n t n x ,代入①得()()01212222=-----n n t n n nt ,于是()()()()()()nn n n n n n n n n n n n n t x 221141281412222-+±-=--+-±-==, ()()()nn n n n n x n y 22111-+±-=--=,因此,2≥n ,并且()()()211-+≥-n n n n n ,即0122≤--n n ,解之得2121+≤≤-n , 从而212+≤≤n ,且Z n ∈,故.2=n 所以.3,1==b a3. 证明:首先证明一定存在红色三角形(三边均为红色的三角形为红色三角形,下同). 设从顶点A 出发的红色线段最多,由A 引出的红色线段为k AB AB AB ,,,21Λ,则.1+≥n k若k B B B ,,21Λ中存在两点,不妨设为21,B B 使线段21B B 为红色线段, 则21B AB ∆为红色三角形,若k B B B ,,,21Λ相互之间没有红色线段相连,则从()k i B i ,,2,1Λ=出发的红色线段最多有k n -2条, 所以这n 2个点红色线段最多有()()[]()().142212221222+<=-+≤-=--+-+n n k n k k n k k n k n k k 与题设矛盾,所以存在以A 为顶点的红色三角形, 下面用数学归纳法证明,(1)当2=n 时,平面上有四个点D C B A ,,,中两两连线共有6条, 其中有5条为红色,只有一条非红色,设为,AB 则ACD ∆与BCD 均为红色三角形,命题成立,(2)假设k n =时,命题成立,即至少存在k 个红色三角形, 当1+=k n 时,有22+k 个点,且有()112++k 条红色线段,一定存在一个红色三角形,设为.ABC ∆考察从C B A ,,引出的红色线段分别记为()()()C d B d A d ,,条,不妨设()()().C d B d A d ≤≤ 若()()22+≤+k B d A d ,则除去点B A ,余下的k 2个点之间至少有()()11211222+=+-++k k k ,由归纳假设可知存在至少k 个红色三角形,再加上ABC ∆至少有1+k 个红色三角形, 若()()32+≥+k B d A d ,则()()()53+≥++k C d B d A d , 故从C B A ,,出发向其它12-k 个点引出红色线段至少有13-k 条, 因为()().1213k k k =---这()13-k 线段至少有k 对线段有公共点(不包括C B A ,,)故至少存在k 个红色三角形,再加上ABC ∆,则至少有1+k 个红色三角形, 所以1+=k n 时命题也成立,由(1)(2)可知,当N n n ∈>,1时,n 2点之间的12+n 条红色线段至少可组成n 个红色三角形.4.证明:引理:设5≥p 为素数,k 为非负整数,令kk s t p kp kp kp =-++++++112111Λ, 其中k k s t ,为互素的正整数,那么.2k t p 引理的证明:因为()()()∑∑∑-=-=-=-++⋅+=⎪⎪⎭⎫ ⎝⎛-+++=+=111111*********p i p i p i k k i p kp i kp p k i p kp i kp i kp S t , 令()()∑-=-++=111p i i p kp i kp A , 因为素数5≥p ,由Fermat 小定理,以及()()p p kk k mod 0121≡-+++Λ,其中 21-≤≤p k ,有()()()()A p kp kp kp p 1121--+++Λ()()()()()()()∑∑-=---=--≡-++-+++=1122111121p i p p p i p i p i i p kp i kp p kp kp kp Λ().mod 01131142p i ip i p p i p ≡-≡-≡∑∑-=--=-所以()()()()().1211*-∈=-+++N M pM A p kp kp kp p Λ即()()()()().12121212--++++=p k k p kp kp kp Mp k S t Λ 因为()()()()()11212,1=-+++-p p kp kp kp p Λ,所以k t p 2,引理证毕,由引理得,12-p a p ,所以1-p a p , 从而()p S p p ∈-1,又∑∑∑∑∑-=---=-=-=-=--+⋅=++==1011101111112121111112p k k kp p p k p i p i p i p p s t b a p i kp i p i b a ,因为k p t p a p 212,-,所以12-p a p 从而.12p S p ∈-因为()1112-<-<-p p p p ,所以集合p S 中元素至少有3个.。
2017年全国高中数学联赛二试试题及答案解析.pdf
![2017年全国高中数学联赛二试试题及答案解析.pdf](https://img.taocdn.com/s3/m/8f174c0e2379168884868762caaedd3383c4b5b7.png)
2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。
一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.证明:用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ .因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO rKOr =−+−,同理 ()()22222QK QO rKOr =−+−,所以 2222PO PK QO QK −=−,故 OK ⊥PQ . (10分)由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM⋅⋅=. ③ 由①,②,③可得NB MCBD CD=, (30分) 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. (40分)注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得 2PK PE PC AK KE =⋅−⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.二、(本题满分40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l −≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法.当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠为整数. (10分)假设命题对1(1)v v −≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+",FE Q PO NM KDC B A这里,0i α=或者1,1,2,i v v =++". (20分)于是 ()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠2122kk k =+++ 11211212(1)2()222v v v vv v v ααα−++++=+++⋅++⋅+++""12k ′=+, ①这里1121122(1)2()22v v v v v v v k ααα−++++′=++⋅++⋅+++"".显然k ′中所含的2的幂次为1v −.故由归纳假设知,12r k ′′=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明. (40分) 三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a "满足1,1,2,,k a k n ≤=",记12,1,2,,kk a a a A k n k+++=="".求证:1112nnk k k k n a A ==−−<∑∑. 证明:由01k a <≤知,对11k n ≤≤−,有110,0kni ii i k a k an k ==+<≤<≤−∑∑. (10分)注意到当,0x y >时,有{}max ,x y x y −<,于是对11k n ≤≤−,有11111kn n k i i i i k A A a a n k n ==+⎛⎞−=−+⎜⎟⎝⎠∑∑11111n ki i i k i a a n k n =+=⎛⎞=−−⎜⎟⎝⎠∑∑ 11111max ,n k i i i k i a a n k n =+=⎧⎫⎛⎞<−⎨⎬⎜⎟⎝⎠⎩⎭∑∑111max (),n k k nk n ⎧⎫⎛⎞≤−−⎨⎬⎜⎟⎝⎠⎩⎭1k n=−, (30分) 故111nnnk kn k k k k a AnA A ===−=−∑∑∑()1111n n nk n k k k AA A A −−===−≤−∑∑111n k k n −=⎛⎞<−⎜⎟⎝⎠∑12n −=. (50分) 四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A "的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解:对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A "上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍. (20分)设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j −⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C −种方法,其余的边标记c .由乘法原理,此时共有2in C 22jn i C −种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−==⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠∑∑. ①这里我们约定001C =. (30分)当n 为奇数时,20n i −>,此时22221202n i j n i n i j C −⎡⎤⎢⎥⎣⎦−−−==∑. ② 代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C −⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎢⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦−−−−====⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠∑∑∑∑ 0022(1)(21)(21)nnkn kk n kk n n nn k k C C −−===+−=++−∑∑ 31n =+. (40分)当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦−==⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠∑∑()122210412n i n i n i C ⎡⎤−⎢⎣⎦−−=⎛⎞⎜⎟×+⎜⎟⎜⎟⎝⎠∑ ()222124233n i n i n n i C ⎡⎤⎢⎣⎦−−==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种. (50分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(数学)2017年全国高中数学联赛江苏复赛试题+Word版含答案2017年全国高中数学联赛江苏赛区复赛一、填空题(每题8分,满分64分,将答案填在答题纸上)1.若数列{}na 满足*+∈+==N n a a a an n n ,232,2111,则2017a 的值为 . 2.若函数()()()bax x xx f ++-=221对于任意R x ∈都满足()()x f x f -=4,则()x f 的最小值是 .3.在正三棱柱111C B A ABC -中,E D ,分别是侧棱11,CC BB 上的点,BD BC EC 2==,则截面ADE 与底面ABC 所成的二面角的大小是 .4.若13cos 2cos cos 3sin 2sin sin =+x x x x x x ,则=x .5. 设y x ,是实数,则9422244+++y x y x 的最大值是 . 6. 设ΛΛΛ,3,2,1,,,2121=+++=∈+++=*m a a a S N n n a m m n ,则201721,,,S S S Λ中能被2整除但不能被4整除的数的个数是 .7. 在直角平面坐标系xOy 中,21,F F 分别是双曲线()01222>=-b by x 的左、右焦点,过点1F 作圆122=+y x的切线,与双曲线左、右两支分别交于点B A ,,若ABB F =2,则b 的值是 .8. 从正1680边形的顶点中任取若干个,顺次相连成多边形,其中正多边形的个数为 . 二、解答题 9.已知R y x ∈,,且yx y x ≠=+,222,求()()2211y x y x -++的最小值.10.在平面直角坐标系xOy 中,椭圆13:22=+y x C 的上顶点为A ,不经过点A 的直线l 与椭圆C 交于Q P ,两点,且.0=⋅(1)直线l 是否过定点?若是,求出定点坐标;若不是,说明理由.(2)过Q P ,两点分别作椭圆的切线,两条切线交于点B ,求BPQ ∆面积的取值范围.11.设函数().!1!2112n nx n xx x f ++++=Λ(1)求证:当()*∈+∞∈N n x ,,0时,()x f en x>;(2)设*∈>N n x ,0,若存在R y ∈使得()()yn n xe x n xf e1!11+++=,求证:.0x y <<2017年全国高中数学联赛江苏赛区复赛参考答案与评分标准加试1. 已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点CF F ,的延长线交圆O 于点P ,且.ED BC CD AB ⋅=⋅ 求证:.AE OP ⊥2.设y x ,是非负实数,22,+++=+=y x b y x a ,若b a ,是两个不相邻的整数,求b a ,的值,3.平面上n 2个点()N n n ∈>,1,无三点共线,任意两点间连线段,将其中任意12+n条线段染成红色.求证:三边都为红色的三角形至少有n 个.4.设n 为正整数,nn ban =++++131211Λ, 其中nnb a ,为互素的正整数,对素数p ,令集合{}np a p N n n S ,*∈=,证明:对每一个素数5≥p ,集合pS 中至少有三个元素.试卷答案1.302612. 16-3. 0454.Z k k ∈,π5.146.2527.1+8.3432二、解答题9.解:因为222=+y x ,所以()()422=-++y x y x ,所以()()()()()()()222222114111y x y x y x y x y x y x -++⎪⎪⎭⎫ ⎝⎛-++=-++().111412=+≥当0,2==y x 时,()().11122=-++y x y x所以()()2211y x y x -++的最小值为.110.解:(1) 因为0=⋅,所以.⊥ 直线AQ AP ,与x 轴平行时,P 或Q 与A 重合,不合题意.设1:+=kx y PA ,则.11:+-=x k y QA 将1+=kx y 代入3322=+y x ,得().063122=++kx xk所以2262, 1.1313PPk xy k k =-=-++同理.361,3622+-=+=k y k k xQQ所以,直线:P PQPQ Py y x x l y yx x --=--,即()()()()()()kx k k x k y k y k l QQ63163121312131:2222++++=-++-++, 化简得.2141:2--=x k k y l直线l 纵截距是常数21-,故直线l 过定点.21,0⎪⎭⎫ ⎝⎛- (2)由 (1) ,223116kk k AP ++=,同理,.31622++=k k AQ 所以()()()()()()()()222222222222222223313131363131136+++++⋅+=⎥⎥⎦⎤⎢⎢⎣⎡+++⋅+=k k k k k k k k k k PQ()()().3103115151362242462++++++=k kk k k k不妨设0>k ,令kk t 1+=,则2≥t ,可化得()()22222431236++=tt t PQ,即.4312622++=t t t PQ设()0,y x B ,则切点弦PQ 的方程是330=+y y x x , 又Q P ,在2141:2--=x k k y l 上,所以2-=y,从而().21320kk x -=所以B 到PQ 的距离.122316121213222222+=+⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=t t k k k k d因此的面积().43294312612232121232222+=++⨯+⨯=⨯⨯=t t t t t t t PQ d S令t u 1=,则210≤<u ,化得().34293u u S +=当210≤<u 时,uu343+递增,所以23403≤+<u u,即49≥S ,当且仅当21=u ,即1,2==k t 时,等号成立,故BPQ ∆的面积S 的取值范围是.,49⎪⎭⎫⎢⎣⎡+∞ 11.解: (1) 用数学归纳法证明如下: (ⅰ)当1=n 时,令()()11--=-=x e x f ex f x x,则()()+∞∈>-=',0,01x e x f x 恒成立,所以()x f 在区间()+∞,0为增函数, 又因为()00=f ,所以()0>x f ,即().1x f ex>(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,()x f e k x >,则1+=k n 时,令()()()⎪⎪⎭⎫ ⎝⎛++++++-=-=++121!11!1!211k k x k x x k x k x x e x f e x g Λ,则()()0!1!2112>-=⎪⎭⎫ ⎝⎛++++-='x f e x k x x ex g k x k xΛ,所以()x g 在区间()+∞,0为增函数,又因为()00=g ,所以()()+∞∈>,0,0x x g 恒成立,即()()+∞∈>+,0,1x x f e k x ,所以1+=k n 时,命题成立.由(ⅰ)(ⅱ)及归纳假设可知,*∈∀N n ,当()+∞∈,0x 时,().x f en x>(2)由(1)可知()x f en x1+>,即()()()()11!11!11++++>++n n y n n x n x f e x n x f ,所以1>ye,即0>y ,下证:.x y <下面先用数学归纳法证明:当().,!1!11!211,012*-∈+-++++<>N n e x n x n x x e x x n n x Λ(ⅰ)当1=n 时,令()xxe xe x F -+=1,则()()+∞∈>=',0,0x xe x F x,所以()x F 在区间()+∞,0单调增,又()00=F ,故()0>x F ,即.1x xxe e +<(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,().!1!11!21112k k k xe x k x k x x e+-++++<-Λ则当1+=k n 时,令()()xx k k e e x k x k x x x G -++++++=+12!11!1!211Λ,()()()0!11!11!1!211112>+>-++++++='++x k x x k x k e x k e e x k e x k x x x G Λ,所以()x G 在区间()+∞,0上为增函数,又()00=G ,故()0>x G ,即()()+∞∈++++++<+,0,!11!1!21112x e x k x k x x e x k k x Λ.由(ⅰ)(ⅱ)及归纳假设, 可知当()+∞∈,0x 时,(),!11!1!21112x n n xe x n x n x x e +++++++<Λ对*∈Nn 成立, 所以()()xn n y n n x e x n x n x x e x n x n x x e 1212!11!1!211!11!1!211++++++++<++++++=ΛΛ,从而xye e<即x y <,证毕.复赛加试答案1.证明:连接.,PE PA因为五边形ABCDE 内接于圆O , 所以EDF ABF DEF BAF ∠=∠∠=∠,, 所以EDF ABF ∆∆~,所以.FD FBED AB = ① 同理,BF PF BC PE =, ② .PFDFPA DC = ③由①⨯②⨯③得.1=⋅⋅PA DCBC PE ED AB 因为ED BC CD AB ⋅=⋅,所以.1=⋅EDDC BC AB 所以PA PE =,即点P 是弧AE 的中点,所以.AE OP ⊥2.解:因为b a ,是不相邻的整数, 所以()()()yy x x y x y x a b -++-+=+-+++=-≤22222.32222222222<=+≤+++++=y y xx由于a b -是整数,所以.2=-a b 设Z n n b n a ∈+=-=,1,1,即122,1+=+++-=+n y x n y x ,则122,1+=+-+--=--n y x y x n y x y x , 则122,1+-=+-+--=-n yx y x n y x y x , 于是1122,112+-++=+--+-=n yx n x n y x n x ,从而()()()()()()y x n x n y x n x n -++=++-+-=-221212,112,故()().2121++=+-x n n x n又因为()().2222=-+x x ①令xt =,得()1212++-=+n n t n x ,代入①得()()01212222=-----n n t n n nt ,于是()()()()()()n n n n n n n n n n n n n n t x 221141281412222-+±-=--+-±-==,()()()nn n n n n x n y 22111-+±-=--=,因此,2≥n ,并且()()()211-+≥-n n n n n , 即0122≤--n n,解之得2121+≤≤-n ,从而212+≤≤n ,且Z n ∈,故.2=n所以.3,1==b a3. 证明:首先证明一定存在红色三角形(三边均为红色的三角形为红色三角形,下同). 设从顶点A 出发的红色线段最多,由A 引出的红色线段为kAB AB AB ,,,21Λ,则.1+≥n k 若k B B B ,,21Λ中存在两点,不妨设为21,B B 使线段21B B 为红色线段,则21B AB ∆为红色三角形, 若kB B B ,,,21Λ相互之间没有红色线段相连, 则从()k i B i,,2,1Λ=出发的红色线段最多有k n -2条, 所以这n 2个点红色线段最多有()()[]()().142212221222+<=-+≤-=--+-+n n k n k k n k k n k n k k与题设矛盾,所以存在以A 为顶点的红色三角形,下面用数学归纳法证明,(1)当2=n 时,平面上有四个点D C B A ,,,中两两连线共有6条,其中有5条为红色,只有一条非红色,设为,AB 则ACD ∆与BCD 均为红色三角形,命题成立,(2)假设k n =时,命题成立,即至少存在k 个红色三角形,当1+=k n 时,有22+k 个点,且有()112++k 条红色线段, 一定存在一个红色三角形,设为.ABC ∆ 考察从C B A ,,引出的红色线段分别记为()()()C d B d A d ,,条,不妨设()()().C d B d A d ≤≤若()()22+≤+k B d A d ,则除去点B A ,余下的k 2个点之间至少有()()11211222+=+-++k k k ,由归纳假设可知存在至少k 个红色三角形,再加上ABC ∆至少有1+k 个红色三角形, 若()()32+≥+k B d A d ,则()()()53+≥++k C d B d A d , 故从C B A ,,出发向其它12-k 个点引出红色线段至少有13-k 条,因为()().1213k k k =---这()13-k 线段至少有k 对线段有公共点(不包括C B A ,,)故至少存在k 个红色三角形,再加上ABC ∆,则至少有1+k 个红色三角形,所以1+=k n 时命题也成立,由(1)(2)可知,当N n n ∈>,1时,n 2点之间的12+n 条红色线段至少可组成n 个红色三角形.4.证明:引理:设5≥p 为素数,k 为非负整数,令kks t p kp kp kp =-++++++112111Λ, 其中k k s t ,为互素的正整数,那么.2k t p引理的证明: 因为()()()∑∑∑-=-=-=-++⋅+=⎪⎪⎭⎫ ⎝⎛-+++=+=111111*********p i p i p i k k i p kp i kp p k i p kp i kp i kp S t ,令()()∑-=-++=111p i i p kp i kp A , 因为素数5≥p ,由Fermat 小定理,以及 ()()p p k k k mod 0121≡-+++Λ,其中 21-≤≤p k ,有()()()()A p kp kp kp p 1121--+++Λ ()()()()()()()∑∑-=---=--≡-++-+++=1122111121p i p p p i p i p i i p kp i kp p kp kp kp Λ ().mod 01131142p i i p i p p i p ≡-≡-≡∑∑-=--=-所以()()()()().1211*-∈=-+++N M pM A p kp kp kp p Λ 即()()()()().12121212--++++=p k k p kp kp kp M p k S t Λ 因为()()()()()11212,1=-+++-p p kp kp kp p Λ, 所以kt p 2,引理证毕, 由引理得,12-p a p ,所以1-p a p , 从而()p S p p ∈-1, 又∑∑∑∑∑-=---=-=-=-=--+⋅=++==1011101111112121111112p k k k p p p k p i p i p i p p s t b a p i kp i p i ba ,因为k p t p a p 212,-,所以12-p a p 从而.12p S p ∈- 因为()1112-<-<-p p p p ,所以集合p S 中元素至少有3个.。