中文版ARRL《天线手册》介绍

合集下载

S5000系列手持定向天线数据手册说明书

S5000系列手持定向天线数据手册说明书

S5000系列手持定向天线数据手册CN_01A产品综述定向天线常用于安全部门和无线电管理部门定位发射源和干扰源的查找,也可以应用于EMC测试、场强扫描、基站检测维护、变电站电力系统检测维护、汽车EMI检测、医疗设备辐射、伪基站检测设备等领域。

S5000系列手持定向天线,频率范围覆盖10MHz~8GHz,携带运输方便、操作简单快捷,适合外携测量。

天线套装包含三个不同频段的定向天线和一个内置宽带低噪声放大器的手柄;天线与手柄以盲插的方式配合,一体快速插拔转换,可实现垂直或水平极化方向信号的测试;单个天线也可以直接通过N型母头连接设备使用;手柄内置宽带低噪声放大器和可充电电池,设计有“直通”和“放大”两种工作模式以提高接收信号的动态范围;外接有N型公头稳相低损柔性射频线缆连接频谱仪使用。

型号与主要指标天线增益10dB(典型值)极化方向水平,垂直手柄射频线 1.5米/N型,公头包装尺寸470 x 400 x 240mm净重0.45kg(含手柄0.96kg)0.32kg(含手柄0.83kg)0.50kg(含手柄1.01kg)产品外观设计特色◆手柄带有放大或直通开关功能,适合测试时大信号与小信号环境的切换。

当按下放大开关时亮绿灯,信号经过LNA 放大处于有源放大工作状态,按下开关灭灯时信号直通处于无源工作状态。

◆手柄底部带有1/4 英寸接口方便上三脚架固定测试;充电接口为手柄内锂电池充电。

手柄上部为机械指北针。

◆天线支持快速插拔切换不同频段天线,利用塑料弹性和N 头接口进行卡位固定。

手柄和天线当插入深度到位后会听到“咔”声音证明已经插好,拔出方法反之。

快插拔时注意天线与手柄的对接平衡线对接,避免损坏N 头及使用寿命。

◆手柄充电时指示灯红灯处于充电状态,绿灯时处于饱和状态。

不使用时请关闭手柄放大开关处于灭灯无源状态。

◆射频线避免90°弯折。

◆实测增益图表典型方向图和应用图800MHz方向图3GHz方向图6GHz方向图频谱频率精确中频分析测量关于鼎阳鼎阳科技(SIGLENT)是通用电子测试测量仪器领域的行业领军企业。

2017年华为天线产品手册-中国移动

2017年华为天线产品手册-中国移动

华为技术有限公司创新共赢,助力中国移动打造LTE精品网络随着LTE精品网络的深入建设,以及无线网络的不断演进,天馈系统已成为建设LTE精品网络的重要组成部分。

●在业务需求日趋旺盛,潜力巨大的农村郊区广域场景,通过高增益天线解决方案,增强覆盖效果,增加用户数量,提升用户体验;在高铁等特殊场景,通过高增益、窄波束天线专网解决方案保证覆盖效果,提升用户体验,扩大市场份额;●针对网络容量不足,需精准覆盖的城区场景,通过多频天线解决方案实现独立电调,提升精准覆盖;另外针对站点获取困难,急需补盲覆盖的城区场景,通过美化天线方案,降低站点获取难度,提高部署效率,提升用户体验;●针对天面空间紧张场景,通过全频段智能天线进行天面收编,简化站点从而降低站点租金和维护成本;●随着4G站点规模继续增长,天线数量不断增加,通过天线智能化管理方案,可大幅提升网络部署与管理效率,有效降低网络管理与维护成本。

华为依托20多年丰富的无线网络经验积累和对4G网络部署与发展的深刻理解,采用天线与RAN协同设计,聚焦整网性能最优,跨界创新推出了一系列无源和有源天线解决方案,助力中国移动打造持续领先的LTE精品网络。

全频段智能天线解决方案,打造用户体验更好的精品网络全频段智能天线可对当前复杂天面进行收编,解决天面紧张问题。

华为全频段智能天线,两大系列产品:2288天线和4488天线,天线可同时支持900M、1800M、FA频段8T8R以及D频段 8T8R,最大程度节省天面空间及TCO;同时,采用创新天线阵列架构设计,使天线尺寸更小,降低部署难度,并且保证各系统增益满足覆盖要求。

3D电调及美化天线解决方案,可独立优化、灵活调整,提升网络性能华为FA/D频段3D电调天线解决方案,支持FA与D频段同时接入,独立调节,解决天面空间紧张问题,同时结合华为创新的EasyBeam解决方案,针对不同覆盖场景,实现天线波束的3D远程调节,包括:广播波束水平方位角连续调整、水平波瓣宽度远程调整和天线电下倾角度远程连续可调。

中文版ARRL《天线手册》介绍

中文版ARRL《天线手册》介绍

中文版ARRL《天线手册》介绍
佚名
【期刊名称】《电子制作》
【年(卷),期】2012(000)003
【摘要】天线作为无线系统的不可或缺的关键部件之~,一直受到从事该领域的
工程师、学者和有关大专院校的师生的关注。

这本手册的内容非常丰富,总计28
章的内容涉及了天线基础、天线建模与系统规划、多种应用天线、天线阵列、天线材料与附件、天线的接地系统与地面对天线和电波传播的影响、传输线、无线电波传播,以及天线与传输线的测量,等等,甚至包括了主要天线产品的供应商的概况。

【总页数】1页(P33-33)
【正文语种】中文
【中图分类】TN820.15
【相关文献】
1.合理使用天线提高收视效果——《实用电视天线手册》评介 [J], 吕晓雁
2.一本通俗实用的手册——介绍《农村图书室工作手册》 [J], 华芳
3.剑指能效管理共话能源转型——博世力士乐《能效管理手册指南与实践案例》
中文版权威发布 [J], 张兰
4.特为ARRL户外日设计的短波八木天线三工器 [J], 盖里·高登;穆新宇(编译)
5.结构分析与设计软件ETABS中文版知识选讲(四) ETABS中文版钢结构设计介绍 [J], 郑毅;李立
因版权原因,仅展示原文概要,查看原文内容请购买。

天线手册(Antenna Handbook)概要

天线手册(Antenna Handbook)概要

天线手册(Antenna Handbook)天线手册(Antenna Handbook)天线基本概念天线是FM DX的耳朵,微弱的电波从天线经过馈线进入接收机,才能让我们听到远方天线电波在讲天线之前,不能不先提一提电波。

我们制作天线的目的是为了捕捉电波,因此,在考虑天线的问题之前,绝对有必要先研究一下电波的问题。

FM天线直接波这是指从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。

视线传播这个名字也表明了这种传播方式能够传播的距离不远。

这有两个原因,首先是电波从发射点出发,其能量是以幂级数递减的,而接收机要能良好地解调出广播,需要一定的信号强度。

所以太远的地方,信号太弱,不足以解调。

如果只是这个原因,那么拼命提高发射功率或增加接收天线的增益,也许就可以扩大收听的范围了。

但是,还有一个重要的问题是,地球是圆的,在地球上任何一点发出的电波,按直线前进的方向,最终将离开地球射向天空。

主要是由于第二个原因,一般地讲,地面上一个发射台发出的直线波,只能传播到70km远处地面上的接收处。

如果双方的高度增加,那么这个距离还可以增加,但总是有限的。

所以,70km,是本地收听的极限,实际上,由于山脉、丘陵、房屋的阻挡、反射,这个距离还要大打折扣,一般可以估计的距离是35km。

电离层发射波这是指电波通过电离层的发射达到接收方。

这里面的名堂很多。

电离层本身是有多个层次的,支持短波(1.8MHz到30MHz)反射的电离层是F1和F2 层。

F1和F2并不是甘心反射所有的地波和大气波导本来来说,理论上VHF是不存在地波的。

但是无数的实践表明,VHF 也存在着某种程度的地波传播。

所以我们能稳定地接收200km左右电台的信号。

江苏和安徽两省的业余电台,每年国庆的时候都进行全省VHF移动通讯实验,也证明了VHF电波可以在200km左右的距离得到传播。

大气波导是另外一种可能传播VHF电波的手段,不过人们研究得还不够多。

H3C WLAN天线速查手册(V1.1)

H3C WLAN天线速查手册(V1.1)

H3C WLAN天线速查手册V1.1(仅供内部使用)审核: 李炜日期:审核: 日期:杭州华三通信技术有限公司版权所有侵权必究目录1 室内天线 (4)1.1 终端天线 (4)1.1.1 TLB-2400-2HW(27010204) (4)1.1.2 TLB-5000-2HW(27010255) (5)1.1.3 W1450& C5060-510009-A(2701A00B) (6)1.1.4 C5060-510002-A(2701A00M) (7)1.2 吸顶天线 (9)1.2.1 TQJ-SA800/2500-3(27010210) (9)1.2.2 MIMO吸顶天线TQJ-2458MIC×6(2701A00H) (10)1.2.3 MIMO吸顶天线TQJ-2458MIK×3 (2701A00J) (13)1.2.4 双频吸顶天线TQJ-2458XTJ1(2701A009) (15)1.3 垂直极化板型天线TDJ-2458BKC(2701A003) (17)2 车载天线 (19)2.1 车载天线:TQC-2400CI(2701A008) (19)3 室外天线 (20)3.1 全向天线 (20)3.1.1 全向天线TQJ-2400-11-T2(27010215) (20)3.1.2 全向天线SL13090A(2701A004) (22)3.1.3 全向天线TQJ-5800-12-T0(27010251) (23)3.1.4 全向天线SL13089A(2701A007) (24)3.2 扇区天线 (25)3.2.1 垂直极化天线TDJ-SA2400-11-90(27010253) (25)3.2.2 垂直极化天线TDJ-2400BKF-Y(2701A002) (26)3.2.3 TDJ-5158BKT60-2(2701A00G) (28)3.3 八木天线 (29)3.3.1 八木天线SL14166AS2-HZ004(2701A006) (29)3.3.2 八木天线SL14011AS2-HZ004(2701A005) (30)3.4 背射天线 (31)3.4.1 背射天线TDJ-DBS5800-17(27010239) (31)3.5 碟形定向天线 (32)3.5.1 抛物面天线TDJ-5800P6(2701A00A) (32)H3C WLAN天线速查手册关键词:WLAN、天线摘要:本文主要对H3C公司系列WLAN天线进行了简单介绍,便于用户根据实际需要选择搭配。

2020年(产品管理)北京邦讯隐蔽天线产品手册

2020年(产品管理)北京邦讯隐蔽天线产品手册

(产品管理)北京邦讯隐蔽天线产品手册北京邦讯隐蔽天线产品手册一体化隐蔽天线类隐蔽外罩类杆塔类北京邦讯技术有限公司2009年7月目录前言 (3)第一部分一体化隐蔽天线类 (4)一、集束型隐蔽天线(一体化)及辅材 (4)二、路灯型隐蔽天线(一体化) (6)三、草坪灯型隐蔽天线(一体化) (7)四、射灯型隐蔽天线(一体化) (8)五、壁挂广告牌型隐蔽天线(一体化) (9)六、壁画型隐蔽天线 (10)七、壁挂型隐蔽天线 (11)八、吸顶灯型隐蔽天线 (12)第二部分隐蔽外罩类 (13)一、变色龙型隐蔽外罩 (13)二、方柱型隐蔽外罩及辅材 (14)1、方柱型隐蔽外罩 (14)2、方柱钢架隐蔽辅材: (15)三、圆柱型隐蔽外罩及辅材 (16)1、圆柱型隐蔽外罩 (16)2.圆柱钢架隐蔽辅材 (17)四、空调型隐蔽外罩及辅材 (17)1、空调型隐蔽外罩 (17)2.空调钢架隐蔽辅材: (18)五、水箱型隐蔽外罩及辅材 (19)1、水箱型隐蔽外罩 (19)2.水箱钢架隐蔽辅材 (20)六、水塔型隐蔽外罩及辅材 (22)1.水塔型隐蔽外罩 (22)2.水塔钢架隐蔽辅材 (22)七、集束型隐蔽外罩及辅材 (23)八、指示牌型隐蔽外罩 (24)九、广告牌型隐蔽外罩 (25)十、标示牌型隐蔽外罩 (26)十一、空调型隐蔽外罩 (28)第三部分杆塔类 (28)高杆灯型 (29)前言随着人们对生活小区环境要求的日益提高,城市建设和小区建设对隐蔽天线产品市场的需求也有了更高的要求,我公司为满足快速发展的市场需求,不断推陈出新。

为方便广大用户选型,特别编制了《北京邦讯隐蔽天线常用产品选型手册》。

本册将隐蔽天线产品主要分为基站美化类和小区美化类,隐蔽辅材作为隐蔽外罩的附属材料,跟随在相应的美化天线产品后面。

对于影响隐蔽天线产品整体安全性的产品结构、基站及防雷系统两方面,我公司均通过了权威部门的审核和通过。

隐蔽天线审核等级说明:隐蔽天线整体安全性主要包括产品结构、基础及防雷系统两方面,为保证选用的隐蔽天线量产产品工程可行性,确保整个隐蔽项目的安全可靠性,特将设计方案审核的权限规定如下:审核等级审核权限C 隐蔽天线结构工程师/天馈隐蔽天线结构工程师审核B 天馈隐蔽天线结构工程师审核A 具备甲级或乙级资质的建筑设计院审核第一部分一体化隐蔽天线类一、集束型隐蔽天线(一体化)及辅材1、集束型隐蔽天线(一体化)型号详细指标频段范围增益方位角倾角尺寸(单位:mm)审核等级(直接落地安装)JZJS-065R15DB(1-V)824~960824~870:14.5870~960:15 固定间隔120°机械下倾角固定电调:0~14º¢600×1700-2100CJZJS-065R15DD(1-V)824~9601710~1880824~960:14.51710~1880:17固定间隔120°机械下倾角固定824~960电调:0~14º1710~1880电调:0~8º¢600×1700-2100CJZJS-ODV065R15B17K(6)824~9601710~824~960:14.51710~固定间隔120°机械下倾角固定824~960电调:0~14º¢600×1700-2100C2170 2170:16.5 1710~2170电调:0~7ºJZJS-065R1DK(3-V)1710~2170 1710~1850:171850~1990:17.51990~2170:18固定间隔120°机械下倾角固定电调:0°~8°¢600×2500 C说明:1)安装方式:a)该产品已经内置三扇区辐射单元,一般安装于建筑楼顶;b)产品可直接安装,或选购各种高度的钢杆隐蔽辅材配用,也可与高杆灯配合使用。

天线测量实用手册

天线测量实用手册

天线测量实用手册
《天线测量实用手册》是一本专门介绍天线测量的实用指南,旨在帮助读者了解天线测量的基本原理、方法和技术。

本书主要内容包括:
1. 天线测量的基础知识:介绍了电磁波的基本概念、天线的基本原理和天线测量的重要性。

2. 天线测量系统:详细介绍了天线测量系统的组成,包括接收机、发射机、测量软件等,以及如何选择合适的测量系统和设备。

3. 天线参数的测量:介绍了天线参数的基本概念,如增益、方向性、波束宽度等,以及如何使用测量设备对这些参数进行准确测量。

4. 天线测量实践:通过具体的测量案例,介绍了天线测量的实际操作过程和技巧,包括测量前的准备工作、测量步骤、数据处理和分析等。

5. 天线测量误差:讨论了天线测量中可能出现的误差来源和误差减小的方法,以提高测量的准确性和可靠性。

6. 天线测量技术的应用:介绍了天线测量技术在通信、雷达、导航、射电天文学等领域的应用和发展趋势。

总之,《天线测量实用手册》是一本实用的天线测量指南,适合从事天线测量和相关领域的工程师、技术人员和科研人员阅读和使用。

空腔双工器的原理和调试

空腔双工器的原理和调试

空腔双工器的原理和调试双工器是有着尖锐的调谐持性的装置,用来隔离接收和发射。

它允许一根天线完成发射和接收,而不用担心发射装置的射频能量去轰击接收机。

当然,那样做必须将发射频率和接收频率分开,称为频差。

在2米波段的频差是600KHZ;在70Cm波段有着较大的宽度,是5MHZ。

通常,双工器工作在狭窄的通频带上,有着不可思议的陡峭的截止曲线。

不同于一般意义上的高通或低通滤波器。

有好几种方法来实现双工器,业余上常用空腔和相位线的方法。

《ARRL》手册上有详尽的工作原理。

《ARRL》手册上也给出了六空腔的双工器,之后又解释了其工作原理。

我也按照做了一个并让它工作,但我发现这个设计调谐起来非常困难,信噪比也一直不稳定,所以我不想在这里介绍它们。

我相信,现在已经有调谐简单实际可行的双工器被设计制造出来了。

我一直推崇的一款双工器是名叫"华康"(Wacom)的设计。

它用4个8吋的腔体构成“带通(band pass)/带阻(band reject)”模式。

借助于高Q值的腔体和良好的设计,Wacom 仅用4个腔体就有相当于6个腔体的良好表现。

唯一的缺点是费用较高。

图一详细给出了它的结构,其中两个腔体组成一组与发射机输出端连接;另外两个与接收机输入端连接。

用“T”型接头将它们连接起来,再通过同轴电缆与天线相连。

图一四腔带通/带阻双工器连接图每个腔体都有二个功能。

第一,必须通过想得到的信号(即带通或通带);第二,必须尽可能阻止不想要的信号(即带阻或阻带)。

在(图2)中我给出了用于发射的空腔滤波器典型响应曲线。

请注意,它在145.37MHZ的发射频率上通过了几乎所有的信号,并且在接收频率处,即低于发射频率600KHZ处有着-30dB+的衰减。

同样,两个接收腔体也精确地匹配,除了它们的通频点在144.77MHZ的接收频率上外,它们阻带的谷点都在发射频率145.37MHZ上。

这样,发射腔体将滤除发射机所产生的较宽频带上的噪声(殘余发射)使其不进入接收机,而接收腔体也将滤除发射机产生的射频功率使其不进入接收机。

高级太阳能天线和信号技术手册说明书

高级太阳能天线和信号技术手册说明书

IndexAAccess control points(ACPs),216,218 Advanced concept solar,32 Annealing,123,128,133Antenna arrayscosts,201Fresnel diffraction zone,203narrowband,203Antennas and signalsDDs,209,211decoupling,213phase center,208pulse repetition rate,209radio wave scanning image,212snail type,209,210stroboscopic oscilloscope,207,208USB-to-COM converter,210UWB antenna,207UWB pulses,211UWB signal,212UWB tomography,210,213VSWR,209Atomic force microscopy(AFM),129 Atomic layer epitaxy(ALE),96Auger processes,5Axial junction devices,23BBack-end-of-line(BEOL)metallization,58 Backward wave oscillators(BWO),194 Bandgaps/energy levels,11Bessel function,175Bipolar operational biasing schemes,83 Blended heterostructures,6Bovine serum albumin(BSA),152 Broadband solar spectrum,11BSIM-CMG SPICE Model,63–64 BULKMOD parameter,63Bulk-phase metal(MNP),159Bulk tri-gatefinFET device,45CC-AFM tip-sample system,76Channel-length modulation(CLM),39,54 Charge components,43Circular polarization of electroluminescence, 136Classical light-trapping limit,20CMOS logic gate,48Commercial MOSFET,38Common multiple-gate model,63 Conductive atomic force microscopy(C-AFM),76Conductivefilament(CF),73,81 Conductivity,147Core-shell junction,23Corner effects,52Curie temperature,120,126,127,137 channel thickness,124experimental data,124GaMnAsfilms,121GaMnAs samples,123hole concentration,122manganese concentration,122Mn impurity,125power law,124Czochralskiflux method,127©Springer International Publishing AG,part of Springer Nature2018S.M.Goodnick et al.(eds.),Semiconductor Nanotechnology,Nanostructure Scienceand Technology,https:///10.1007/978-3-319-91896-9229DDecay rate vs.plasmon excitationwavelength,156Decay rate vs.wavelength resonance,158 Delayed dissipation,162Detailed balance,9material bandgap,9quasi-Fermi energies,10semiconductor absorber,10 Dielectric barrier limiting,87Dielectric constantfree space,44,67silicon dioxide,44Diffraction-limited optics,21Diffraction tomography,200Diluted magnetic semiconductor(DMS),118,128Directivity diagrams(DDs),209Double-barrier heterostructures,30Dye-sensitized solar cell architecture,8 Dye-sensitized solar cells(DSSC),14,159 architecture,18evolution,19liquid electrolyte approach,18 Dynamic random access memories(DRAM),71EEigenvalue,63Electric and magnetic polarizabilities,182 Electricfield vector,184 Electromagnetic radiation,199,203,219 Electron-hole pair(EHP),3,11Electron kinetic energy,28Electron-phonon scattering,27Electron-phonon system,30 Ellipsometry light,101Employing monostatic radiometrymethods,210Epitaxy,96,127External quantum efficiency(EQE),110FFabrication,95–96,100extra metal layer(METAL0),57local interconnect layer,58–59middle-of-line(MOL),58mobility engineering,60Fabry–Perot resonances,170Faraday configuration,125Faraday rotation angle,126,135Ferromagnetic NiFe nanowires,125 Ferromagnetic semiconductors,118,134–137 Ferromagnetism,123,136,137Fiber-optic communication,135Field effectcapacitance Cox,51,62high-κmetal-gate(HKMG),55Field-effect transistors(FETs),95Field transistors(spin-FED),135Filament-based mechanism,72Filament-based metal-oxide RRAMschemes,72Fill factor(FF),5FinFET characteristics,45FinFET devicesI OFF current,64I ON drive,64mobility,64quantized width,65scalability,64SOC technology,65FinFET geometry,45FinFET NAND2gate,59FinFET transistor,39,54accumulation mode,41bulk substrate,45depletion mode,41double-gate transistor,53drive current I ON,54inversion mode,42I-V characteristics,45localized overheating,pinch-off,39,54resistive capacitor plate,49siliconfin,45,46SOI substrate,45,63threshold voltage,39triple-gate transistor,45Finite-difference time-domain(FDTD)simulation,22Focusingaperture synthesis,206Green’s function,205group focusing approach,207location sounding,207method,206monochromatic radiation,205normal projection,206plane-wave decomposition,205procedure,206radio image,206radio wave tomosynthesis,206spatial frequency spectrum,205 Forming process,78230IndexFourier transform,148Free space technique,190Fresnel zone,203,221,224Front-end-of-line(FEOL),58FTIR spectroscopy,106GGaFeAs layers,129Gallium arsenide,ironantiferromagnetic properties,127beryllium,134diffusion,131ferromagneticfilms,133ferromagnetic ordering,134ferromagnetic properties,127,128,136 heterostructure,132hole concentration,129implantation and diffusion,129magnetoelectric interaction,134microclusters,127monocrystals,127,132ohmic layers,128structures,133vapor-phase epitaxy,127GaMnAs epitaxial layers,121GaMnAsfilmscurie temperature,123DMS properties,119doping conditions,120ferromagnetic properties,119ferromagnetism,120magnetic anisotropy,125magnetic domain walls,125magnetic homogeneity,126magnetotransport properties,125MBE technique,120Mn-based magnetic inclusions,119p–d exchange,125production,120–121temperature of the structures,126 Geometric characteristics,55Gigahertz frequencies,171Glass-coated microwire,174Gold nanoparticles(AuNP),152mechanismelectrostatic interactions,152non-covalent binding,152non-spontaneous binding,152 nanoparticle-molecule conjugation,152–156,158Ted Pella tool,153Google and the British pharmaceuticalcompany,95Gradual-channel approximation(GCA),43,45,52Gradual-channel conditions,49–53 Grain boundariesbarriers,80conductivity,78electrical transport,77filament growth,81MIM devices,79oxygen vacancy,77polycrystallinefilms,81RRAM switching,81TAT,77Green functionHelmholtz equation,151HHafnia,77–80Hall method,123Hamiltonian algorithm,161 Harmonic oscillator,159Hf-O bond breakage,89HfO2-based RRAM system,72HfO2dielectricfilm,76HfO2dielectric leading,79HfOx-based RRAM device,81HfOx-based system,86HfOxfilm,84Hole concentration,120,122–126Hot-carrier solar cells,29Hybrid GaAs/Fe structures,129 Hybrid organic-inorganic perovskitematerials,8Hybrid perovskite structures,114 Hybrid solar cell technology,114 Hydride vapor-phase epitaxy,128IImmunosensors,ELISA,154 Inhomogeneities,180Inorganic precursor materials,98 Instantaneous dissipation,162IntelIvy Bridge processor,38,39,454004microprocessor,38Xeon processor,38Interlayer exchange coupling(IEC),132,133Intermediate-band(IB)solar cell,12 Isotropic dielectric functions,153I-V characteristics,52Index231KKerr effect,125Kinetic energy,25Korean Research Institute of ChemicalTechnology(KRICT),8LLattice temperature,32Layoutcritical dimension(CD),55fin pitch,56litho-friendly,55,57NAND2standard cell,60optical proximity correction(OPC),57parasitic capacitance,resistance,65self-aligned double patterning(SADP),56Synopsys Custom Designer,60Light-emitting diodes(spin-LED),135,136 Light scattering,153Light trapping,22Liouville equation,molecular density matrix,161 Litho-friendly layout,57Localized plasmon resonance,146 Localized surface plasmons(LSP),146 Lorentz gauge condition,151Low-temperature vapor-phase epitaxy,128LT-MBE technique,120MMagnetic anisotropy,126Magnetic domain walls(MDW),125 Magnetic impurities,118,136Magneto-optical materials,135,137 Magnetoresistance effect(GMR),118 Markov approximation,time-correlationfunctions,163Material conductivity,182Mathematical OR model,188 Mathematical simulation,174Maxwell’s equations,22,147METAL0line,59METAL0segment,59Metal-insulator-metal(MIM)structure,73 Metal-oxide-basedfilament-type RRAM,72 Microactuator,135,137Microferroics,134Microwire application,174Microwire material,173Microwire production technology,179 Microwires,181Microwires possessing magnetic properties,179Mie theory,149,153MLEfield-effect transistors(MLE-FETs),106–107MLE organic light-emitting diodes(MLE-OLEDs),108Modern telecommunication systems,135 Molecular beam epitaxy(MBE),15 Molecular layer epitaxy(MLE),97charge transfer(CT)band,104chemical approach,100component,109device application scope,111direct manual operation,98feature,106,112generation,98hybrid materials,113hybrid perovskites solar cell device,114laser media,109measurement setup,110method,97MLE monolayer-by-monolayer growth,103 NTCDA and DAH precursors,102NTCDA molecules,110NTCDI,101,104,106NTCDI-based structures,100NTCDI-HM system,103OD sensitivity,103organic superlattices,103,105,107,113photovoltaic properties,109precursor materials,112principles,97pyramidal growth,105reactor setup,97setup,98size-dependent effects,106structure,103,109superlattices,103surface chemistry,98,99template layer,99Molecular nanoelectronicsdevice application,96epitaxy,96FET system,95HOMO-LUMO,94mechanisms,95modern times,95OLEDs,94progress,94situation,94transport models,94wet and vacuum methods,95 Monocrystalline material,121Monte Carlo simulation,27,30,31232IndexMoore,Gordonchemical engineering,37Moore’s Law,39,48Moore’s law,48Multiexciton generation,24–29 Multiple exciton generation(MEG),25 Multiple-patterning photolithographymethods,57NNAND2standard cell,60 Nanocomposite,17Nanomaterialsfeature,14nanowire,15QWs,15Nanoparticles(NP)analyte molecules,146bulk semiconductors,146typesmetallic,153plasmonic,147 Nanosensors,146antibody-antigen binding,152molecule-nanoparticle charge,152photonic materials,152 Nanostructured materials,21,146 Nanosystems,159Nanowire(NW)solar cellsCMOS technology,23geometry and composition,22performance,23photonic bandgap materials,23property,22Nanowires,15–17Nanowire transistor,46effective width,52fully depleted,43,47nanoscale sensor,44SNWFET,40,42–44thickness t nw,40wrap-around gate,42 Naphthalenetetracarboxylic-dianhydride(NTCDA)precursor,100 National Renewal Energy Laboratory(NREL),6Natural Screening Length,61–63Non-destructive testing,199,219,225 Nonequilibrium distribution,28 Nonequilibrium hot-phonon effects,30 Nonplanar devicedevice length L,39,48,63device width W eff,64finFET,52nanowire transistor,44Non-plasmonic materials,146n-type gradual-channelfinFET,51OObjects and radio imagesACPs,216back view,217cross sections,215detecting and visualizing,2183D tomogram,214luggage inspection,213millimeter frequency range,217radiopaque,214reinforcing elements,215sounded area,218tomosynthesis,213transceiver antenna module,213UWB antennas,217UWB scanner,214UWB tomogram,213wooden latches,214Ohm’s Lawdrift velocity,48microscopic form,48mobilityμn,54transit time,48Onsager-Lax quantum regression theorem,161 Opaque media,204Open radio wave resonator,171Open resonator,170,184,188,191application,171characteristics,181glass-coated microwire,174magnetic microwire,179measurements,190microwires,179,181quality,171spherical objects,183superthin wire,173–180Optical density(OD),103Optical performance,19–22Optical proximity correction(OPC),57 Organic-inorganic superlattices,113Organic light-emitting diodes(OLEDs),94 Organic multiple quantum well(OMQW)energy levels,106Organic superlattices,103–105size-dependent effects,105spectroscopic and polarization response,105Index233Organic thin-film solar cells,6 Oxygen exchange layers(OEL),79,82 Oxygen vacancy asymmetry,84 Oxygen vacancy concentration,88PParktronic systems,219Photo-enhanced magnetization,135 Photolithography,57Photonic bandgap materials,21 Photovoltaicsadvantages,14AFM techniques,13Auger processes,5bandgap material,9device,2diode,5disadvantages,14energy conversion,2excitonic effects,8excitons,6FF,5hybrid perovskite materials,8nanotechnology,13open-circuit voltage,5organic thin-film solar cells,6performance,6photocurrent,4principal,2Si cell design,4solar cell efficiency records,7solar cells,3–5solar spectrum,3,4technologies,6Pinched-off channel conditions,53–55 Plasmonic materials,LSP,146 Plasmonic sensors,164Plasmon resonance(PR)sensorsauxiliaryfields,147,148Green function,151Helmholtz equation,151Lorentz gauge condition,151macroscopicfields,147,148macroscopic polarization,149Mie theory,149,150Plot absorbance spectroscopy,154 Poisson-Laplace equation,150 Poisson’s equation,41,43–45,49,62 cylindrical coordinates,43French mathematician,45rectangular coordinates,61transformed usingλ,62Power transmission and reflectioncoefficients,191Process-specific parameters,62Pseudo-epitaxy,96Pyrolysis,17QQ-factor,189QualitativefinFET behavior,52Quantum dots,16,17Quantum efficiency,25Quantum-mechanical effects(QMEs),41 Schrödinger’s equation,63volume inversion,41Quantum theory of relaxation,162 Quantum well(QW),15,118Quasi-optical open resonator,171–173 concave mirrors,172Q-factor,173quality factor,172Quasi-optical resonator methods,195RRadio electronics,169Radio image,206,207,213–217Radio wave parameters,169Radio wave tomography,201,205,207,213, 219,223antenna arrays(see Antenna arrays)antennas and signals(see Antennas andsignals)diffraction tomography,200electromagnetic radiation,199embedded inhomogeneities,199focusing(see Focusing)ionizing X-rays,200layer-by-layer structure,199microwave passenger inspectionsystems,200model of RADIOVISION,201,202model of Raptor-1600Scanner,202model of Smiths Heimann,201multiple integral projections,199non-destructive testing,199objects and radio images(see Objects and radio images)radiolocation,199SafeScout100scanner,200security system,200semitransparent media,199tomographic imaging,201234Indextomosynthesis of radio waves,225ultrasonic(see Ultrasonic)ultrasonic radiation(see Ultrasonicradiation)UWB,201Radiolocation,199Radiopaque,204,214,219Raman transition,159Rayleigh scattering,4,160Reduced density matrix(RDM),162 Refractive index–density diagram,224 Resistance change behavior,73Resistive alloy,181Resistive random access memory(RRAM),71 bipolar metal-oxide,87CF formation,73characteristic,72device,84element,74HfO2,72HfO2-based RRAM,72HfO2GB properties,76HRS and LRS,90LRS and HRS states,73metal-oxidefilament-based type,72OEL,83operation,84oxygen vacancy profile,86Resonant frequency shift,183Resonator Q-factor,173Robust switching,82Rule of thumbchannel length L,48channel length L>3λ,62drive current I ON,54fin crossing ACTIVE,58METAL0crossingfins,60multiple-patterning lithography,57nonplanar effective width W eff,52output of static CMOS cell,61process refinements,55quantized effective width W eff,65shorten screening lengthλ,62speed dependence on length L,643Âwidth in same area,59SSaturation,53Schrödinger equation,146Schrödinger’s wave-mechanical equation,41 Secondary-ion mass spectrometry(SIMS),127 Second harmonic generation(SHG),105Self-aligned double patterning(SADP),56 Semiconductor matrix,137 Semiconductors,118Semiconductor spintronics,133 Sensitivity,192Shockley-Queisser efficiency,10Shockley-Queisser(SQ)limit,10,11,23,29 Short-channel effects(SCEs),38,62channel-length modulation,39drain-induced barrier lowering(DIBL),66 subthreshold conduction and swing,39threshold voltage roll-off,39Short-channel FinFETs,61–65Short-channel transistor,38Short-circuit current,5Silicon nanowire(SNW),40Silicon solar cell technology,6Si solar cell,4Small spherical objectselectric diameter,182SNWFET,42Solar cells,3Source-drain depletion regions,40Space charge region,3Spherical aerogels,171,183,184SPICE modelsBSIM-CMG Level72model,49BSIM-IMG model,45,53,64BULKMOD parameter,63classic Level1model,49EPSRSUB parameter,45GCA core model,52GEOMOD parameter,63NFIN parameter,64predictive technology model(PTM),67TMASK parameter,53U0parameter,54Spin-dependent phenomena,134Spin electronics,118Spin light-emitting diodes,136Spin-polarized charge carriers,134 Spintronics,118Spline interpolation,156s-polarized light,102Standard-cell layout,59Steep permittivity gradients,204Storage class memory(SCM),71Stransky-Krastinov growth process,17 Superthin wire,174,177,178Bessel function,175microwire,173OR,180resistive alloy,181Index235Superthin wire(cont.)segments,180superthin wire,174Surface-enhanced Raman resonance(SERS) MNP,159nanosystems,159photovoltaic devices,159plasmonic sensors,146Surface plasmon polariton modes,22 Surface plasmon resonance(SPR),152 Surface potentialΦs,43,44Surface prefunctionalization,102Synopsys Custom Designer,60Synopsys Sentaurus Device,52TTandem solar cells,8,11Teflon,223Terahertz frequency,171,194 Thermalization,11Thermodynamically nonequilibriummethod,120Thinfilm technologies,6 Tomosynthesis,206,213,215,225 Traditional planar MOSFET,39 Transistor,40–45Transmission electron microscopy(TEM),129 Tri-gatefinFET,53Tungsten(W),58Tunnel magnetoresistance(TMR),118UUlitovsky–Tailor method,173Ultrahigh vacuum(UHV),96Ultrasonicacousticfield,222acoustic radiation,219blurred of course,221density contrasts,219gun in air,221immersion liquids,219measurements,222non-destructive testing,219object scanning,220single-frequency sounding,220sonar demo setup,223sonar for contactless,222sounding systems,222sounding techniques,219ultrasound in location,221wave equations,219Ultrasonic radiationaverage operating wavelength,224dielectric objects,223electrophysical properties,223false-color combined image,224fluoroplastic,223hidden object,224metallized grid,225ultrasound frequency,223Ultraviolet(UV)lithography,13Ultra-wideband(UWB),201,203,204,206–214,217,223,225 Uniaxial magnetic anisotropy(UMA),133 Uniform channel,46–48UV-Vis absorbance spectroscopy,153,154VVacuum methods,96Vapor-liquid-solid(VLS),15,16Vector network analyzers(VNA),194 Voltage standing wave ratio(VSWR),209WWave projectionsanalysis of scattered radiation,204aperture synthesis,203dominant mechanisms,204electromagnetic radiation,203immersion liquids,203inverse problem,204multi-angle,204opaque media,204radio-frequency holography,203steep permittivity gradients,204ultrasonic sounding system,203 Wave tomography,226Wave vision,see Radio wave tomography Wet and vacuum methods,96XX-ray magnetic circular dichroism,125X-ray photoelectron spectroscopy,136ZZener theory,124236Index。

卫星天线4.5米天线说明书

卫星天线4.5米天线说明书

SCE-450C型4.5米天线安装、使用、维护手册精彩文档精彩文档西安航天恒星科技股份有限公司手册使用说明 :SCE-450C型天线是实现C波段与Ku波段共用的卫星地球站天线。

使用时,只需根据不同的使用情况换上C波段馈源或Ku波段馈源即可。

《SCE-450C型4.5米天线安装、使用、维护手册》针对C波段与Ku波段的使用,除了馈源安装方式(附图13A为C波段馈源,13B 为Ku波段馈源)和天线电气特性指标不同外,其余内容全部通用。

安全方面的注意事项安全声明:以下声明适用于本手册的全过程。

在天线安装前必须仔细阅读本手册,并切实按照规定的步骤及方法进行操作,以保障人身及设备的安全。

1. 必须严格按照要求制作地基,只有在地基达到预定的强度后,方可对天线进行安装。

2. 在吊装过程中,应注意人员及设备的安全;保证设备在吊装中平稳。

3. 在无吊车情况下安装,应特别小心,以确保人身及设备的安全。

4. 在首次运行前,应对所有有润滑要求的部件进行润滑。

其中,减速器用指定的润滑油润滑;方位轴、俯仰轴用稀油注入油杯润滑;丝杠螺母用润滑脂润滑。

5. 在调整限位器工作时,应特别注意不要使丝杠脱出减速器,尤其是俯仰丝杠脱出减速器将造成天线严重损坏。

在方位、俯仰二丝杠的左,右(或上,下)极限位置限位器安装完毕后,首先进行试运行,确保限位器工作无误。

6. 天线具有软件和硬件两重限位保护。

为确保天线使用安全,在转动天线时,应使用ACU,并将软件限位设置在硬件限位之前。

7. 手轮用后应取下,并装上蜗杆轴盖,切勿将手轮套在蜗杆轴上,以免电动时,发生意外事故。

8. 应注意检查波纹喇叭封口材料是否破损或漏水,尤其是在冰雹或大雨之后,若波纹喇叭口漏水,将影响系统正常工作,严重时造成HPA或SSPA损坏。

若封口材料破损,应及时更换。

精彩文档1.4.5米天线简介SCE-450C型4.5米卫星通信天线是西安航天恒星科技实业(集团)公司研制生产的卫星通信地球站天线。

H3C天线手册ANT-2503C吸顶天线-5PW100-整本手册

H3C天线手册ANT-2503C吸顶天线-5PW100-整本手册

H3C天线手册ANT-2503C吸顶天线-5PW100-整本手册目录1技术参数 (1)2安全注意事项 (4)3安装注意事项 (5)4选择安装位置 (5)5天线安装 (5)5.1 安装工具 (5)5.2 吸顶安装 (5)5.3 射频线缆要求 (6)H3C天线手册 ANT-2503C 吸顶天线1 技术参数ANT-2503C天线主要用于室内应用场景,通过N型接头连接到H3C室内型AP的2.4GHz或5GHz的射频接口。

图1-1天线外观图表1-1技术参数天线型号 ANT-2503C频率范围(MHz) 2400~2500 5150~5850带宽(MHz) 1007004.5增益(dBi) 2.5水平面波瓣宽度(度) 360垂直面波瓣宽度(度) 50驻波比≤2.0输入阻抗(?) 50极化方式垂直最大功率(W) 50接头型号 N-型阴头天线尺寸(mm)φ124×47天线重量(kg) 0.15工作温度(℃) -40℃~+60℃安装方式螺母紧固下图为水平方向图和垂直方向图的天线远场方向图。

图1-2 2.4GHz水平面方向图图1-45GHz水平面方向图2 安全注意事项天线安装具有一定的危险性,请在操作前阅读下面的安全注意事项,以免误操作造成伤亡。

请不要把天线安装在靠近电源、路灯、供电箱或者其他容易导致触电的地方。

安装时请务必注意不要接触电线,否则可能引起严重的伤亡。

请尽可能选择安全的安装位置,远离电源线和其他线缆,以免触电或者被线缆缠绕导致的危险。

请尽量避免一个人安装天线,尽量事先与其他安装人员共同确认安装位置和安装步骤。

在需要竖立抱杆的情况下,请注意多人配合,以免受伤。

安装天线时请务必注意:禁止站立在金属梯子上安装天线,不要在潮湿或者刮大风的天气安装天线,同时请穿着适合安装天线的服装和可以绝缘的橡胶底的鞋子,并佩戴橡胶手套。

如果天线、射频电缆或者其他安装附件从高处掉落,请尽快躲避开,以免触电和被掉落的物品砸伤。

天线产品标准使用手册

天线产品标准使用手册

BOOMSENSE天线产品使用手册版本号:V1.0(仅供内部使用For internal use only)编制:万文定职位:技术部经理日期:2006-6-13审核:张金木职位:物流部经理日期:目录Table of Contents一、室内全向吸顶天线 (4)二、室内定向吸顶天线 (6)三、室内定向壁挂天线 (9)四、八木定向天线 (11)五、对数周期天线 (20)六、角反射天线 (22)七、抛物面天线 (24)八、栅网抛物面天线 (31)九、背射定向天线 (34)十、全向天线 (37)十一、平板定向天线(定向板状天线) (45)十二、鞭状天线 (71)十三、隐蔽美化天线 (72)天线产品命名规则:型号组成:BS - X0X1 - X2X3X4/X5X6/ X7X8- X9X10 / X11X12- X13X14规格代码:表示天线版本、倾角、接头类型、适用范围等信息。

BS:邦讯公司产品缩写代码X0X1 :天线类型1、XD:室内吸顶天线2、BG:室内壁挂天线3、BM:八木天线4、DS:对数周期天线5、PW:抛物面天线6、BS:背射天线7、BZ:鞭状天线8、GS:室外全向天线9、PB:室外定向板状天线10、FS:角反射天线11、YB:美化隐蔽天线X2 X3X4:H面方向角如:360◦表示为360 65◦表示为65 90◦表示为90 120◦表示为120X5 X6:增益(双频天线以低频段增益为标示,单位:dBi)如:11.0 dBi表示为11,11.1~12 dBi表示为12X7 X8:内置下倾角如:10◦表示为10 15◦表示为15 20◦表示为20X9 X10/ X11X12:工作频带(单位:MHz)如:08/09表示为806~960 MHz (适合GSM&CDMA系统)08/2.5表示为806~2500 MHz(适合GSM&CDMA&SCDMA&DCS&PHS&3G&WLAN等系统)X13:极化方式如:V表示为垂直极化R表示为±45o双极化C表示为圆极化X14:功率容量如:B表示为大功率容量(即≥250W)一、室内全向吸顶天线Indoor Ceiling AntennaBS-XD-360/02-08/09V BS-XD-360/03-08/2.5V BS-XD-360/03-08/2.5V-DBS-XD-360/04-1.7/2.5V二、室内定向吸顶天线Indoor directional Ceiling AntennaBS-XD-100/07-0.8/2.5VBS-XD-115/05-08/2.5VBS-XD-95/06-08/2.5V三、室内定向壁挂天线Indoor Wall-mounting AntennaBS-BG-90/08-08/2.5VBS-BG-75/09-08/2.5VB四、八木定向天线Yagi Directional AntennaBS-BM-60/9-04VBS-BM-30/12-07/08VBS-BM-36/12-06/07VBS-BM-40/12-1.1/1.4VBS-BM-38/12-1.4/1.5VBS-BM-38/12-1.8/1.9VBS-BM-38/12-1.9/2.1VBS-BM-40/12-2.4V五、对数周期天线Logarithm Week Directional AntennaBS-DS-90/09-08/2.5VBS-DS-65/11-08/2.5V六、角反射天线Angle Mix Corner Reflector Directional AntennaBS-FS-33/16-08/09V七、抛物面天线Angle Mix Corner Reflector Directional AntennaBS-PW-19/17-04VBS-PW-11/21-07/08V八、栅网抛物面天线Grid Parabolic AntennaBS-PW-9/24-2.4VBS-PW-5/31-2.5/2.6VBS-PW-6/28-5.7/5.8V九、背射定向天线 Backfire Directional Antenna十、全向天线Omni-directional AntennaBS-GS-360/11-1.9/2.1VBS-GS-360/11-2.4VBS-GS-360/11-3.4/3.6VBS-GS-360/11-5.7/5.8V十一、平板定向天线(定向板状天线) Panel Directional AntennaBS-PB-65/14-04VBS-PB-65/17-07/08V。

ARRL 天线书24版补充文件说明书

ARRL 天线书24版补充文件说明书

Supplemental Files – ARRL Antenna Book, 24th Edition Supplemental files are included with the downloadable content. They include additional discussion, related articles, additional projects, construction details and other useful information. All of these packages are available in the Supplemental Files directory and then organized by chapter. (Note: Chapters 2 and 28 have no supplemental files.)Chapter 1Supplemental Articles∙“Radio Mathematics” — supplemental information about math used in radio and a list of online resources and tutorials about common mathematics∙“Why an Antenna Radiates” by Kenneth MacLeish, W7TXChapter 3Supplemental Articles∙“Determination of Soil Electrical Characteristics Using a Low Dipole” by Rudy Severns, N6LF∙“Maxi mum-Gain Radial Ground Systems for Vertical Antennas” by Al Christman, K3LC∙“Radiation and Ground Loss Resistances In LF, MF and HF Verticals: Parts 1 and 2”by Rudy Severns, N6LF∙“Some Thoughts on Vertical Ground Systems over Seawater” by Rudy Severns, N6LF∙“The Case of Declining Beverage-on-Ground Performance” by Rudy Severns, N6LF ∙FCC Ground Conductivity Map SetChapter 4Supplemental Articles∙Antenna Book Table 4.3 expanded for other locations∙“Using Propagation Predictions fo r HF DXing” b y Dean Straw N6BVSupplemental Articles∙“An Update on Compact Transmitting Loops” by John Belrose, VE2CV∙“A Closer Look at Horizontal Loop Antennas” by Doug De Maw, W1FB∙“The Horizontal Loop —An Effective Multipurpose Antenna” by Scott Ha rwood, K4VWK∙“Small Gap-resonated HF Loop Antenna Fed by a Secondary Loop” by Kai Siwiak, KE4PT and R. Quick, W4RQ∙“Active Loop Aerials for HF Reception Part 1: Practical Loop Aerial Design, and Part 2: High Dynamic Range Aerial Amplifier Design,” by Ch ris Trask, N7ZWYChapter 6Supplemental Articles∙Appendix B — Manual Calculations for Arrays∙“A Wire Eight-Circle Array (for 7 MHz)” by Tony Preedy, G3LNP∙“A Study of Tall Verticals” by Al Christman, K3LC∙“Tall Vertical Arrays” by Al Christman, K3LC∙“The Simplest Phased Array Feed System —That Works” by Roy Lewellan, W7EL Note: EZNEC modeling files are in the separate ARRL Antenna Modeling Files folder with the downloadChapter 7Supplemental Articles∙5‐Band LPDA Construction Project and Telerana Construction Project∙“An Updat ed 2 Meter LPDA” by Andrzej Przedpelsi, KØABP∙Log Periodic‐Yagi Arrays∙"Practical High-Performance HF Log Periodic Antennas" by Bill Jones, K8CU∙“Six Band, 20 through 6 Meter LPDA” by Ralph Crumrine, NØKC∙"The Log Periodic Dipole Array" by Peter Rhodes, K4EWG∙“Using LPDA TV Antennas for the VHF Ham Bands” by John Stanley, K4ERO∙“Vee S haped Elements vs Straight Elements” by John Stanley, K4EROSupplemental Articles∙EZNEC Modeling Tutorial by Greg Ordy, W8WWVChapter 9Supplemental Articles∙“Designing a Shortened Antenna” by Luiz Duarte Lopes, CT1EOJ∙“A 6-Foot-High 7-MHz Vertical” by Jerry Sevick, W2FMI∙“A Horizontal Loop for 80-Meter DX” by John Belrose, VE2CV∙“A Gain Antenna for 28 MHz” by Brian Beezley, K6STI∙“A Low-Budget, Rotatable 17 Meter Loop” by Howard Hawkins, WB8IGU∙“A Simple Broadband Dipole for 80 Meters” by Frank Witt, AI1H∙“A Wideband Dipole for 75 and 80 Meters” by Ted Armstrong, WA6RNC∙“A Wideband 80 Meter Dipole” by Rudy Severns, N6LF∙“Broad-Band 80-Meter Antenna” by Allen Harbach, WA4DRU∙“Broad-banding a 160 m Vertical Antenna” by Grant Saviers, KZ1W∙“Inductively Loaded Dipoles”∙“Off-Center Loaded Antennas” by Jerry Hall, K1PLP∙“Th e 3/8-Wavelength Vertical —A Hidden Gem” by Joe Reisert, W1JR∙“The 160-Meter Sloper System at K3LR” by Al Christman, KB8I, Tim Duffy, K3LR and Jim Breakall, WA3FET∙“The ‘C-Pole’ —A Ground Independent Vertical Antenna” by Brian Cake, KF2YN∙“The Compact Vertical Dipole”∙“The Half-Delta Loop —A Critical Analysis and Practical Deployment” by John Belrose, VE2CV and Doug DeMaw, W1FB∙“The K1WA 7-MHz Sloper System”∙“The K4VX Linear-Loaded Dipole for 7 MHz” by Lew Gordon, K4VX∙“The Story of the Broadband Dipole” by Dave Leeson, W6NL∙“The W2FMI Ground-Mounted Short Vertical” by Jerry Sevick, W2FMI∙“Use Your Tower as a Dual-Band, Low-Band DX Antenna” by Ted Rappaport, N9NB, and Jim Parnell, W5JAWSupplemental Articles∙“A Compact Multiband Dipole” by Zack Lau, W1VT∙“A No Compromise Off-Center Fed Dipole for Four Bands” by Rick Littlefield, K1BQT ∙“A Triband Dipole for 30, 17, and 12 Meters” by Zack Lau, W1VT∙“An Effective Multi-Band Aerial of Simple Construction” by Louis Varney, G5RV (Original G5RV article)∙“An Experimental All-Band Non-directional Transmitting Antenna,” by G.L.Countryman, W3HH∙“An Improved Multiband Trap Dipole Antenna” by Al Buxton, W8NX∙“Broadband Transmitting Wire Antennas for 160 through 10 Meters” b y Floyd Koontz, WA2WVL∙“Cat Whiskers — The Broadband Multi-Loop Antenna” by Jacek Pawlowski, SP3L∙“End-Fed Antennas” by Ward Silver, NØAX∙“HF Discone Antennas”∙“HF Discone Antenna Projects” by W8NWF∙“Nested Loop Antennas” by Scott Davis, N3FJP∙“Revisiting the Double‐L” by Don Toman, K2KQ∙“Six Band Loaded Dipole Antenna” by Al Buxton, W8NX∙“The HF Discone Antenna” by John Belrose, VE2CV∙“The J78 Antenna: An Eight-band Off-Center-Fed HF Dipole” by Brian Machesney, K1LI/J75Y∙“The Multimatch Antenna System” by Chester Buchanan, W3DZZ∙“The Open Sleeve Antenna” by Roger Cox, WBØDGF∙“The Open-Sleeve Antenna” from previous editions∙“Two New Multiband Trap Dipoles” by Al Buxton, W8NX∙“Wideband 80 Meter Dipole” by Rudy Severns, N6LFSupplemental Articles∙“A 10 Meter Moxon Beam” by Allen Baker, KG4JJH∙“A 20 Meter Moxon Antenna” by Larry Banks, W1DYJ∙“Construction of W6NL Moxon on Cushcraft XM240” by Dave Leeson, W6NL∙“Having a Field Day with the Moxon Rectangle” by L.B. Cebik, W4RNL∙“Multimatch Antenna System” by Chester Buchanan, W3DZZ (see the Chapter 10 folder)Chapter 12Supplemental Articles∙“A Dipole Curtain for 15 and 10 Meters” by Mike Loukides, W1JQ∙“Bob Zepp: A Low Band, Low Cost, High Performance Antenna - Parts 1 and 2” by Robert Zavrel, W7SX∙“Curtains for You” by Jim Cain, K1TN (including Feedback)∙“Hands-On Radio Experiment #133 –Extended Double Zepp Antenna” by Ward Silver, NØAX∙“The Extended Double Zepp Revisited” by Jerry Haigwood, W5J H∙“The Extended Lazy H Antenna” by Walter Salmon VK2SA∙“The Multiband Extended Double Zepp and Derivative Designs” by Robert Zavrel, W7SX∙“The N4GG Array” by Hal Kennedy, N4GG∙“The W8JK Antenna: Recap and Update” by John Kraus, W8JKChapter 13Supplemental Articles∙“A Four Wire Steerable V Beam for 10 through 40 Meters” by Sam Moore, NX5ZSupplemental Articles∙“Station Design for DX, Part I” by Paul Rockwell, W3AFM∙“Station Design for DX, Part II” by Paul Rockwell, W3AFM∙“Station Design for DX, Part III” by Paul Rockwell, W3AFM∙“Station Design for DX, Part IV” by Paul Rockwell, W3AFM∙N6BV and K1VR Stack Feeding and Switching Systems∙“Generating Terrain Data Using MicroDEM” - from previous editions∙“All About Stacking” by Ken Wolff, K1EAChapter 15Supplemental Articles∙“2 × 3 = 6” by L.B. Cebik, W4RNL∙“A 6 Meter Moxon Antenna” by Allen Baker, KG4JJH∙“A 902-MHz Loop Yagi Antenna” by Don Hilliard, WØPW∙“A Short Boom, Wideband 3 Element Yagi for 6 Meters” by L.B. Cebik, W4RNL∙“A VHF/UHF Discone Antenna” by Bob Patterson, K5DZE∙“An Optimum Design for 432 MHz Yagis —Parts 1 and 2” by Steve Powlishen, K1FO∙“An Ultra-Light Yagi for Transatlantic and Other Extreme DX” by Fred Archibald, VE1FA, including the EZNEC model∙“Building a Medium-Gain, Wide-Band, 2 Meter Yagi” by L.B. Cebik, W4RNL∙“C Band TVRO Dishes” from previous editions∙“Development and Real World Replication of Modern Yagi Antennas (III) — Manual Optimisation of Multiple Yagi Arrays” by Justi n Johnson, GØKSC ∙“High-Performance ‘Self-Matched’ Yagi Antennas” by Justin Johnson, GØKSC∙“High-Performance Yagis for 144, 222 and 432 MHz” by Steve Powlishen, K1FO∙“LPDA for 2 Meters Plus” by L.B. Cebik, W4RNL∙“Making the LFA Loop” by Justin Johns on, GØKSC∙“Microwavelengths —Microwave Transmission Lines” by Paul Wade, W1GHZ∙“RF — A Small 70-cm Yagi” by Zack Lau, W1VT∙“The Helical Antenna—Description and Design” by David Conn, VE3KL∙“Three-Band Log-Periodic Antenna” by Robert Heslin, K7RT Y/2∙“Using LPDA TV Antennas for the VHF Ham Bands” by John Stanley, K4ERO∙“V-Shaped Elements versus Straight Elements” by John Stanley, K4EROSupport Files∙Model files and sample radiation patterns for Yagi designs by Justin Johnson, GØKSC (require EZNEC PRO/4 to reproduce the gain and other performancespecifications listed) These files are located in the ARRL Antenna ModelingFiles folder included with the download.Chapter 16Supplemental Articles∙5/8-Wavelength Whips for 2 Meters and 222 MHz∙“6-Meter Halo Antenna for DXing” by Jerry Clement, VE6AB∙“A 6m Hex Beam for the Rover” by Darryl Holman, WW7D∙“A 6 Meter Halo” by Paul Danzer, N1II∙“A New Spin on the Big Wheel” by L.B. Cebik, W4RNL and Bob Cerreto, WA1FXT ∙“A Simple 2 Meter Bicycle-Motorcycle Mobile Anten na” by John Allen, AA1EP∙“A Two‐Band Halo for V.H.F. Mobile” by Ed Tilton, W1HDQ∙“A VHF‐UHF 3‐Band Mobile Antenna” by J.L. Harris, WD4KGD∙“Bicycle-Mobile Antennas” by Steve Cerwin, WA5FRF and Eric Juhre, KØKJ∙“Introduction to Roving” by Ward Silver, NØAX∙“Omnidirectional 6 Meter Loop” by Bruce Walker, N3JO∙“Six Meters from Your Easy Chair” by Dick Stroud, W9SR∙“The DBJ-2: A Portable VHF-UHF Roll-up J-pole Antenna for Public Service” by Edison Fong, WB6IQN∙“The VHF-UHF Contest Rover Experience —Parts 1 and 2” by Greg Jurr ens, K5GJSupplemental Articles∙“A 12‐Foot Stressed Parabolic Dish” by Richard Knadle, K2RIW∙“A Parasitic Lindenblad Antenna for 70 cm” by Anthony Monteiro, AA2TX∙“A Portable Helix for 435 MHz” by Jim McKim, WØCY∙“A Simple Fixed Antenna for VHF/UHF Satellite Work” by L.B. Cebik, W4RNL∙“An EZ‐Lindenblad Antenna for 2 Meters” by Anthony Monteiro, AA2TX∙“Build a 2-Meter Quadrifilar Helix Antenna” by David Finell, N7LRY∙Converted C‐Band TVRO Dishes from previous editions∙“Double-Cross Antenna –A NOAA Satellite Downlink Antenna” by G erald Martes, KD6JDJ∙“EME with Adaptive Polarization at 432 MHz” by Joe Taylor, K1JT, and Justin Johnson, GØKSC∙“Inexpensive Broadband Preamp for Satellite Work” by Mark Spencer, WA8SME∙“L B and Helix Antenna Array” by Clare Fowler, V E3NPC∙“Quadrifilar Helix As a 2 Meter Base Station Antenna” by John Portune, W6NBC∙“Simple Dual-Band Dish Feed for Es’hail-2 QO-100” by Mike Willis, GØMJW; Remco den Besten, PA3FYM; and Paul Marsh, MØEYT∙Space Communications Antenna Examples from previous editions∙“The W3KH Quadrifilar Helix” by Eugene Ruperto, W3KH (plus two Feedback items)∙“Two‐Meter Eggbeater” by Les Kramer, WA2PTS and Dave Thornburg, WA2KZV∙“Work OSCAR 40 With Cardboard‐Box Antennas” by Anthony Monteiro, AA2TX∙“WRAPS: A Portable Satellite Antenna Rotator System” by Mark Spencer,WA8SME∙“WRAPS Rotat or Enhancements Add a Second Beam and Circular Polarization” by Mark Spencer, WA8SMESupplemental Articles∙“A 70-cm Power Divider” by Zack Lau, W1VT∙“Feeding Open-Wire Line at VHF and UHF” by Zack Lau, W1VT∙“Rewinding Relays for 12 V Operation,” by Paul Wade, W1GHZ∙“Increasing Side Suppression by Using Loop-Fed Directional Antennas” by Justin Johnson, GØKSCChapter 19Supplemental Articles∙“6 Meter 4 Element Portable Yagi” by Zack Lau, W1VT (plus separate element design drawing)∙“A 6-Meter Portable Yagi Antenna” by Scott McCann, W3MEO∙“A One Person, Safe, Portable and Easy to Erect Antenna Mast” by Bob Dixon, W8ERD∙“A Portable 2‐Element Triband Yagi” by M arkus Hansen, VE7CA∙“A Portable End-Fed Half-Wave Antenna for 80 Meters” by Rick Littlefield, K1BQT ∙“A Portable Inverted V Antenna” by Joseph Littlepage, WE5Y∙“A Simple and Portable HF Vertical Travel Antenna” by Phil Salas, AD5X∙“A Simple HF-Portable Antenna” by Phil Salas, AD5X∙“A Small, Portable Dipole for Field Use” by Ron Herring, W7HD∙“A Super Duper Five Band Portable Antenna” by Clarke Cooper, K8BP∙“A Two-Element Yagi for 18 MHz” by Martin Hedman, SMØDTK∙“An Off Center End Fed Dipole for Portable Operation on 40 to 6 Meters” by Kai Siwiak, KE4PT∙“Compact 40 Meter HF Loop for Your Recreational Vehicle” by John Portune, W6NBC∙“Fishing for DX with a Five Band Portable Antenna” by Barry Strickland, AB4QL∙“Getting the Antenna Aloft” b y Stuart Thomas, KB1HQS∙Ladder Mast and PVRC Mount∙“The Black Widow —A Portable 15 Meter Beam” by Allen Baker, KG4JJH∙“The Ultimate Portable HF Vertical Antenna” by Phil Salas, AD5X∙“The W4SSY Spudgun” by Byron Black, W4SSY∙“Tuning Electrically Short Antennas for Field Operation” by Ulrich Rohde, N1UL, and Kai Siwiak, KE4PT∙“Three-Element Portable 6 Meter Yagi” by Markus Hansen, VE7CA∙“Zip Cord Antennas and Feed Lines for Portable Applications” by William Parmley, KR8LChapter 20Supplemental Articles∙“A Compact Loop Antenna for 30 through 12 Meters” by Robert Capon, WA3ULH∙“A Disguised Flagpole Antenna” by Albert Parker, N4AQ∙“A 6-Meter Moxon Antenna” by Allen Baker, KG4JJH∙“An All-Band Attic Antenna” by Kai Siwiak, KE4PT∙“An Antenna Idea for Restricted Communities” by Cristian Paun, WV6N∙“Apartment Dweller Slinky Jr Antenna” by Arthur Peterson, W7CZB∙“Better Results with Indoor Antennas” by Fred Brown, W6HPH∙“Honey, I Shrunk the Antenna!” by Rod Newkirk, W9BRD∙“Small Hi gh‐Efficiency Loop Antennas” by Ted Hart, W5QJR∙“Short Antennas for the Lower Frequencies – Parts 1 and 2” by Yardley Beers, WØJF∙“Stealth 6-Meter Wire Beam” by Bruce Walker, N3JO∙Tuning Capacitors for Transmitting Loops∙“Using LPDA TV Antennas for the VHF Ham Bands” by John Stanley, K4EROSupplemental Articles∙“How To Build A Capacity Hat” by Ken Muggli, KØHL∙“Screwdriver Mobile Antenna” by Max Bloodworth, KO4TV∙“Table of Mobile Antenna Manufacturers” by Alan Applegate, KØBGChapter 22Supplemental Articles•“A Four-Way DFer” by Malcolm Mallette, WA9BVS•“A Fox-Hunting DF Twin Tenna” by R.F Gillette, W9PE•“A Receiving Antenna that Rejects Local Noise” by Brian Beezley, K6STI•“A Reversible LF and MF EWE Receive Antenna for Small Lots” by Michael Sapp, WA3TTS•“Active Antennas” by Ulrich Rohde, N1UL•“Beverages in Echelon”•“Design, Construction and Evaluation of the Eight Circle Vertical Array for Low Band Receiving” by Joel Harrison, W5ZN and Bob McGwier, N4HY•“Fl ag, Pennants and Other Ground-Independent Low-Band Receiving Antennas” by Earl Cunningham, K6SE•“Ferrite-Core Loop Antennas”•“Introducing the Shared Apex Loop Array” by Mark Bauman, KB7GF•“Is This EWE for You?” by Floyd Koontz, WA2WVL•“K6STI Low-No ise Receiving Antenna for 80 and 160 Meters” by Brian Beezley, K6STI•“Modeling the K9AY Loop” by Gary Breed, K9AY•“More EWEs for You” by Floyd Koontz, WA2WVL•“Rebuilding a Receiving Flag Antenna for 160 Meters” by Steve Lawrence, WB6RSE •“Simple Dir ection-Finding Receiver for 80 Meters” by Dale Hunt, WB6BYU•“The AMRAD Active LF Antenna” by Frank Gentges, KØBRA•“The Snoop-Loop” by Claude Maer, WØIC•“Transmitter Hunting with the DF Loop” by Loren Norberg, W9PYGSupplemental Articles∙“Coaxial RF Connectors for Microwaves” by Tom Williams, WA1MBA∙“Hands-On Radio: Open Wire Transmission Lines” by Ward Silver, NØAX∙“Hands-On Radio: SWR and Transmission Line Loss” by Ward Silver, NØAX∙“Hands-On Radio: Choosing a Feed Line” by Ward Silver, NØAX∙“Hands-On Radio: Feed Line Comparison” by Ward Silver, NØAX∙“Installing Coax Crimp Connectors” by Dino Papas, KLØS∙“Microwave Plumbing” by Paul Wade, W1GHZ∙“Multiband Operation with Open-wire Line” by George Cutsogeorge, W2VJN∙“My Feedline Tunes My Antenna” by Byron Goodman W1DX∙RF Connectors and Transmission Line Information ‐ ARRL Handbook∙Smith Chart supplement∙“The Doctor Is In: Yes, Window Line Can be Spliced —If You Must” by Joel Hallas, W1ZR∙“Using RG58 coaxial crimp connectors with RG6 cable” by Garth Jenkinson, VK3BBKChapter 24∙“Baluns in Matching Units” by Robert Neece, KØKR∙“Broadband Antenna Matching”∙“Coiled-Coax Balun Measurements” by Ed Gilbert, K2SQ∙“Compact 100-W Z-Match Antenna Tuner” by Phil Sala s, AD5X∙“Demystifying the Smith Chart” by Michael J. Toia, K3MT∙“Don’t Blow Up Your Balun” by Dean Straw, N6BV∙“Factors to be Considered in Matching Unit Design” by Robert Neece, KØKR∙“Hairpin Tuners for Matching Balanced Antenna Systems” by John Stanley, K4ERO ∙“High-Power ARRL Antenna Tuner” by Dean Straw, N6BV∙“Matching with Inductive Coupling”∙“Matching-Unit Circuit Comparison Table” by Robert Neece, KØKR∙“Optimizing the Performance of Harmonic Attenuation Stubs” by George Cutsogeorge, W2VJN∙“Tapered Lines” from previous editions∙“The AAT — Analyze Antenna Tuner —Program” by Dean Straw, N6BV∙“The EZ Tuner —Parts 1, 2, and 3,” by Jim Garland, W8ZR∙“The Quest for the Ideal Antenna Tuner” by Jack Belrose, VE2CV∙“Why Do Baluns Burn Up?” by Zack Lau, W1VTChapter 25Supplemental Articles∙“K5GO Half-Element Designs” by Stan Stockton, K5GO∙“Conductors for HF Antennas” by Rudy Severns, N6LF∙“Insulated Wire and Antennas” by Rudy Severns, N6LF∙“3D-Printed Coax-to-Wire Connection Blocks” by John Portune, W6NBCChapter 26Supplemental Articles∙“A One Person, Safe, Portable and Easy to Erect Antenna Mast” by Bob Dixon, W8ERD∙“Antenna Feed Line Control Box” by Phil Salas, AD5X∙“Homeowners Insurance and Your Antenna System” by Ray Fallen, ND8L∙“Installing Yagis in Trees” by Steve Morris, K7LXC∙“Is Your Tower Still Safe?” by Tony Brock‐Fisher, K1KP∙Ladder Mast and PVRC Mount∙“Lightning Protection for the Amateur Station, Parts 1, 2 and 3” by Ron Block, KB2UYT∙“Removing and Refurbishing Towers” by Steve Morris, K7LXC∙Rotator Specifications∙“The Care and Feeding of an Amateur’s Favorite Antenna Support —The Tree” by Doug Brede, W3AS∙“The Tower Shield” by Baker Springfield, W4HYY and Richard Ely, WA4VHMChapter 27Supplemental Articles∙“A Reflectometer for Twin-Lead” by Fred Brown, W6HPH∙“An Inexpensive VHF Directional Coupler” and “A Calorimeter for VHF and UHF Power Measurements”∙“Antenna Analyzer Pet Tricks” by Paul Wade, W1GHZ∙“Build a Super-Simple SWR Indicator” by Tony Brock-Fisher, K1KP∙“Improving and Using R-X Noise Bridges” by John Grebenkemper, KI6WX∙“Microwavelengths —Directional Couplers” by Paul Wade, W1GHZ∙“On Tuning, Matching and Measuring Antenna Systems Using a Hand Held SWR Analyzer” by John Belrose, VE2CV∙RF Power Meter (Kaune) support files∙“QRP Person’s VSWR Indicator” by Doug DeMaw, W1FB∙“Smith Chart Calculations”∙“SWR Analyzer Tips, Tricks, and Techniques” by George Badger, W6TC, et al∙“Technical Correspondence — A High-Power RF Sampler” by Tom Thompson WØIVJ (plus “More on a High-Power RF Sampler” by Thompson, two files)∙* “The Noise Bridge” by Jack Althouse, K6NY∙“Time Domain Reflectometry” from previous editions∙“The Gadget — An SWR Analyzer Add-On” by Fred Hauff, W3NZ∙“The No Fibbin RF Field Strength Meter” by John Noakes, VE7NI∙“The SWR Analyzer and Transmission Lines” by Peter Schuch, WB2UAQ∙“The Tandem Match —An Accurate Directional Wattmeter” by John Grebenkemper, KA3BLO (plus corrections and updates, four files)∙“Using Single-Frequency Antenna Analyzers” from previous editionsRepeater Antenna Systems Supplemental Articles144 MHz Duplexer CavitiesAntenna Fundamentals 1-1。

CommScope 54-port 双频扇形天线数据手册说明书

CommScope 54-port 双频扇形天线数据手册说明书

4-port sector antenna, 2x 790–960 and 2x 1710–2690 MHz, 65° HPBW,RET compatibleUtilizes AccuRET® actuator(s) on the back of the antennaOBSOLETEThis product was discontinued on: March 31, 2023Replaced By:4P-2L2M-B24-port sector antenna, 2x 694–960 and 2x 1695–2690 MHz, 65° HPBW, 2x RETGeneral SpecificationsAntenna Type SectorBand MultibandColor Light Gray (RAL 7035)Grounding Type RF connector inner conductor and body grounded to reflector andmounting bracketPerformance Note Outdoor usage | Wind loading figures are validated by wind tunnelmeasurements described in white paper WP-112534-ENRadome Material Fiberglass, UV resistantRadiator Material AluminumRF Connector Interface7-16 DIN FemaleRF Connector Location BottomRF Connector Quantity, high band2RF Connector Quantity, low band2RF Connector Quantity, total4Remote Electrical Tilt (RET) InformationModel with Factory Installed AISG 2.0 Actuator CV65BSX-2X2DimensionsWidth301 mm | 11.85 inDepth181 mm | 7.126 inLength1974 mm | 77.717 in15Page ofPage of 25Net Weight, without mounting kit17.9 kg | 39.463 lbArray LayoutPort ConfigurationElectrical SpecificationsImpedance50 ohmOperating Frequency Band1710 – 2690 MHz | 790 – 960 MHzPolarization±45°Electrical SpecificationsFrequency Band, MHz790–896870–9601710–18801850–19901920–21802300–25002500–2690Gain, dBi15.615.617.417.718.11818.2Beamwidth, Horizontal,63627166675758degreesBeamwidth, Vertical, degrees10.59.7 5.6 5.35 4.3 4.1Beam Tilt, degrees0–100–102–122–122–122–122–12USLS (First Lobe), dB14161516161516Front-to-Back Ratio at 180°,29292825232930dBCPR at Boresight, dB23222020201618CPR at Sector, dB1010977 5.3728282828282828Isolation, Cross Polarization,dBIsolation, Inter-band, dB303030303030301.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.035Page ofVSWR | Return loss, dB 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 1.5 | 14.0 PIM, 3rd Order, 2 x 20 W, dBc-150-150-150-150-150-150-150Input Power per Port,maximum, watts350350350350350300300 Electrical Specifications, BASTAFrequency Band, MHz790–896870–9601710–18801850–19901920–21802300–25002500–2690 Gain by all Beam Tilts,average, dBi15.315.417.217.517.617.718Gain by all Beam TiltsTolerance, dB±0.5±0.4±0.3±0.3±0.5±0.6±0.4Gain by Beam Tilt, average, dBi 0 ° | 15.45 ° | 15.410 ° | 15.10 ° | 15.45 ° | 15.510 ° | 15.12 ° | 17.17 ° | 17.312 ° | 17.22 ° | 17.47 ° | 17.612 ° | 17.42 ° | 17.57 ° | 17.712 ° | 17.62 ° | 17.67 ° | 17.912 ° | 17.52 ° | 17.87 ° | 18.112 ° | 17.7Beamwidth, HorizontalTolerance, degrees±2.7±1.9±4.6±2.4±2.4±3.5±4.5Beamwidth, VerticalTolerance, degrees±0.8±0.6±0.3±0.3±0.3±0.2±0.2USLS, beampeak to 20° abovebeampeak, dB16161617171618Front-to-Back Total Power at180° ± 30°, dB25252624222224CPR at Boresight, dB25252021201618CPR at Sector, dB1111129957Mechanical SpecificationsWind Loading @ Velocity, frontal306.0 N @ 150 km/h (68.8 lbf @ 150 km/h)Wind Loading @ Velocity, lateral253.0 N @ 150 km/h (56.9 lbf @ 150 km/h)Wind Loading @ Velocity, maximum589.0 N @ 150 km/h (132.4 lbf @ 150 km/h)Wind Loading @ Velocity, rear310.0 N @ 150 km/h (69.7 lbf @ 150 km/h)Wind Speed, maximum241 km/h (150 mph)Packaging and WeightsWidth, packed441 mm | 17.362 inDepth, packed337 mm | 13.268 inLength, packed2108 mm | 82.992 inWeight, gross34.6 kg | 76.28 lbRegulatory Compliance/CertificationsPage of45Agency ClassificationCE Compliant with the relevant CE product directivesISO 9001:2015Designed, manufactured and/or distributed under this quality management system REACH-SVHC Compliant as per SVHC revision on /ProductCompliance ROHS CompliantUK-ROHSCompliantIncluded ProductsBSAMNT-OFFSET–Forward Offset Pipe Mounting Kit for 4.5 in (114.3 mm) OD roundmembers* FootnotesPerformance Note Severe environmental conditions may degrade optimum performancePage of55。

常用卫星通信天线介绍

常用卫星通信天线介绍

常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。

地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。

反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。

下文对一些常用的天线作简单介绍。

1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。

发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。

由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。

接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。

缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。

2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。

主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。

从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。

由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。

对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。

修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。

目前,大多数地球站采用的都是修正型卡塞格伦天线。

Narda-STS 5G FR2 天线数据手册说明书

Narda-STS 5G FR2 天线数据手册说明书

Datasheet 5G FR2 AntennasMeasurement of 5G NR FR2 Electromagnetic FieldsDownconverter-Antennas for omnidirectional and directional measurement of fields and their sources in the frequency range from 24.25 GHz to 29.5 GHzWith the downconverter antennas, the user gets the pos-sibility to extend the frequency range of the SRM-3006 to frequencies from 24.25 GHz to 29.5 GHz. One of the main applications is to demonstrate compliance with the EMF limits in frequency range FR2 of the 5G NR mo-bile radio service. Of course all other applications in this frequency range can also be measured. The two anten-nas differ in their reception characteristics: The Model 3591/01 features a directional characteristic, while the Model 3591/02 offers an omnidirectional characteristic.›Extends SRM-3006 to cover 24.25 GHz to 29.5 GHz.›Calibrated antennas for reliable measurements ›Measurements are displayed in field strength or in percent of limit values, e.g. ICNIRP , FCC...›Omnidirectional antenna design for environmental measurements›Directional antenna design for weak signals ›Easy to setup ›Simple operation›Fast and reliable measurement resultsTwo different antenna models are available. A directional anten -na with high sensitivity and an omnidirectional antenna. Both antennas include a downconverter that converts the millimeter wave between 24.25 GHz to 29.5 GHz into the SRM-3006’s receive band. This means that the RF cable between antenna and basic unit only transmits frequencies up to a maximum of 6 GHz, which greatly reduces the cable loss compared with a 20 GHz cable. In addition, the downconverter in the antenna avoids the need to modify the base unit, so the antenna can be used on all SRM-3006 devices without hardware modifications. Only a firmware update is required, which can be done by the user.The antennas have their own batteries, independent from the basic unit. So the runtime of the SRM is not affected by the op -eration of the downconverter antenna. The battery integrated in the antenna can be charged via an USB-C socket. Connected to a USB power bank, long-term measurements can also be performed.Narda recommends to operate the antennas only via an exten-sion cable with the SRM.Measurement of weak signals (e.g. indoors):For measurements inside buildings, the field strengths are often very low. For example, a modern, coated glass window can at-tenuate a signal at 24 GHz by about 30 dB. To be able to detect such a field strength, a high gain antenna is needed. However, such antennas have a high directivity due to their principle. The antenna model 3591/01 has such a characteristic.In addition, the directional characteristic can be used to detect the field strength of geographically separated base stations..Outdoor environmental measurements:For EMF measurements, national as well as international standards recommend an isotropic measurement. Such anten-nas are not available for the FR2 frequency range. The antenna 3591/02 offers an omnidirectional reception characteristic that roughly corresponds to that of a donut. Ideal reception results are therefore obtained from an X-Y spatial plane. To cover all three spatial axes for isotropic measurements, the antenna must be connected to the basic unit via an RF cable and moved accordingly during the measurement.Available Antenna ModelsFig. 1.3591/01 Directional Antenna (Horn antenna)Fig. 2. 3591/02 OmnidirectionalConditionsUnless otherwise noted, specifications apply after 30 minutes warm-up time within the specified environmental conditions. The product is within the recommended calibration cycle.Specifications with limitsThese describe product performance for the given parameter cov-ered by warranty. Specifications with limits (shown as <, ≤, >, ≥, ±, max., min.) apply under the given conditions for the product and are tested during production, considering measurement uncertainty. Specifications without limitsThese describe product performance for the given parameter cov-ered by warranty. Specifications without limits represent values with negligible deviations, which are ensured by design (e.g. dimensions or resolution of a setting parameter).Typical values (typ.)These characterize product performance for the given parameter that is not covered by warranty. When stated as a range or as a limit (shown as <, ≤, >, ≥, ±, max., min.), they represent the performance met by approximately 80% of the instruments. Otherwise, they rep-resent the mean value. The measurement uncertainty is not taken into account.Nominal values (nom.)These characterize expected product performance for the given pa-rameter that is not covered by warranty. Nominal values are verified during product development but are not tested during production. UncertaintiesThese characterize the dispersion of the values attributed to the measurands with an estimated confidence level of approximately 95%. Uncertainty is stated as the standard uncertainty multiplied by the coverage factor k=2 based on the normal distribution. The evaluation has been carried out in accordance with the rules of the “Guide to the Expression of Uncertainty in Measurement” (GUM).Specifications3591/01 LNB Antenna, 24.25 GHz to 29.5 GHz, directional3591/02 LNB Antenna, 24.25 GHz to 29.5 GHz, omnidirectionalGeneralOrdering informationYour local Narda representative will inform you of all possible options as well as the current ordering information and will be pleased to provide you with advice.Narda Safety Test Solutions GmbH Sandwiesenstrasse 772793 Pfullingen, GermanyPhone +49 7121 97 32 0****************** Narda Safety Test SolutionsNorth America Representative Office435 Moreland RoadHauppauge, NY11788, USAPhone +1 631 231 1700******************Narda Safety Test Solutions S.r.l.Via Rimini, 2220142 Milano, ItalyPhone +39 0258188 1****************************Narda Safety Test Solutions GmbHBeijing Representative OfficeXiyuan Hotel, No. 1 Sanlihe Road,Haidian100044 Beijing, ChinaPhone +86 10 6830 5870********************® Names and Logo are registered trademarks of Narda Safety Test Solutions GmbH – Trade names are trademarks of the owners.。

《天线RF基础》课件

《天线RF基础》课件

天线的种类和应用: 天线有多种类型, 如偶极子天线、振 子天线、螺旋天线 等。它们被广泛应 用于通信、雷达、 导航、电视广播等 领域。
按工作性质分:发射天线、接收天线
按用途分:通信天线、雷达天线、导航天线、广播电视天线等
按工作波长分:长波天线、中波天线、短波天线、超短波天线、微波 天线等
按结构形式分:线天线、面天线等
按相位分:同相天线、反相天线等
天线增益:衡量天线朝一个特定方向收发信号的能力 波束宽度:天线朝一个特定方向收发信号的定向能力 极化:天线发出的电磁波的振动方向 阻抗:天线输入信号的电压与电流的比值
PART THREE
RF的定义:RF是Radio Frequency的缩写,意为射频,是 一种电磁波,频率范围通常在200KHz-300GHz之间
天线RF在无线局域网中的重 要性
天线RF在无线局域网中的主 要应用场景
天线RF在无线局域网中的发 展趋势与挑战
PART SIX
天线RF测试与测量的定义和目的 测试与测量的基本原理和方法 测试与测量的常用设备和工具 测试与测量的误差分析和数据处理
测试环境:选择合适的 测试环境,包括室内和 室外环境,确保测试结 果的准确性和可靠性。
未来展望:展望天Βιβλιοθήκη RF在移动通信系统中的未来发展趋势,包括小型化、集成化、 智能化等方向,以及它们对移动通信系统性能的提升作用和潜在应用前景。
天线RF在卫星通信中的应用:介绍天线RF在卫星通信 系统中的具体应用,如卫星接收和发射信号的原理、天 线RF的选择和设计等。
卫星通信系统的组成:简要介绍卫星通信系统的组 成,包括卫星、地面站、上行链路和下行链路等。
应用需求。
汇报人:
RF的作用:RF在通信、雷达、导航、电子对抗等领域有着广泛的 应用,可以实现无线通信、数据传输、信号检测等功能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说 明这本手册 的生命力。相信其也可 以成 为
了天线基础 、天线建模与 系统 规划 、多种 应 对架 设 和维 护 天线 系 统提 供 了相 当 丰富 的 我国从事天线技术 的科 技人员 、射频工程 师 信 息 。 从 如 何 应 用先 进 的 计 算 机 建 模 技 以及 相关 大 专院 校 师生 的一本 很 好 的参考 注意 安 全性 等 各方 面 都有 很详 细 的介 绍 。
天线 作 为 无线 系统 的不 可 或缺 的关 键 相 当篇幅 介绍 了应 用当代计算机建模 软件分 籍 中是很 少能见到 的。 析 、设计天线和进行 电波传播预测的 内容。 A R 天线手册 》自从 1 3 年9 R L《 9 月出版 9 部件 之~ ,一直受到从事 该领域 的工程 师、 学 者和有关大 专院校的师 生的关注。这 本手 与 其他 天 线手 册不 同 的是 ,这 本天 线 第 1 以来 ,到本 书已是第2 版 了,这充分 版 1
功 匹 配 了任 一 方 向 的 阻 抗 ,当 然 了 ,这
0 6 <1 +f 9 )一r 1 一 6 s・6
0 5 + 9 6 — 1 ・s <2 6 21 6 r
代码 中得到更长 、更复杂的表达式 ,在 设置并 编写方程 时将 更容 易发生错 误。
0<5 . 7 91 3 5-r s
除 了提供 了大 量的 加 工图 ,给 出加 工数 据
的接地 系 统 与地 面 对 天线 和 电波 传播 的 影 术 ,如何 选 择 天线 、天线 杆 的材 料 ,如何 书 ,为我国天线技 术的发展和天线制作人 才 的培 养作 出贡献 。 ( 书由 该 友刊 《 无线电 》杂志编辑 出版 )
示 ,往 往 在 实 际应 用 中可 以取得 具 有
令人满意精 度的有 用结果。 ) 。
我 们 发 现 ,相 比源 和 负载 都 是 电 阻
的 技 术 编辑 , 并持 有 多 项 专 利 。 他 曾任
E 在 萨 克拉 门托 分 部 主席 。 梅 纳 德 也 E 是 加 利 福 尼 皿 州 萨克 拉 门托 市 的 北 山 无
我 们还 得 益 于二 次 方程 求根 公 式
r = 23 t 0
x f= OO
匹 配起 来 。我 们 可 以将 我们 的源 和 负 的定义。我们 求出 了a 、b 后 ,就 能 和c 直 接将 它们 插入 Oca e t v 代码 的公 式 中 去 。如果将x p n 的二次方程 中所有的值 都 代换 进公 式 中的话 ,就会在 Oc a e tv
r< s 591 3 5 7
作者简介
( 式 7) 公

M a n r r } 6 AP ). 1 5 年 取 y ad W i ] fW P gc 97
6 A 呼 因 为 格 里 菲 斯 已 经 使 用 图 形 法 得 得 业余 无 线 电执 照 , 呼号 为W N P P 号 。他 持 有 船 用 雷 达 业 务 的 :通 用 无 ( 出最 大值 为5 0Q ,可见 我们 的结 果 9


这 样一来 ,我 们得到 的输 出是 : 第一选择… 串联 文件 电抗 = 3 8 一 74 5 并联 文件 电抗 = 6 .8 9 一 28 9 第二选择 串联 文件电抗 = 1 45 一 .1 5 5 并联 文件电抗= 28 9 6 8 9 在 这里 ,我们 将L 网络颠 倒 了 ,成
之外 ,甚 至 还给 出 了业余 条件 下价 廉 物美
www 引 @6 C ( 3 1》0n 3
中 ,×的数值为非零。 当×的大/ lr l 1 J: t \l 高 s 得 多 、也是短 天线常见的情况 下 ,我们 就 能够使相 当宽 的范围 内的阻抗 与每个
方向上的并联 电抗 进行 匹配 了 ,而在源 和负载都是 电阻性时 ,就不能这样了。 格里 菲斯 从 圆 图轨 迹 的角 度对 此
的螺 旋 天线 和反 射 面天 线 等 ;同 时对 业余 色 内容 ,对其 他 天线 工程 师和 从事 天线 研 无线 电频段 ( 包括 H 、V F I H 频段等 )的 F H ̄U F ]
究 与应 用 的人 员也 可作 为 一本 很好 的参 考 详 细描 述 、对 螺旋 天线 阻 抗 匹配技 术 的详
各 种 电波传播特 点与组织通信 的方式等给 出 书 。例 如 :手 册 中对 天线 阵列 馈 电系统 的 了详 细的描述 。虽然该天线手册 历史悠久 , 但通 过一次次再版 的修改与补 充 ,因此 内容 细 描述 、 对应 用史 密斯 圆 图进 行有 耗传 输 不乏 新的天线和 电波传播技术 , 手册 中有 线 参数 计 算技 术的 描述 等 ,在 其他 天线 书 如
册 ,其主要 内容 涵盖 了业余 无线 电频段 的几 实 例 。 这 不 仅 对 业余 无线 电 爱 好 者 中 的 乎 所有的主要 天线形式 ,如 各种振子天线 、
线 、对数周 期阵列、方框 阵列 、测 向天线 、
环 天 线 、八 木 天线 、 多波 段 天线 、 宽带 天 线 制造企业提供 一种很好 的参考。 便 携天线 、移 动天线和水上 天线、 中继 台天 这 本 天线 手册 以其对 天线 与 无线 电波 传播 线 系统、V F I H 天线 ,以及 用于空 间通信 技 术 的广 泛 的覆盖 ,以及 其 中一些 很 有特 H ̄U F ]
还 是 非 常符 合 的 ( 为计 算 尺 和史 密 作
斯 圆 图的 爱 好者 ,我 不想 反 对使 用图 形 法 。它 们 可 以很 好地 将 问 题直 观 显
线 电话 操 作 员执 照 ,并 是 加 利 福 尼 亚 州
两次 的阻抗值都不一样。这是因为在4 式
的 注册 专业 电子 程 师 , 而且 是 lE 的 t EE 终 身 高 级 会 员 梅 纳 德 从 事电 信 行 业 已 经 超 过 4 个 年 他 担 任 过 许 多电 信 标 准 j
QE 专栏 X
r = 7 o s 6
作 了讨论 。他指 出 ,我 们可 以利用 L 网 我" f在网络配置上取得更大的自由。 fi I ̄ l
络来 将 中端 阻抗 和0~5 0Q的源 电阻 9 载 值代换进4 中,验算 一下 : 式
O t+x 2 s. t <r t-r r
x =- s 96Q
册 的 内容 非 常丰 富 ,总计 2 章 的内容 涉及 手册 还 对 如何 设计 、制作 所 需要 的 天线 , 8
用天线、天线 阵列、天线材料 与附件 、天线 响 、传 输线 、无线 电波传播 ,以及天线 与传 输线 的测量 ,等 等 ,甚至包括 了主要天线产 品的供 应商的概况 。
性的情况 ,利用L 网络来匹配复数阻抗 ,
线 电俱 乐部 秘 书 财 务主 管和 前 主 席 。
中文版ARRL 天线 手册 介绍
作为一本业余无线 电传播联盟 的天线 手 的替代 方 法和 建议 。书 中附 有很 多天 线 的 DY r Ie 是一种 福音 ,也可 为天线 工程 师和 天 除从 事业 余无 线 电频段 的人 员之外 ,
相关文档
最新文档