层次分析法步骤及案例分析
层次分析法经典案例
层次分析法经典案例篇一:层次分析法步骤层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1.建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:? 目标层(最高层):指问题的预定目标;? 准则层(中间层):指影响目标实现的准则;? 措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递page1阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
层次分析法(AHP法)
一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整
层次分析方法范文
层次分析方法范文案例背景:小明是一名大学生,想要购买一辆新车。
他希望车辆的品牌知名度高、车辆性能好、价格合理等因素都可以考虑到,从而做出最佳决策。
步骤一:建立层次结构在层次分析方法中,首先需要建立一个层次结构,包含了问题的各个方面,以及它们之间的关系。
对于小明的问题,他可以将层次结构分为三个层次:品牌知名度、车辆性能和价格。
步骤二:构建判断矩阵判断矩阵是层次分析方法的核心,用于比较不同因素之间的重要程度。
小明需要根据他对每个因素的主观判断来构建判断矩阵。
例如,他认为品牌知名度比车辆性能重要,可以给予品牌知名度一个更高的权重。
在这个过程中,小明需要和他对车辆品牌的了解程度进行比较,以及和他对车辆性能的需求进行比较。
步骤三:计算权重向量通过对判断矩阵进行计算,可以得到每个因素的权重向量。
小明可以使用软件或者Excel等工具来进行计算。
权重向量表明了不同因素对最终决策的影响程度。
例如,如果品牌知名度的权重向量为0.6,车辆性能的权重向量为0.3,价格的权重向量为0.1,则表明品牌知名度对最终决策的影响最大。
步骤四:一致性检验在确定权重向量之后,需要进行一致性检验来验证判断矩阵的合理性。
一致性检验可以使用一致性指标CI和一致性比例CR来进行评估。
如果CR值小于0.1,则说明判断矩阵是一致的。
如果CR值大于0.1,则需要重新调整判断矩阵,直到CR值小于0.1为止。
步骤五:综合评估与决策通过计算得到的权重向量,可以对各方案进行综合评估,从而做出最佳决策。
小明可以将不同品牌的车辆在品牌知名度、车辆性能和价格等方面进行评估,然后乘以对应的权重向量,得到综合评估分数。
最终,小明可以选择综合评估分数最高的车辆作为他的购买决策。
层次分析方法是一种科学而系统的决策方法,可以帮助我们在面对复杂问题时做出更加准确的决策。
通过对层次结构的建立,判断矩阵的构建,权重向量的计算以及一致性检验的评估,可以得出最佳决策方案。
同时,在进行层次分析方法时,我们还应该注意对各个因素进行实际情况的分析和评估,以保证最终的决策是科学和合理的。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法经典案例
层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。
本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。
一、案例背景某企业计划购买新设备,以提升生产效率和质量。
然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。
为了解决这一问题,业主决定应用层次分析法进行设备选择。
二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。
1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。
在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。
目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。
2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。
通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。
比如,在准则层中,设备性能指标对设备价格的重要性为6。
3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。
通过对判断矩阵进行归一化处理,可获得各因素的权重。
权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。
例如,计算准则层中各因素的权重向量。
4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。
通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。
若一致性比率超过一定阈值,需要检查和修正判断矩阵。
5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。
根据排序结果,我们可以选择最合适的备选方案。
层次分析法经典案例
层次分析法经典案例层次分析法(Analytic Hierarchy Process,简称AHP)是一种常用的决策分析方法,旨在帮助决策者在复杂的决策问题中进行合理权衡,准确选择最佳方案。
本文将通过介绍一个经典案例,说明层次分析法的应用过程及其重要性。
案例背景某公司计划推出一款新产品,该产品具有多个特性:价格、品质、功能、服务等。
为了确定最佳的产品设计方案,决策者需要评估各个特性对产品整体性能的影响程度,以便制定出最佳的产品设计方案。
层次分析法的步骤1. 建立层次结构:首先,决策者需要将整个决策问题划分为层次结构,包括目标层、准则层和方案层。
目标层即决策问题的最终目标,准则层是实现目标的关键准则,方案层包括不同的决策方案。
2. 构建判断矩阵:在准则层和方案层,决策者需要通过对每个准则或方案与其他准则或方案进行两两比较,建立判断矩阵。
判断矩阵的元素是准则或方案之间的相对重要性,用数字表示。
3. 确定权重向量:根据判断矩阵,通过计算特征向量的平均值,得到每个准则和方案的权重向量。
4. 一致性检验:通过计算一致性指标,评估判断矩阵的一致性程度。
一致性指标越接近0,判断矩阵越一致。
5. 优先级排序和决策:根据准则和方案的权重向量,对准则和方案进行排序,从而选择最佳的决策方案。
案例应用在本案例中,我们假设有四个特性:价格、品质、功能和服务。
决策者通过两两比较这些特性,建立判断矩阵如下:价格品质功能服务价格 1 3 2 3品质 1/3 1 1/2 1/2功能 1/2 2 1 1/2服务 1/3 2 2 1通过计算,我们得到判断矩阵的一致性指标为0.05,说明一致性较好。
接下来,计算每个特性的权重向量。
根据判断矩阵的计算结果,我们得到价格的权重为0.24,品质的权重为0.29,功能的权重为0.22,服务的权重为0.25。
最后,根据权重向量进行排序,得到价格>品质>服务>功能的优先级顺序。
因此,公司应该优先考虑价格和品质,其次是服务,最后是功能。
层次分析法及其案例分析
2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
层次分析法分析(AHP)及实例教程
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。
经典层次分析法分析及实例教程
A2
A3
A4
A5
A1
A2
A3
A4
A5
1
1/2
4
3
3
2
1
7
5
5
1/4
1/7
1
1/2
1/3
1/3
1/5
2
1
1
1/31Βιβλιοθήκη 5311分别表示 景色、费用、 居住、饮食、 旅途。
由上表,可得成对比较矩阵
单击此处添加小标题
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。
单击此处添加小标题
问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
当 时,认为层次总排序通过一致性检验。到 此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
该结构图包括目标层,准则层,方案层。
1.建立层次结构模型
对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。
比较尺度:(1~9尺度的含义)
2,4,6,8表示第 个因素相对于第 个因素的影响介于上述 两个相邻等级之间。不难定义以上各尺度倒数的含义, 根据 。
由上述定义知,成对比较矩阵
则称为正互反阵。 比如,例2的旅游问题中,第二层A的各因素对目标层Z 的影响两两比较结果如下:
满足一下性质
Z
单击此处添加小标题
,即令
04
d) 对于预先给定的精度 ,当下式成立时
STEP 03
STEP 01
STEP 02
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法步骤及案例分析
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法(AHP法课件
一致性检验
一致性检验是检验判断矩阵是否满足一致性的过程,即判断 矩阵中的元素是否满足传递性。
一致性检验的方法包括计算一致性指标CI和随机一致性指标 RI,通过比较CI和RI的值可以判断判断矩阵的一致性。如果 一致性不满足要求,需要对判断矩阵进行调整。
03
层次分析法的实施步骤
建立递阶层次结构
明确问题
详细描述
科研项目评估需要考虑多个指标,如项目的 创新性、可行性、预期成果等。层次分析法 可以将这些指标分为不同的层次,并确定各 指标之间的相对重要性,从而帮助科研管理 者更加科学地选择和资助科研项目。
05
层次分析法的优缺点与改进
方向
优点
01 02
系统性强
层次分析法能够将复杂的问题分解成不同的组成因素,并根据因素间的 相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多 层次的分析结构模型。
特点
简单易懂、系统性、实用性、灵活性。
应用领域
资源分配
根据资源有限性,合理 分配资源,实现资源利
用最大化。
方案选择
在多个备选方案中选出 最优方案,满足特定目
标或标准。
风险评估
对风险进行定性和定量 分析,确定风险优先级
和应对策略。
决策分析
在多准则或多目标决策 问题中,为决策者提供
决策依据。
层次分析法的发展历程
确定研究的问题,明确目标层和准则 层,将决策问题分解成不同的组成因 素。
构建层次结构
将决策问题分解成不同的组成因素, 并根据因素间的相互关联影响以及隶 属关系将因素按不同的层次聚集组合 ,形成一个多层次的分析结构模型。
构造判断矩阵
确定判断标度
根据因素间的相对重要性,确定 因素间的判断尺度。常用的判断 尺度有1-9标度法。
层次分析法具体应用及实例
层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。
但问题绝不这么简单。
通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。
假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。
根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。
很明显,这两个方案于所有准则都相关。
将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。
同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。
代表不同层次,同一层次从左到右用1、2、3、4。
代表不同因素。
这样构成的递阶层次结构如下图。
目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。
层次分析法简单案例
层次分析法简单案例层次分析法(Analytic Hierarchy Process, AHP)是一种多准则决策分析方法,它可以帮助人们在复杂的决策环境中进行合理的决策。
本文将通过一个简单的案例来介绍层次分析法的基本原理和应用过程。
假设小明在选择手机时遇到了瓶颈,不知道如何在价格、性能和外观之间进行权衡。
为了帮助小明做出决策,我们将运用层次分析法来解决这个问题。
首先,我们需要确定决策的目标。
在这个案例中,小明的目标是选择一款性价比高的手机。
然后,我们需要确定影响决策的准则。
在这个案例中,价格、性能和外观是影响小明选择的重要准则。
接下来,我们需要建立一个层次结构。
层次结构是层次分析法的核心,它将决策问题分解成不同层次的准则和方案。
在这个案例中,我们可以将目标设置为最高层,价格、性能和外观设置为第二层,具体的手机型号设置为第三层。
然后,我们需要构建判断矩阵。
判断矩阵用来比较不同准则和方案之间的重要性。
在这个案例中,我们可以让小明对价格、性能和外观之间两两进行比较,然后给出它们的相对重要性。
接着,我们需要进行一致性检验。
一致性检验是为了确保判断矩阵的合理性和稳定性。
在这个案例中,我们可以通过计算一致性指标和随机一致性指标来检验小明的判断矩阵是否合理。
最后,我们可以进行权重计算和方案选择。
通过层次分析法,我们可以计算出每个准则和方案的权重,然后根据这些权重来选择最终的手机型号。
通过上述步骤,小明可以通过层次分析法来做出合理的决策,选择一款性价比高的手机。
层次分析法不仅可以帮助小明解决手机选择的问题,还可以在其他多准则决策问题中发挥重要作用。
希望本文的介绍能够帮助读者更好地理解层次分析法的原理和应用过程。
层次分析法案例
层次分析法案例层次分析法(Analytic Hierarchy Process,AHP)是一种多目标决策方法,它通过构建层次结构、建立判断矩阵、计算权重和一致性检验等步骤,帮助决策者进行系统化的决策分析。
下面我们通过一个案例来详细介绍层次分析法的具体应用。
案例背景:某公司准备引进一款新的生产设备,但在选择适合的设备时面临多个因素的考量,比如设备的性能、价格、维护成本等。
为了做出最合理的决策,公司决定采用层次分析法来进行决策分析。
步骤一,构建层次结构。
首先,公司将引进新设备的决策问题分解为三个层次,目标层、准则层和方案层。
目标层是引进新设备,准则层包括设备性能、价格和维护成本,方案层则是具体的设备选项。
在这个案例中,我们假设有A、B、C三种设备可供选择。
步骤二,建立判断矩阵。
接下来,公司需要对准则层和方案层进行两两比较,以确定它们之间的相对重要程度。
通过专家意见调查或者问卷调查,公司得到了比较矩阵,比如设备性能对价格的重要程度、设备性能对维护成本的重要程度等。
步骤三,计算权重。
利用AHP的计算方法,公司可以根据比较矩阵计算出每个准则和方案的权重。
这些权重可以帮助公司确定对于引进新设备而言,性能、价格和维护成本的重要程度,以及A、B、C三种设备的优劣。
步骤四,一致性检验。
在计算权重之后,公司需要进行一致性检验,以确保比较矩阵的合理性和可靠性。
如果比较矩阵通过一致性检验,则可以继续进行下一步决策分析。
步骤五,综合分析。
最后,公司可以利用计算出的权重,对三种设备进行综合分析,以确定最佳的选择。
在这个案例中,公司可以根据性能、价格和维护成本的权重,对A、B、C 三种设备进行打分和排名,从而做出最合理的决策。
通过以上案例,我们可以看到层次分析法在多目标决策问题中的应用。
它通过构建层次结构、建立判断矩阵、计算权重和一致性检验等步骤,帮助决策者进行系统化的决策分析,提高决策的科学性和准确性。
总之,层次分析法是一种强大的决策分析工具,它不仅可以用于企业的决策问题,也可以应用于个人生活中的选择问题。
经典层次分析法分析及实例教程
(2)构造成对比较矩阵
1
2 1
1
2 1 1
4 7 1
3
5 1
3
5 1
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1 B2 3
1 3 1
戴河,或者是去山水甲天下的桂林,一般会依据景色、 费用、食宿条件、旅途等因素选择去哪个地方。
Slide2
深圳键桥通讯技术股份有限公司
例3 择业
面临毕业,可能有高校、科研单位、企业等单位可以去 选择,一般依据工作环境、工资待遇、发展前途、住房条 件等因素择业。
例4 科研课题的选择
由于经费等因素,有时不能同时开展几个课题,一般依 据课题的可行性、应用价值、理论价值、被培养人才等因素 进行选题。
深圳键桥通讯技术股份有限公司
二 层次分析法的基本步骤
1 建立层次结构模型
一般分为三层,最上面为目标层,最下面为方案层, 中
间是准则层或指标层。
例1 的层次结构模型 买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
Slide6
方案层
深圳键桥通讯技术股份有限公司
例2 层次结构模型 选择 旅游地
景费居饮旅 色用住食途
Slide22
深圳键桥通讯技术股份有限公司
三 层次分析法建模举例
1 旅游问题 (1)建模
Z
层次分析法应用案例(全)PPT课件
总目标的权值为:
m
a jbij
j 1
Bn : a1bn1 a2bn2 ambnm
A
A1, A2 ,, Am
B层的层次
B
a1, a2 ,, am
总排序
m
B1
b11 b12 b1m
a jb1 j b1
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质
颜
价
外
实
量
色
格
形
用
准则层
可供选择的笔
方案层
6
例2 层次结构模型 选择 旅游地
景费居饮旅 色用住食途
苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
RI
的不一致程度在容许范围之内,可用其归一化特征向量
作为权向量,否则要重新构造成对比较矩阵,对 A 加
以调整。
一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对 A 进行检验的过程。
17
4 层次总排序及其一致性检验
确定某层所有因素对于总目标相对重要性的排序权值过程, 称为层次总排序
w w1, w2,, wn
(为什么?)这样确定权向量的方法称为特征根法.
定理: n 阶互反阵 A 的最大特征根 n ,当且仅 当 n 时, A为一致阵。
14
由于 连续的依赖于aij,则 比 n 大的越多, A的不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学 2013.12.17
框架
第一节 指标体系的建立 第二节 指标权重的确定 第三节 层析分析法的思想和原理 第四节 层次分析法的模型和步骤 第五节 层次分析法的应用
3
第一节 指标体系的建立
• 一.指标体系的建立应遵循的原则: • 1.指标以少不宜多 • 2.指标应具有独立性 • 3.指标应具有代表性 • 4.指标可行
目前,权属确定的方法主要采用专家咨询的经验判断法。
而且权数的基本能确定已由个人经验转向专家集体决策。
在处理数据时一般用算术平均值带白哦评委们的集中意见。
公式为:
n aij
i 1 n
j=1,2,3,...m
式中,n为评为数量; m为评价指标总数;
a j 为第j个指标的权属平均值;
a ji 为第i个评委给第j个指标权数 的打分值
然后进行归一化处理。归一化公式如下:
aj'
aj
m
aj
j 1
一般来说,以上方法依据专家知识、经验和个人价值观对指标体系进
行分析、判断并主观赋权。一般来说,这样所确定的权数能正确反映各 指标的重要程度,保证评价结果的准确性。但是为了提高准确性,也可 以采用确定权重的层次分析法。该方法对各指标之间重要程度的分析更 具有逻辑性,加上数学处理,使得可信度加大,应用范围较广。
1 2 3 4 7 1/ 3 1 3 2 5
B1 1/ 5 1/ 3 1 1/ 2 1 1/ 4 1/ 2 2 1 3
1/ 7 1/ 5 1/ 2 1/ 3 1
1 1/ 7 1/ 3 1/ 5
B2
7
3 5
1 1/ 5 1/ 2
5 1 3
3 11/ 3
1 1 3 3
B3
1
11
/ /
3 3
1 1/ 3 1/ 3
注意:以上几条原则在解决实际问题是参考,在实际中要灵活考虑应用。需 要注意的是,指标体系的确定有很大的主观随意性。虽然指标体系的确定有 经验法跟数学方法两种,但多数研究均采用经验确定法。
二.专家调研法
1、专家调研法是一种常用的方法。即向专家发函,征求 其意见。评价者可以根据评价目标及评价对象的特征,在 设计的调查表中列出一系列的评价指标,分别征询专家所 涉及的评价指标的意见,然后进行统计处理,并反馈咨询 结果,若专家意见趋于集中,则由最后一次确定出具体的 评价指标体系。 2、专家调研法的特征 匿名性 完全消除了专家互相之间的的影响 轮间情况反馈 协调人对每一轮的结果做出统计,并将 其作为反馈材料发给每一个专家,供下一轮评价时参考 结果的统计特性 采用统计法对结果进行处理
0.032, RI
1.12,CR
0.028
0.138
0.046
对于判断矩阵B2来说,其计算结果为:
0.55
W
0.564 0.118 0.263
,max
4.117, CI
0.039, RI
0.90, CR
0.043
对于判断矩阵B3来说,其计算结果为:
0.406
W
( AW )i nWi
其中 AWi表示AW中第i个元素。
对于判断矩阵A来说,计算结果如下:
0.105
W
0.637
,max
0.038, CI
0.019, RI
0.58, CR
0.033
0.258
对于判断矩阵B1来说,其计算结果如下:
0.491 0.232
W
0.092
,max
5.126, CI
表1-2 平均一致性指标(RI)
1
2
3
4
5
6
7
8
9
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45
当阶数大于2时,判断矩阵的一致性指标CI与同阶平均平 均一致性指标RI之比称为随机一致性比率,记为CR。当
CR CI 0.10 RI
时,即认为判断矩阵具有满意的一致性,否则就需要 调整判断矩阵,使之具有满意的一致性 四、层次单排序
第二节 指标权重的确定
1.指标的权重是指评价过程中其相对重要程度的一种主观客观观 测度的反应,指标间的权重差异是由以下三点造成的:
(1)评价者对各指标的重视程度不同,反应评价者的主观差异; (2)各指标在评价中所起的作用不同,翻译各个指标之间的客观 差异; (3)各指标之间的可靠程度不同,反映了各指标所提供的信息的 可靠性不同。 2.加权的方法有两种 (1)经验加权法,也称定性加权法。它的优点是有专家直接评估, 简便易行。 (2)数学加权法,也称定量加权法。它以经验为基础,数学原理 为背景,间接生成,具有较强的科学性。
以及内在关系等进行深入分析后,构建一个层次结构模型, 然后利用较少的定量信息,把决策的思维过程数学化,从而 为求解多目标、多准则货物结构特性的复杂决策问题,提供 一种简便的决策方法。
多层次分析法把人的思维过程层次化、数量化,并运用数 学分析、决策、预报或控制提供定量的依据。十分适用于具 有定量的、或定量定性兼有的决策分析;它尤其适合于人的 定性判断起重要作用、决策结果难于直接精确计量的场合, 是一种十分有效的系统分析和科学决策方法。 3.原理
层次分析法(analytic hierachy process,AHP)是美国 著名运筹学家T.L.Satty等人在20世纪70年代提出的一种 定性与定量相结合的多准则决策方法。具体地说它是将 决策问题的有关元素分解成目标、准则、方案等层次, 用一定标度对人的主观判断进行客观量化,在此基础上
进行定性或定量分析的一种决策方法。 这一方法的特点,是在对复杂决策问题的本质、影响因素
注意:在实际问题时,构造的判断矩阵并不一定具有一致性,常常需要进行 一致性检验。
下面给出1~9标度方法,如表1-1所示
序号 1 2 3 4 5 6 7 8 9
重要性等级 i,j两元素同等重要 i 元素比j 元素稍重要 i 元素比j 元素明显重要 i 元素比j 元素强烈重要 i 元素比j 元素极端重要 i 元素比j 元素稍不重要 i 元素比j 元素明显不重要 i 元素比j 元素强烈不重要 i 元素比j 元素极端不重要
n
M i aij (i 1,2, , n) j 1
(2)计算的M i n次方根 Wi
Wi n M i
(3)对向量 W W1,W2, ,Wn T 正规化 Wi
Wi
n
,
Wj
j 1
则W W1,W2 , ,Wn T 即为所求得特征向量。
(4)计算判断矩阵的最大特征根 max
max
n i 1
第四节 层次分析法的模型和步骤
下面以一个企业资金的合理使用为例,来说明层次分析 法求解决策问题的过程。假设企业有一笔利润资金,要 企业高层领导决定如何使用,经过实际调查与员工建议, 现有以下方案可供选择。
▪作为奖金发给员工; ▪为员工办进修班; ▪修建图书馆、俱乐部等; ▪引进新技术设备进行企业技术改造 一、构造层次分析结构 通过分析,上述方案的目的都是为了更好的调动员工 的工作积极性、提高企业技术水平和改善员工的物质水 平,而这一切的最终目的是为了促进企业进一步发展, 增强企业在市场经济中的竞争力。层次分析图1-1
计算出某层次因素相对于上一层次中某一因素的相 对着重要性,这种排序方式称为层次单排序。具体说 就是根据判断矩阵计算对于上一层某元素而言本层次 与之有联系元素重要性次序的权值。
层次单层次计算问题可归结为计算判断矩阵的最大特征根 及其特征向量的问题。但是一般来说,判断矩阵的最大特征 值及相应的特征向量并不需要追求较高的精确度。下面给出 一种简单的计算矩阵最大特征值及相应的特征向量的方法。 (1)计算判断矩阵每一行元素的乘积 Mi
对于上述例子,假设企业领导对于资金使用这个问题的 态度是:首先提高企业技术水平,其次是改善员工物质生 活,最后是调动员工的工作积极性。则准则层对于目标层 的判断矩阵A-B为
1 1/ 5 1/ 3 A 5 1 3
3 1/ 3 1
相应的可以写判断矩阵B1(相对于调动职工劳动积极性准则, 各种使用留成利润措施方案之间相对重要性比较)、B2(相 对于提高企业技术水平准则,各种使用企业留成利润措施 方案之间相对重要性比较)、B3(相对于改善职工物质及文 化生活准则,各种企业留成利润措施方案之间相对重要性 比较),如下:
n
i n max
i2
上述结论知道,当判断矩阵不完全一致时,相应的判断矩 阵的特征值也发生变化,因此我们引入判断矩阵最大特征 值以外的其余特征根的负平均值,作为衡量判断矩阵偏离 一致性的指标,即用
CI max n
n 1
CI值越大,表明判断矩阵偏离完全一致性的程度越大: CI越小,表明判断矩阵一致性越好。 当矩阵具有满意一致性时,max稍大于n,其余特征值也 接近于0,下面对满意一致性给出一个度量。
3 1 1
3 11
三、判断矩阵的一致性检验 一致矩阵:对于任意i,j,k均有Cij • Cjk Cik 的正反矩阵
根据矩阵理论Ax=λx,λ代表特征值,对所有的 aii 1 n
有 i n i 1
当矩阵完全一致时, 1 max ,其余特征值为0;而 矩阵A不具有完全一致性时 ,1 max n ,其余的特 征值有以下关系:
Cij 赋值 1 3 5 7 9 1/3 1/5 1/7 1/9
注意:Cij {2,4,6,8,1/ 2,1/ 4,1/ 6,1/ 8}重要性等级介于Cij {1,3,5,7,9,1/ 3,1/ 5,1/ 7,1/ 9}
这些数字是人们进行定性分析的直觉和判断力而确定的。
实际上,凡是较复杂的决策问题,其判断矩阵是由多位 专家填写咨询表之后形成的。专家咨询的本质在于把渊博 的知识和丰富的经验,借助于对众多相关因素的两两比较, 转化成决策所需的有用信息。