第五章一次函数复习.doc
第五章复习2
C
D
M
3、已知A、B两地相距80km,甲、乙两人沿一条公路 从A地出发到B地,甲骑摩托车,乙骑电动车,MC、 OD分别表示甲、乙两人离开A地的距离s(km)与时间 t(h)的函数关系式图象。根据图象,回答下列问题: (2)大约在乙出发 A地约 km; 小时后两人相遇;相遇时乙距
C
D
M
3、已知A、B两地相距80km,甲、乙两人沿一条公路 从A地出发到B地,甲骑摩托车,乙骑电动车,MC、 OD分别表示甲、乙两人离开A地的距离s(km)与时间 t(h)的函数关系式图象。根据图象,回答下列问题: (3)甲到达B地时,乙距B地还有 小时到达B地; km,乙还需
4:我边防局接到情报,近海外有一可疑船只A正向公海 方向行驶,边防局迅速派出快艇B追赶。如图所示,图 中L1L2分别表示两船相对于海岸的距离S(海里)与追 赶时间(分)之间的关系。根据图象解答下列问题: (4)、当A逃到离海岸12海里的公海时,B将无法对其进 行检查,照此速度B能否在A逃入公海前将其拦截?
用图象法解二元一次方程组的步骤如下: 用图象法解二元一次方程组的步骤如下:
①把二元一次方程化成一次函数的形式; 把二元一次方程化成一次函数的形式; 在直角坐标系中画出两个一次函数的图像,并标出交点; ②在直角坐标系中画出两个一次函数的图像,并标出交点; 交点坐标就是方程组的解。 ③交点坐标就是方程组的解。
5:已知直线y1= 2x-6与y2= -ax+6在x轴上交于A,直 线y = x与y1 、y2分别交于C、B。 (1)求a; (2)求三条直线所围成的∆ABC的面积。
6:已知直线x-2y=-k+6和x+3y=4k+1的交点在第四象 限内。 (1) 求k的取值范围 (2) 若k为非负整数,△PAO是以OA为底的等腰三角 形,点A的坐标为(2,0)点P在直线x-2y=-k+6上, 求点P的坐标及OP的长。
浙教版八年级数学上册课件:第五章5.4.1节一次函数的图象和性质 (共15张PPT)
88
7 66 5 44 3 22 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-2 -10 -5
YY=2X+1
Y=2X
O 1 -1 -2 -3
-4
2 3 4
5
5
6
X
-4 -5 -6 -7 -8
-6
-8
1.请你再找出另外一些 满足一次函数y=2x+1的 数对出来,看一看以这些 数对为坐标的点在不在 所画的直线上?
对于函数Y=3X,取x=0,y=0,得到点(0, 0)取x=1,y=3,得到点(1,3)
对于函数Y=-3X+2,取x=0,y=2,得到点 (0,2)取x=1,y=-1,得到点(1,-1) Y=3X
3 2 1 -2 -1
在坐标系里描出各组点,分别过两 点做直线就得到函数图象.
O 1
-1
2
3
X
在同一坐标系里画出下 列一次函数的图象 . 1 (1) y x 2 1 (2) y X 2 2 1 (3) y X 2 (1<x<4) 2
想一想,说一说
1.下列各点中,那些点在函数y=4x+1的图象上? 那些不在函数的图象上? (2, 9) (5, 1) (-1, -3) (-0.5, -1)
2.若函数y=2x-3 的图象经过点(1,a) ,(b, 2) 两点, 则a= b= 3.点已知M(-3, 4)在一次函数y=ax+1的图 象上,则a的值是
-10 -5
88
7 66 5 44 3 22 1
YY=2X+1
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
2.在你所画的直线上再 取几个点,分别找出各点 的横坐标和纵坐标,检验 一下这些点的坐标是否 满足关系式y=2x+1 ?
浙教版八年级上册数学第5章 一次函数含答案(各地真题)
浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、如图,A,B两地相距4千米,8∶00时甲从A地出发步行到B地,8:20时乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与所用的时间(分)之间的函数关系如图所示.由图中的信息可知乙到达A地的时刻为()A.8:30B.8:35C.8:40D.8:452、如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()①体育场离张强家3.5千米②张强在体育场锻炼了15分钟③体育场离早餐店1.5千米④张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个3、已知函数y=中,当x=a时的函数值为1,则a的值是()A.-1B.1C.-3D.34、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、如图已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A. B. C. D.6、如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A. B. C. D.27、一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集在数轴上表示正确的是()A. B. C. D.8、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A. B. C. D.9、如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后原路返回家,其中x(分钟)表示时间,y(千米)表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )A.食堂离小明家2.4千米B.小明在图书馆的时间有17分钟C.小明从图书馆回家的平均速度是0.04千米/分钟D.图书馆在小明家和食堂之间10、如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B. C.D.11、下面哪个点不在函数y = -2x+3的图象上()A.(-5,13)B.(0.5,2)C.(3,0)D.(1,1)12、已知函数:①y=2x;②y=﹣(x<0);③y=3﹣2x;④y=2x2+x(x≥0),其中,y随x增大而增大的函数有()A.1个B.2个C.3个D.4个13、已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14、函数y=中,自变量x的取值范围是()A.x>3B.x<3C. x≥-2且x≠3D.x≠315、函数y=中,自变量x的取值范围是()A.x≠0B.x≥﹣1C.x≠﹣1D.x≤﹣1二、填空题(共10题,共计30分)16、如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线 BD与x轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C 点,则直线BD对应的函数关系式为________ .17、如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为________.(写出一个即可)18、已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x 必定经过第________ 象限.19、点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为________.20、函数的自变量x的取值范围是________.21、函数是一次函数,则________.22、如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y 的值随x的增大而________.(填“增大”或“减小”)23、点P(-1,m)、Q(2,n)是直线y=-2x上的两点,则m与n的大小关系是________.24、已知直线,若,且,那么该直线不经过第________象限.25、如图所示的折线为某地向香港地区打电话需付的通话费y(元)与通话时间之间的函数关系,则通话应付通话费________元.三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.28、已知函数,与x成正比例,与x成反比例,且当时,;当时,.求y与x的函数表达式.29、某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?30、近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每kg售价(元)40 39 38 37 (30)每天销量(kg)60 65 70 75 (110)设当单价从40元/kg下调了x元时,销售量为ykg;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/kg,若不考虑其他情况,那么单价从40元/kg 下调多少元时,当天的销售利润W最大?利润最大是多少?参考答案一、单选题(共15题,共计45分)2、A3、D4、B5、C6、B7、C8、C9、D10、B11、C12、C13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
八年级数学上第五章《一次函数应用》
第15讲 一次函数的应用1. (1)方程(2)方程组(3)一元一次不等式的解可由一次函数的图像观察得到. 2. 一次函数的应用题:(1)解决实际生活中的优化问题;(2)解决实际问题的变化规律问题;(3)解决选择性问题;(4)与方程、不等式结合解决综合问题.3. 在运用一次函数解决实际问题时,关键在于抽象出一次函数的关系式. 二、例题精选:例1. 某航空公司规定,旅客乘机携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数的图像确定,那么旅客可携带的免费行李的最大质量为( ) A.20 kg B.25kg C.28kg D.30kg例2. 如图,请根据图象所提供的信息解答下列问题:(1)交点P 的坐标(1,1)是方程组 的解.(2)不等式kx+b<0的解是 .(3)当x 时,kx+b ≥mx+n. (4)若直线1l 分别交x 轴,y 轴于点M ,A ,直线2l 分别 交x 轴,y 轴于点B ,N ,求点M 的坐标和四边形OMPN 的面积.2l :例3. 因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要, 由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田 匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过 40h 乙水库停止供水.甲水库每个排灌闸灌溉速度相同,图中的拆线表 示甲水库蓄水量Q (万米3)与时间t (h )之间的函数关系.求: (1)线段BC 的函数关系式;(2)乙水库的供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常 水位的最低值?3.为了保护水资源,某市制定了一套节约用水的管理措施,其中对居民生活用水收费作如下规定: 若某用户六月份用水量为18t ,求其应缴纳的水费;(1)记该用户六月份用水量为x t ,缴纳水费为y 元,试求出y 关于x 的函数关系式;(2)若该用户六月份用水量为40t ,缴纳水费y 元的取值范围为70≤y ≤90,试求m 的取值范围.4.某商场计划采购甲乙丙三种型号的“格力”空调共25台.三种型号空调进价和售价如下表:商场计划投入总资金5万元,所购进的甲、丙型号空调数量相同,乙型号数量不超过甲型号数量的一半.若设购买甲型号空调x 台,所有型号空调全部售出后获得的总利润为W 元. (1)求W 与x 之间的函数关系式;(2)商场如何采购空调才能获得最大利润?(3)由于原材料上涨,商场决定将丙型号空调的售价提高a 元(a ≥100),其余型号售价不变,则商场又该甲 乙 丙 种类 价格 进价(元/台) 1600 1800 2400 售价(元/台) 1800 2050 2600如何采购才能获得最大利润?5.如图1是甲、乙两个圆柱形水槽的截面示意图,乙槽中有一圆柱形铁块立放其中.现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (cm )与注水时间x (min )之间的关系如图2所示.根据图像提供的信息,解答下列问题:(1)图2中的拆线ABC 表示 槽中水的深度与注水时间之间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系,点B 的纵坐标表示的实际意义是 ; (2)注水多长时间时,甲、乙两个水槽中的水的深度相同?(3)若乙水槽底面积为36cm 2,求乙水槽中铁块的体积;(4)若乙水槽中铁块的体积为112cm 3,求甲水槽底面积.6. 已知,如图,等边△ABC 中,AB =1,点P 是AB 上一动点,作PE ⊥BC于点E ;作EF ⊥AC 于点F ;作FQ ⊥AB 于点Q.(1)设BP =x ,AQ =y ,求y 与x 之间的函数关系式; (2)当点P 与点Q 重合时,求线段EF 的长;(3)当点P 与点Q 不重合,但线段PE ,FQ 延长线相交时,求它们与线段EF 围成的三角形周长m 的取值范围.甲槽 乙槽图1 图2A BCFQ P学生练习:1.如图是小明从学校到家里行进的路程s(m)与时间t(min)的函数图像,从中得到如下信息,其中不正确的是()A.学校离小明家1000mB.小明用了20min到家C.小明前10min走了路程的一半D.小明后10min比前10min走的快2.2015年夏天,某地旱情严重,该地10号,15号的人均用水量的变化情况如图所示.从10号开始人均用水量直线下降,当人日均用水量低于10kg时,政府将向当地居民送水.那么政府应从()号开始送水.A.23B.24C.25D.263.小敏从A地向B地行走,同时小聪从B地向A地行走,如图所示,相交点P的两条线段a,b分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/hB.3km/h和3km/hC.4km/h和4km/hD.4km/h和3km/h4.小张准备到甲乙商场购买些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的9折收费;在乙商场累计购买50元的商品后,再购买的商品按原价的95折收费.若累计购买x元,当x>a时,在甲商场需付钱数y=0.9x+10,当x>50时,在乙商场需付钱数为y.下列说法:①y=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150时,选择甲商场一定优惠些.其中正确的是()A.①②③④B.①③④C.①②③D.①②③5.某物流公司的快递车和货车同时从甲地出发,以各自的速度向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min,立即第1第2题按原路以另一速度返回,直至与货车相遇.已知货车的速度是60km/h , 两车之间的距离y (km )与货车行驶时间x (h )之间的函数图像如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100km/h ;②甲乙两地之间的距离是120km ;③图中点B 的坐标为(433,75);④快递车从乙地返回时的速度为90km/h.其中正确的是( )A.①②③B.②③④C.①③④D.①③6.有一个装有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5min 内只进水不出水,在随后的15min 内既进水又出水,得到容器内水量y (L )与时间x (min )之间的函数图像如图.若20min 后只放水不进水,这时(x ≥20时)y 与x 之间函数关系式是 (并写出x 的取值范围). 7.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地正好用了2h ,已知摩托车行驶的路程s (km )与行驶的时间t (h )之间的函数关系由如图的图像ABCD 给出,若这辆摩托车平均每行驶100km 的耗油量为2L ,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油 L.8.某校为实施国家“营养早餐”工程,食堂用甲乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:现要配制这种营养食品20kg ,要求每千克至少含有480单位维生素C ,设购买甲种原料x kg. (1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少?9.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中拆线反映了每户每月用电电费y (元)与用电量x (度)之间的函数关系式. (1)根据图像,阶梯电价方案分三个档次,填写下表:第7题甲种原料 乙 种原料 原料维生素C 及价格 维生素C (kg ) 600 400 原料价格(元/kg ) 9 5 档次 第一档 第二档 第三档 每月用电量x(度) 0<x ≤140(2)小明家某月用电120度,需交电费元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.。
浙教版八年级数学上册五章一次函数5.4《一次函数的图象》同步练习题 .docx
浙教版八年级数学上册第五章一次函数5.4《一次函数的图象》同步练习题一、选择题1.有下列函数:①y =3πx +1;②y =8x -6;③y =1x ;④y =-12-8x ;⑤y =5x 2-4x +1.其中是一次函数的有(B )A .4个B .3个C .2个D .1个 2.若函数y =-4x +3a -4是正比例函数,则a 的值为(D ) A. 0 B. -2 C. 2 D. 433.拖拉机油箱中原有油40 kg ,若工作时每小时耗油6 kg ,则油箱中的余油量Q (kg)与拖拉机工作时间t (h)的函数关系是(D )A .Q =40-6tB .Q =40-6t ⎝⎛⎭⎫0<t <203 C .Q =40-6t ⎝⎛⎭⎫0<t ≤203 D .Q =40-6t ⎝⎛⎭⎫0≤t ≤203 4.一次函数y =x +2的图象不经过(D )A .第一象限B .第二象限C .第三象限D .第四象限 5.一次函数y =x +2的图象大致是(A )6.若5y +2与x -3成正比例关系,则y 是x 的(B )A. 正比例函数B. 一次函数C. 没有函数关系D. 以上答案均不正确 二、填空题7. 一次函数y =2x -1的图象经过点(a ,3),则a =_______.8.在平面直角坐标系中,将直线y =-2x +1向下平移4个单位长度后.所得直线的表达式为________. 9.直线y =-2x +3与x 轴的交点坐标是⎝⎛⎭⎫32,0,与y 轴的交点坐标是(0,3),图象与坐标轴所围成的三角形面积是_________.(第10题)10.已知一次函数的图象如图所示,则一次函数的表达式为_________. 11. 已知点A (a ,3),B (-2,b )均在直线y =-32x +6上,则a +b =___.12.如图,直线y =-43x +8与x 轴,y 轴分别交于点A ,B ,M 是OB 上的一点.若将△ABM 沿AM折叠,点B 恰好落在x 轴上的点B′处,则直线AM 的表达式为_______.(第12题)三、解答题13.(1)在同一直角坐标系中,作出一次函数:y =-2x ,y =-2x +1,y =-2x -1的图象; (2)观察(1)中所画的图象,你觉得三条直线有何位置关系? (3)直线y =-2x -1可由直线y =-2x 经过怎样的平移得到?14.已知一次函数的图象经过点(1,1),(-1,-5). (1)求此一次函数的表达式;(2)求此一次函数的图象与两坐标轴围成的三角形面积;(3)已知另一条直线与该一次函数图象交于点A(-1,m),且该直线与y 轴的交点的纵坐标为4,求这条直线的表达式.15.依法纳税是每个公民应尽的义务.从2011年9月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过3500元,不需缴税;超过3500元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名员工2014年3月的收入为4400元,问:他应缴税款多少元?(2)设x表示公民每月收入(单位:元),y表示应缴税款(单位:元),当5000≤x≤8000时,请写出y关于x的函数表达式;(3)某公司一名职员2014年4月应缴税款120元,问:该月他的收入是多少元?(第16题)16.在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=-2x+2的图象上,平移2次后在函数y=-2x+4的图象上……由此我们知道,平移n次后在函数y=-2x+2n的图象上(请填写相应的函数表达式);(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q处,且平移的路径长不小于50,不超过56,求点Q的坐标.参考答案:1B. 2D. 3D. 4D .5.A 6.B7. 2 8. y =-2x -3. 9. 94. 10. y =-2x +2 11. 11 12. y =-12x +313【解】 (1)如解图. (2)三条直线互相平行.(3)直线y =-2x -1可由直线y =-2x 向下平移1个单位得到.(第13题解)14【解】 (1)设y =kx +b. ∵图象经过点(1,1),(-1,-5),∴⎩⎪⎨⎪⎧k +b =1,-k +b =-5,解得⎩⎪⎨⎪⎧k =3,b =-2. ∴y =3x -2.(2)易得y =3x -2与两坐标轴交于点M ⎝⎛⎭⎫23,0,N(0,-2). ∴S △MON =12×23×2=23.(3)∵点A 在y =3x -2上,∴m =-5. ∴另一条直线经过点(-1,-5),(0,4). ∴可求得这条直线的表达式为y =9x +4.15【解】 (1)3月份他应缴税款(4400-3500)×3%=27(元).(2)当5000≤x ≤8000时,y =[(x -3500)-1500]×10%+1500×3%=0.1x -455. (3)∵当收入x 为5000元至8000元之间时,纳税额y 在45元至345元之间, ∴当y =120时,120=0.1x -455,解得x =5750,故该职员2014年4月的收入为5750元.16【解】 (1)描点如解图所示:(第15题解)(2)设过点(0,2),(1,0)的函数表达式为y =kx +b(k ≠0),则⎩⎪⎨⎪⎧2=b ,0=k +b ,解得⎩⎪⎨⎪⎧b =2,k =-2. 故第一次平移后的函数表达式为y =-2x +2;同理,平移2次后的函数表达式为y =-2x +4,平移n 次后的函数表达式为y =-2x +2n. (3)设点Q 的坐标为(x ,y),由题意,得⎩⎪⎨⎪⎧y =-2x +2n ,y =x ,解得⎩⎨⎧x =2n3,y =2n 3.∴点Q 的坐标为⎝⎛⎭⎫2n 3,2n 3. ∵平移的路径长为x +y ,∴50≤2n 3+2n3≤56,解得37.5≤n ≤42.∵点Q 的坐标为正整数, ∴n 为3的倍数,∴n =39或42.∴点Q 的坐标为(26,26)或(28,28).初中数学试卷鼎尚图文**整理制作。
《第5章 一次函数》试卷及答案_初中数学八年级上册_浙教版_2024-2025学年
《第5章一次函数》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一次函数的表达式为y=2x-3,那么当x=2时,y的值为()A. 1B. 3C. 1D. 52、若一次函数y=kx+b经过点(3,-2),且该函数图像与y轴交于点(0,4),则该函数的解析式为()A. y=2x+4B. y=-2x+4C. y=-2x-4D. y=2x-43、已知一次函数的图象经过点(2,-3)和(4,1),求该一次函数的解析式。
A. y = x - 5B. y = x + 5C. y = -x + 5D. y = -x - 54、在一次函数 y = ax + b 中,若 a > 0 且 b < 0,则该函数的图象将满足以下哪个条件?A. 一定经过第一、二、三象限B. 一定经过第二、三、四象限C. 一定经过第一、三、四象限D. 一定经过第一、二、四象限5、已知一次函数y=kx+b(k≠0)的图象经过点(2,3)和点(-1,1),则下列选项中正确的是()A. k=2,b=1B. k=1,b=2C. k=2,b=-1D. k=-1,b=26、若一次函数y=kx+b的图象经过点(0,1)且与y轴的交点在x轴的上方,则下列选项中正确的是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<07、已知函数y=kx+b(k≠0)的图像经过点A(2,-1)和点B(-1,3),则下列哪个选项是正确的?A. k=-2,b=3B. k=2,b=3C. k=2,b=-3D. k=-2,b=-38、若一次函数y=kx+b的图像与x轴、y轴都相交,则下列哪个选项是正确的?A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<09、已知一次函数y=kx+b的图象经过点(2,3)和点(-1,-1),则下列选项中正确的是()A. k=1, b=1B. k=2, b=-1C. k=-1, b=1D. k=-2, b=1 10、在一次函数y=kx+b中,若k<0且b>0,则函数图象的走向是()A. 从左到右上升B. 从左到右下降C. 从左到右水平D. 从左到右先上升后下降二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知一次函数的图象经过点A(2, 5)和点B(4, 3),求该一次函数的解析式。
第五章一次函数专题5.2 一次函数与正比例函数-重难点题型(含解析)
一次函数与正比例函数6大题型【题型1 一次函数的概念】【例1】(2021春•娄星区期末)在下列函数中:①y =﹣8x ;②;③;④y =﹣8x 2+5;⑤y =﹣0.5x ﹣1,一次函数有( )A .1个B .2个C .3个D .4个【变式1-1】(2020秋•肥西县校级月考)下列函数:(1)y =3x ;(2)y =2x ﹣1;(3);(4)y =x 2﹣1;(5)中,是一次函数的有( )个A .4B .3C .2D .1【变式1-2】(2021春•汉阴县期末)在①y =﹣8x :②y :③y1;④y =﹣5x 2+1:⑤y=0.5x ﹣3中,一次函数有( )A .1个B .2个C .3个D .4个【变式1-3】下列语句中,y 与x 是一次函数关系的有( )个(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这个棵树的高度为y 厘米,y 与x 的关系;(4)某种大米的单价是2.2元/千克,当购买大米x 千克大米时,花费y 元,y 与x 的关系.A .1B .4C .3D .2【题型2 利用一次函数的概念求值】【例2】(2021春•昭通期末)若y =(k ﹣2)x |k ﹣1|+1表示一次函数,则k 等于( )A .0B .2C .0或2D .﹣2或0【变式2-1】(2021春•雨花区期中)若函数y =(m +2)x |m |﹣1﹣5是一次函数,则m 的值为( )A .±2B .2C .﹣2D .±1【变式2-2】(2021春•杨浦区期末)如果y =kx +x +k 是一次函数,那么k 的取值范围是 .【变式2-3】已知y =(k ﹣1)x |k |+(k 2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.【题型3 正比例函数的概念】【例3】(2021春•萝北县期末)若y=(m+2)x+m2﹣4是关于x的正比例函数,则常数m = .【变式3-1】函数y=(k+1)是正比例函数,则常数k的值为 .【变式3-2】已知函数y=mx+25﹣m是正比例函数,则该函数的表达式为 .【变式3-3】已知函数y=2x2a+b+a+2b是正比例函数,则a= .定系数法。
(汇总)浙教版八年级上册数学第5章 一次函数含答案
浙教版八年级上册数学第5章一次函数含答案一、单选题(共15题,共计45分)1、如图,直线y=kx+b和y=mx都经过点A(-1,-2),则不等式mx<kx+b的解集为( )A.x<-2B.x<-1C.x>-2D.x>-12、下列说法中不正确的是()A.函数y=2x的图象经过原点B.函数y= 的图象位于第一、三象限 C.函数y=3x﹣1的图象不经过第二象限 D.函数y=﹣的值随x 的值的增大而增大3、二次函数的图象如图所示,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、点A(m,1)在y=2x-1的图象上,则m的值是()A.1B.2C.D.05、图中以两直线,的交点坐标为解的方程组是()A. B. C. D.6、已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<07、从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是()A.y=t﹣0.5B.y=t﹣0.6C.y=3.4t﹣7.8D.y=3.4t﹣88、若函数y=则当函值y=8时,自变量x的值是( )A.±B.4C. 或4D.4或-9、在同一直角坐标系中,一次函数y=kx-k与反比例函数(k≠0)的图象大致是()A. B. C. D.10、一次函数y=ax+b与反比例函数y=的图象如图所示,则()A.a>0,b>0.c>0B.a<0,b<0.c<0C.a<0,b>0.c>0 D.a<0,b<0.c>011、一次函数与的图象如下图,则下列结论(1);(2);(3)当时,(4)的解为中,正确的个数是()A.1B.2C.3D.412、甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是()(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.A.1个B.2个C.3个D.4个13、若一次函数的图象经过点和点,其中,则下面满足条件的一对值是()A. 且B. 且C. 且D.且14、下列函数解析式中,不是正比例函数的是()A.xy=﹣2B.y+8x=0C.3x=4yD.15、已知点(-4,y1),(2,y2)都在直线y=-2x+2上,则y1、y2的大小关系是()A.y1 >y2B.y1=y2C.y1<y2D.不能比较二、填空题(共10题,共计30分)16、已知正比例函数y=2x的图象过点(x1, y1)、(x2, y2).若x2﹣x 1=1,则y2﹣y1=________.17、如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第12秒时的速度为32米/秒;③乙车前4秒行驶的总路程为48米.其中正确的是________.(填序号)18、已知函数y=2x+b经过点A(2,1),将其图象绕着A点旋转一定角度,使得旋转后的函数图象经过点B(﹣2,7).则①b=________;②旋转后的直线解析式为________.19、当m,n是正实数,且满足mn=m+2n时,就称点P(m,)为“新时代点”.如图,已知点A(0,10)与点M都在直线y=﹣x+b上,点B,C是“新时代点”,且点B在线段AM上.若MC=3,AM=8 ,则△MBC的面积为________.20、已知反比例函数的图象经过点,则当时,自变量x的取值范围________.21、已知点A(﹣2,y1),B(1,y2)在直线y=kx+b上,且直线经过第一、二、四象限,则y1________y2.(用“>”,“<”或“=”连接)22、有一辆汽车储油升,从某地出发后,每行驶千米耗油升,如果设剩余油量为(升),行驶的路程为(千米),则与的关系式为________.23、如图所示,直线y= x分别与双曲线y= (k1>0,x>0)、双曲线y=(k2>0,x>0)交于点A,点B,且OA=2AB,将直线向左平移4个单位长度后,与双曲线y= 交于点C,若S△ABC =1,则k1k2的值为________.24、若一次函数y=kx﹣(2k+1)是正比例函数,则k的值为________25、已知一次函数与图象如图所示,则下列结论:①;② ;③关于的方程的解为;④当,.其中正确的有________(填序号).三、解答题(共5题,共计25分)26、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.27、已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?28、星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?29、已知点P(﹣1,11)关于x轴的对称点在直线y=ax+b上,且直线y=ax+b 与直线y=2x+1的交点的横坐标为1,试确定a,b的值.30、某超市经营的杂粮食物盒有A,B两种型号,单个盒子的容量和价格如下表所示,其中A型盒子正做促销活动:一次性购买三个及以上可返现8元.型号 A B(1)张芳、王楠两人结伴去购物,请你根据两人的对话,判断怎样买最省钱:张芳:“A型盒子有促销,我正好买几个装大米用,我买4个正好够用.”王楠:“嗯,我也买几个,不过,我家得需要5个.”张芳:“走,结账去.”王楠:“等等,咱俩合计一下,怎么买最省钱…”(2)小红和妈妈也来买盒子,下面是两人的对话:妈妈:“这些盒子不错,买5个B型让孩子恰好能把咱家30升的小米都装上”小红:“可是B型盒子没有折扣,咱可以两种盒子搭配着买,既能每个盒子都装满,还能省钱”①设小红需要买A型号的盒子x个,一次性购买盒子的总费用为y元,求y与x的函数关系式;②当x=3时,求小红和妈妈当天一次性购买盒子的总费用.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、B6、D7、B8、D10、B11、B12、D13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
八年级数学上第五章《函数一次函数》
第13讲 函数与一次函数()一、知识要点:1变化过程中,是相对的2.常量不一定都是具体 的数值.3.中,设有两个变量x ,y 如果对于x 唯一确定的值与之对应,那么就说y 是x 的函数,x 叫做自变量.4.自变量的取值一要使式子有意义,二是符合问题的实际意义.当含自变量的式子: (1)是整式,自变量取值为全体实数;(2)是分式,则分母不为0;(2)是二次根式,被开方数不小于0;(4)对于实际问题的函数关系还要符合实际意义.5.求函数表达式,一般先求出等式(即方程),再求函数关于自变量的函数表达式.6.正比例函数y=kx (k ≠0)是一次函数的特殊形式. 二、例题精选:例1.给出下列各级变量:① 底边上的高是常量,三角形的面积S 与它的底边; ② x -y =3中的x 与y ;③ y =2x 中的y 与x ;④圆的面积S 与圆的半径r.其中成函数关系的有( ) A. 1个 B. 2个 C. 3个 D. 4个例2.小莉从家中开车出发到体育馆看比赛,途中发现忘了带门票,于是打电话叫妈妈马上要送来,同时小莉也往回开,遇到妈妈后聊了一会,接着继续开车前往比赛场地.设小莉从家里出发后所用时间为t ,小莉与比赛现场距离为s.下面能反映s 与t 的函数关系的大致图像是( )例3甲乙两个工程队完成某项工程,假设甲乙两个工程队的工作效率是一定的,工作总量为1,甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示. (1)甲队单独完成这项工程,需 天;(2)求乙队完成这项工程所需的天数;(3)求出图中的x.t s t s t st s xy例4. 张某天上午9时骑自行车离开家,15时回到家,他特意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?它们是函数关系吗?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回到家的平均速度是多少?例5.已知,y1与x+1成正比例,y2与x-1成正比例,y=y1+y2,当x=2时,y=9;当x=3时,y =14.求y与x之间的函数关系式.例6.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种白酒x瓶,总利润为y元.(1)请写出y关于x的函数表达式及自变量x的取值范围.(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?例7.甲、乙两个旅行社组织去某地旅行,每个人的收费均为100元,除优惠政策外其他服务均相同,甲旅行社的收费标准是每个人均可打7折,乙旅行社可免去一位带队教师的费用,其他人均可打8折.(1)请分别写出甲、乙旅行社所需的总费用y1和y2与旅行人数x之间的函数表达式.(2)当人数为5时,甲乙两个旅行社的总费用各是多少?此时,你会选择哪个旅行社?(3)如果人数为a,你会怎样选择?例8.某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价收费,每月用水量不超过10t (含10t)时,每吨按基础价收费;每月用水量超过10t时,超过的部分每吨按调节价收费.例如,第一个月用水16t,需缴水费17.8元,第二个月用水20t,需缴水费23元.(1)求每吨水的基础价和调节价.(2)设每月用水n(t),应缴水费m元,写出m与n之间的函数关系式.(3)若某月用水12t,则应缴水费多少元?例9.某日通过某公路收费站的汽车中共有3000辆次缴了通行费,其中大车每辆次缴通行费10元,小车每辆次缴通行费5元.(1)设这一天小车缴通行费的辆次为x,总的通行费为y元,求y与x之间的函数表达式.(2)若估计缴费的3000辆次汽车中大车不少于20%且不多于40%,试求该收费站这一天收费总数的范围.10.阅读下面的材料: 例1:已知函数y =3x -1.解:由y =3x -1可得x =31(y+1),所以原函数y =3x -1的反函数是y =31(x+1). 例2,已知函数()113≠-+=x x x y 解:由13-+=x x y ,可得13-+=y y x ,所以原函数13-+=x x y 的反函数是()113≠-+=x x x y . 在以上现例中,在相应的条件下,一个原函数有反函数时,原函数中自变量x 的取值范围就是反函数中y 的函数值的取值范围,原函数中函数值y 的取值范围就是反函数中自变量x 的取值范围,通过以上内容完成下列任务:(1)求函数y =-2x+3的反函数;(2)求函数12+-=x x y 的反函数的函数值的取值范围.(3)下列函数中反函数是它本身的是 .(填序号) ①y =x ;②y =x+1;③y =-x+1;④()111≠-+=x x x y ;⑤()01≠=x xy三、学生练习:(一)选择题(每题3分,共30分) 1. 在下列四个函数关系中,y=3x,y=-x ,y=310-x ,y=x -2,其中一次函数的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个 2. 若函数y =(a+1)12++a ax 为正比例函数,则a 的值为( )A. -1B. 0C. 1D. -1或0 3. 函数y =413-+-x x 中自变量x 的取值范围是( ) A. x>3 B. x ≥3 C. x>3且x ≠4 D. x ≥3且x ≠4 4. 设等腰三角形的顶角度数为y ,底角度数为x ,则( )A. y=180°-2x (x 为全体实数)B. y=180°-2x (0°≤x ≤90°)C. y=180°-2x (0°<x<90°)D. y=180°-x21(0°<x<90°) 5.当x =2时,函数y =kx+10与函数y =3x+3k 的值相等,则k 的值为( ) A. 2 B. 4 C. 6 D. 86. 已知函数y=()()⎩⎨⎧<≥+04012x x x x ,则当x =2时,函数值y 为( ) A. 5 B. 6 C. 7 D. 8 7. 右图中的图象分别给出变量x 与y 之 间的对应关系,判断哪个图中的变量y 不是x 的函数( ).8. 已知一次函数y=kx+b ,当x 的值减少1时,y 的值减少2,则当x 的值增加2时,y 的值( ) A. 增加4 B. 减少4 C. 增加2 D. 减少2 9.小亮骑自行车上学,最初以某一速度匀速前进,中途耽误 了几分钟,为了按时到校,小亮加快了速度,仍保持匀速前 进,结果按时到校.那么,小亮骑自行车行进路程s (km ) 与行进时间t (h )的函数图象示意图大致是图中的( ). 10. 如图反映的过程是:小刚从家去菜地浇水,又去青稞 地除草,然后回家,如果菜地和青稞地的距离为a km ,小 刚在青稞地除草比在菜地浇水多用了b 分钟,则a ,b 的值 为( ) A. 1,8 B. 0.5,12 C. 1,12 D. 0.5,8(二)填空题(每题3分,共24分)11. 如果y=(k+1)2k x 是正比例函数,则k=_____.12. 当m=_______时,函数y=(2m -1)x 3m -2+3是一次函数,且y 随x 的增大而_______.13. 已知y =y 1+y 2,y 1与x 成正比例,y 2与x -2成正比例,当x =1时,y =0;当x =-3时,y =4,则当x =3时,y 的值为 .14. 函数y =24-+x x 中,自变量x 的取值范围是 .15. 有一棵树苗,刚栽下去时,树高2.1m ,以后每年长0.5m ,则小树的高y (m )与所栽年数x 的函数关系为_________.16. 一次函数y=kx+b 的图象与两坐标轴的交点坐标分别为(3,0)和(0,-2),•则k=_____,b=_______.17. 已知一次函数y=2x+b 的图象经过点A (-1,1),那么该函数图象经过点B (1,_____)和点C (__ ___,0).18. 如图所示,直线L 对应的函数表达式为___ _____. 三、解答题(每题8分,共32分)19. 某日通过高速公路收费站的汽车中,共有3000辆次缴了通行费,其中大车每辆次缴费20元,小车每辆次缴费10元.设这一天小车缴通行费的辆次为x ,总的通行费收入为y 元. (1)试写出y 关于x 的函数关系式,y 是x 的一次函数吗?是正比例函数吗? (2)若小车缴通行费的辆次为1000,这天的通行费收入是多少元?20. 两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.15 cm 10.5cm21. 我市某工艺品厂生产一款工艺品,已知这 款工艺品的生产成本为每件60元, 经市场调 查发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系. (1)求销售量y (件)与售价x (元)之间的函数表达式. (2)当售价为80元时,工艺品厂每天获得的利润为多少元?22.某长途汽车客运公司规定:旅客可随身携带一定质量的行李,若超过规定的质量,则需要购买行李票.已知行李费y (元)是关于x (kg )的一次函数,王先生带60kg 行李需付6元行李费,张先生带80kg 行李需付10元行李费. (1)求y 与x 之间的函数表达式.(2)问:旅客最多可免费携带多少千克行李?23. 我市某乡A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A •村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15•元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,A 、B •两村运往两仓库的柑桔运输费用分别为y A 元和y B 元. (1)请填写下表,求出y A 、y B 与x 之间的函数关系式; (2)在什么范围内,A 村的运费比B 村的低?(3)考虑到B 村的经济承受能力B 村的柑桔运费不得 超过4830元,在这种情况下,问怎样调运,才能使两 村运费之和最小?求出这个最小值.创办了“润杨”报刊零售点,经营某种晚报,杨妈妈提供了如下信息:(1)买进每份0.2元,卖出每份0.3元;(2)一个月内(以30天计)有20天每天可以卖出200份,其余10天每天只能卖出120份;(3)一个月内,每天从报社买进的报纸数必须相同,当天卖不掉的报纸,以每份0.1元退给报社.①填写上表:②设每天从报社买进该种晚报x份(120≤x≤200 )时,月利润为y元,试求出y与x之间的函数表达式,并求月利润的最大值.八上五章《函数一次函数》第13讲答案:例1、D ; 例2、B 例3.(1)40;(2)4114016=⎪⎭⎫ ⎝⎛+a ,a =60;(3)18,43601401==⎪⎭⎫ ⎝⎛+b bx =18+10=28例4、(1)距离与时间的关系,是函数关系(2)15km 和35km.(3)最远是12时,离家35km. (4)12.5km. (5)35÷(15-13)=17.5(km/h ) 例5、y =5x -1 例6、(1)y =5x+9000,0<x<600,且x 为正整数,(2)10800元. 例7、(1)y 1=70x ;y 2=80x -80. (2)当x =5时,y 1=350(元),y 2=320(元).选择乙 (3)当x =a 时,y 1=70a ,y 2=80a -80当y 1>y 2时,a<8,应选乙旅行社;当y 1=y 2时,a =8,应选甲、乙旅行社都可; 当y 1<y 2时,a>8,应选甲旅行社. 例8、(1)基础价x =1,调节价y =1.3;(2)当0<n ≤10时,m =n ;当n>10时,m =1.3n -3 (3)当n =12时,m =12.6(元) 例9.(1)y =30000-5x (0≤x ≤3000)(2)由已知1800≤x ≤2400,∴18000≤y ≤21000,∴该收费站这一天收费总数不低于18000元且不高于21000元.例10、(1)2321+-=x y (2)y ≠-1 (3)① ③ ④ ⑤学生练习:DBDC BABA CD11.k=-1;12. m =1,增大; 13.10; 14.x ≥-4且x ≠2; 15.y =0.5x+2.116.y =32x -2; 17.B (1,5),C (-23,0); 18.y=32x+219(1)y=-10x+60000,是一次函数,但不正比例; (2)当x =1000时,y =50000. 20.(1)y =kx+b ,y=1.5x+4.5;(2)x =12时,y =22.5. 21.(1)y =-100x+10000;(2)40000元. 22.(1)y =51x -6, (2)30kg23、(1)()()200046803,200050005≤≤+=≤≤+-=x x y x x y B A (2)当B A y y <时,即当40<x ≤200时,A 村费用小.(3)∵B y ≤4830,∴3x+4680≤4830, ∴x ≤50,设总运费为y 元,则y =-2x+9680,∴x =50时,y 最小,=9580(元)26.①300;390;②y =20(0.3-0.2)x+10(0.3-0.2)×120-10(0.2-0.1)(x -120)=x+240(120≤x≤200)当x=200 时,y=440。
8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享
浙教版-8年级-上册-数学-第5章《一元函数》《一次函数》专题-方案最优、行程问题-每日好题挑选一、一次函数的应用—方案最优化问题【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),求y与x之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y最小,并求出y的最小值.【练1-1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【练1-2】某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?项目空调彩电进价(月/台)54003500售价(月/台)61003900【练1-3】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m 元(m<250).问怎么安排集装箱这批货物总运输费最少?二、一次函数的应用—行程问题【例2】甲车从A 地出发匀速驶向B 地,到达B 地后,立即按原路原速返回A 地;乙车从B 地出发沿相同路线匀速驶向A 地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A 地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A 地,两车距各自出发地的路程y 千米与甲车行驶时间x 小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数;(2)求甲车从B 地返回A 地的过程中,y 与x 的函数关系式(不需要写出自变量x 的取值范围);(3)直接写出乙车出发多少小时,两车恰好相距80千米。
第五章 一次函数
第五章一次函数5.1函数(1)[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。
如果学生没有乘坐火车的经历,可改用汽车或创设其他类似情境.情境二:分别用表格、关系式和语言等方式给出不同的实际问题,让学生从这些情境中,发现在各种变化过程中,往往存在着两个相互联系的变量,从而引入函数的概念.2.探索活动活动一:展示一幅列车行驶或车厢内的图片.用下列问题引导学生加入小明、小丽、小亮和小华的讨论,感受常量与变量的意义:(1)列车在行驶,位置在改变,因此与位置有关的数量在改变,这里有不变的数量吗?(2)除了小丽、小明所说的那些不变的数量外,在这个问题中还有不变的数量吗?(3)除了小亮、小华所说的那些变化的数量外,在这个问题中还有变化的数量吗?活动二:可以用下列问题引导学生展开活动,体会函数的意义:(1)你从水库工作人员制作的表格里获得哪些信息?水位高低与水库容量有什么关系?(2)小鱼的条数n与所需火柴棒的根数S的关系为S=8+6(n—1),说说你从中获得的信息;(3)变化中的圆面积与半径的大小密切相关,你能大致描述它们之间的关系吗?(4)上述问题有共同之处吗?说说你的看法.5.1函数[教学目标]1.通过简单实例,了解常量与变量的意义.2.通过实例,了解函数的概念和表示方法,并能说出一些函数的实例.3.能根据图象对简单实际问题中的函数关系进行分析.4.能根据实际问题的意义以及函数关系式,确定函数的自变量取值范围,并会求出函数值.[教学过程(第一课时)]1.情境创设情境一:在行驶的列车上,围绕位置变化与数量变化的话题,谈论车速、路程、时间的变化,是学生熟悉的场景,能自然贴切地引入常量与变量的概念。
第五章复习(2)
一、要点梳理:1.在利用一次函数解决实际问题时,首先要根据题目的意思得到函数的解析式,再利用一次函数的性质来综合其它知识来解决问题.关键是顺利的得到函数的解析式. 二、例题讲解例1:如图,小球从点A 运动到点B ,速度v (米/秒)和时间t (秒)的函数关系式是v =2t .如果小球运动到点B 时的速度为6米/秒,小球从点A 到点B 的时间是( ).A.1秒B.2秒C.3秒D.4秒例2: 星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的函数图象.例3:某蒜薹(t ái )生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表:若经过一段时间,蒜薹按计划全部售出获得的总利润为y (元),蒜薹零售x (吨),且零售量是批发量的.31(1)求y 与x 之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润。
t(时)例4:在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的..距离..分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示. (1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.例5:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;(2)对x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.例6:抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A 、B 两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A 库的容量为70吨,B 库的容量为110吨.从甲、乙两库到A 、B 两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)(1)若甲库运往A 库粮食x 吨,请写出将粮食运往A 、B 两库的总运费y (元)与x (吨)的函数关系式(2)当甲、乙两库各运往A 、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?三、当堂训练1. 一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( )A .摩托车比汽车晚到1 hB . A ,B 两地的路程为20 kmC .摩托车的速度为45 km/hD .汽车的速度为60 km/h2. 济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A .4小时 B .4.4小时 C .4.8小时 D .5小时3. 小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( ).4. 如图是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是 米.) (天)5. 我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?6. 如图所示,某地区对某种药品的需求量1y (万件),供应量2y (万件)与价格x (元/件)分别近似满足下列函数关系式:1270238y x y x =-+=-,,需求量为0时,即停止供应.当12y y =时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量? (3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.。
第五章_一次函数复习课
一
次 函
图象
数
y
b
ox
y
y
y
ox
b
b
o
x
ox
b
k,b的符号
k>0 b>0
k>0
k<0
b<0
b>0
k<0 b<0
(
经过象限 一、二、三 一、三、四 一、二、四 二、三、四
增减性
y随x的增 大而增大
y随x的增 y随x的增 大而增大 大而减小
y随x的增 大而减小
正
比 例
1、图象是经过(0,0)与(1,k)的一条直线
B. x<-1
y y=k2x
5.如图,一次函数图象经过点A,且与正
比例函数y=-x的图象交于点B,则该
一次函数的表达式为( B )
-1 Ox
-2 y=k1x +b
A. y=-x+2 B.y=x+2 C.y=x-2
第5题图 y
D.y=-x-2
6.若一次函数 y (m 2)x 2 的函数
值随x的增大而减小,则的取值范围是
七、求函数解析式的方法:
先设出函数解析式,再根据条 件确定解析式中未知的系数,
从而具体写出这个式子的方法,
--待定系数法
3、如图,直线a是一次函数y=kx+b的图象,求其解析式
解:由图象知直线过(-2,0),(0,-1)两点
把两点的坐标分别代入y=kx+b,得: y
0=-2k+b
①
-1=b
②
把 b= -1 代入①,得:
解:由 y与x-1成正比例可设y=k(x-1)
第五章一次函数专题5.5 一次函数的应用-重难点题型(含解析)
一次函数的应用6大题型【题型1 一次函数的应用(行程问题)】【例1】(2021春•海门市期中)甲、乙两人分别从笔直道路上的A、B两地同时出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x (分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有( )A.0个B.1个C.2个D.3个【变式1-1】(2021春•巴彦淖尔期末)如图,折线ABCDE描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)与行驶时间t(h)之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是( )①汽车在行驶途中停留了0.5h;②汽车在整个行驶过程的平均速度是40km/h;③汽车共行驶了240km;④汽车出发4h离出发地40km.A.①②④B.①②③C.①③④D.①②③④【变式1-2】(2021•沙坪坝区校级开学)某天上午,大学生小南从学校出发去重庆市图书馆查阅资料,同时他的同学小开从该图书馆看完书回学校.两人在途中相遇,于是马上就各自最近的研究课题交流了6分钟,又各自按原速前往自己的目的地.直到小开回到学校并电话告知小南后,小南决定提速25%到达图书馆(接打电话的时间忽略不计).在整个运动过程中,小南和小开之间的距离y(m)与小南所用的时间x(min)之间的函数关系如图所示,则下列说法中正确的是( )A.学校和图书馆的之间的距离为1200mB.小南提速前,小开的速度是小南的1.8倍C.m=1500D.n=62【变式1-3】(2021•蒙阴县二模)甲、乙两车从M地到480千米的N地,甲车比乙车晚出发2小时,乙车途中因故停车检修,图中线段DE、折线OABC分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数图象,请根据图象所提供的信息,解决如下问题:(1)求两车在途中第二次相遇时,它们距目的地的路程;(2)甲车出发多长时间,两车在途中第一次相遇?【题型2 一次函数的应用(调运问题)】【例2】(2021春•大安市期末)A城有肥料400吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡镇,从A城运往C、D两乡镇肥料费为20元/吨和25元/吨;从B城往C、D两乡镇运肥料的费用分别为15元/吨和24元/吨,C乡镇需要肥料340吨,D乡镇需要肥料360吨.设A城运往C乡镇x吨肥料,请解答下列问题:(1)根据题意,填写下列表格:城、乡/吨数C DA x B (2)设总运费为W(元),求出W(元)与x(吨)的函数关系式,并写出自变量的取值范围;(3)求怎样调运可使总运费最少?最少为多少元?【变式2-1】(2021•寻乌县模拟)疫情期间,甲、乙两个仓库要向M,N两地运送防疫物资,已知甲仓库可调出50吨防疫物资,乙仓库可调出40吨防疫物资,M地需35吨防疫物资,N地需55吨防疫物资,两仓库到M,N两地的路程和运费如下表:路程/千米运送1千米所需运费/(元/吨)甲仓库乙仓库甲仓库乙仓库M地20151212N地2520108(1)设从甲仓库运往M地防疫物资x吨,两仓库运往M,N两地的总费用为y元,求y关于x的函数关系式.(2)如何调运才能使总运费最少?总运费最少是多少?【变式2-2】(2021春•满洲里市期末)已知A地有蔬菜200t,B地有蔬菜300t,现决定将这些蔬菜全部调运给C,D两地,C,D两地分别需要调运蔬菜240t和260t.其中从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B 地运往C地的蔬菜为x吨.设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案.【变式2-3】(2021春•昆明期末)某市A、B两个仓库分别有救灾物资200吨和300吨,2021年5月18日起云南大理州漾濞县已连续发生多次地震,最高震级为5月21日发生的6.4级地震,为援助灾区,现需将这些物资全部运往甲,乙两个受灾村.已知甲村需救灾物资240吨,乙村需救灾物资260吨,从A仓库运往甲,乙两村的费用分别为每吨20元和每吨25元,从B仓库运往甲,乙两村的费用分别为每吨15元和24元.设A仓库运往甲村救灾物资x吨,请解答下列问题:(1)根据题意,填写下表格:仓库甲村乙村A x①B②③①= ;②= ;③= .(2)设总运费为W(元),求出W(元)与x(吨)的函数关系式.(3)求怎么调运可使总运费最少?最少运费为多少元?【题型3 一次函数的应用(利润最大化)】【例3】(2021•镇雄县二模)2020年6月1日上午,国务院总理在山东烟台考察时表示,地摊经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.“地摊经济”成为了社会关注的热门话题.小明从市场得知如表信息:甲商品乙商品进价(元/件)355售价(元/件)458小明计划购进甲、乙商品共100件进行销售,设小明购进甲商品x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.【变式3-1】(2021•青白江区模拟)在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?【变式3-2】(2021春•连山区期末)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;并写出自变量的取值范围;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?【变式3-3】(2021•鹿邑县一模)草莓是一种极具营养价值的水果,当下正是草莓的销售旺季.某水果店以2850元购进两种不同品种的盒装草莓.若按标价出售可获毛利润1500元(毛利润=售价﹣进价),这两种盒装草莓的进价、标价如表所示:价格/品种A品种B品种进价(元/盒)4560标价(元/盒)7090(1)求这两个品种的草莓各购进多少盒;(2)该店计划下周购进这两种品种的草莓共100盒(每种品种至少进1盒),并在两天内将所进草莓全部销售完毕(损耗忽略不计).因B品种草莓的销售情况较好,水果店计划购进B品种的盒数不低于A品种盒数的2倍,且A品种不少于20盒.如何安排进货,才能使毛利润最大,最大毛利润是多少?【题型4 一次函数的应用(费用最低)】【例4】(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?【变式4-1】(2021春•环江县期末)某县园林局打算购买三角梅、水仙装点城区道路,负责人小李去花卉基地调查发现:购买1盆三角梅和2盆水仙需要14元,购买2盆三角梅和1盆水仙需要13元.(1)求三角梅、水仙的单价各是多少元?(2)购买三角梅、水仙共10000盆,且购买的三角梅不少于3000盆,但不多于5000盆.①设购买的三角梅种花a盆,总费用为W元,求W与a的关系式;②当总费用最少时,应选择哪一种购买方案?最少费用为多少元?【变式4-2】(2021•三水区校级二模)截至2021年4月10日,全国累计报告接种新冠疫苗16447.1万剂次,接种总剂次数为全球第二.某社区有80000人每人准备接种两剂次相同厂家生产的新冠疫苗并被分配到A、B两个接种点,A接种点有5个接种窗口,B接种点有4个接种窗口.每个接种窗口每天的接种量相同,并且在独立完成20000人的两剂次新冠疫苗接种时,A接种点比B接种点少用5天.(1)求A、B两个接种点每天接种量;(2)设A接种点工作x天,B接种点工作y天,刚好完成该社区80000人的新冠疫苗接种任务,求y关于x的函数关系式;(3)在(2)的条件下,若A接种点每天耗费6.5万元,B接种点每天耗费为4万元,且A、B两个接种点的工作总天数不超过85天,则如何安排A、B两个接种点工作的天数,使总耗费最低?并求出最低费用.【变式4-3】(2021春•大同期末)在新冠疫情防控期间,某校新购进A、B两种型号的电子体温测量仪共20台,其中A型仪器的数量不少于B型仪器的,已知A、B两种测温仪的价格如表所示,请问购买A、B两种测温仪各多少台时,可使所购仪器的总费用最少?最少需多少元?型号A B价格800元/台600元/台【题型5 一次函数的应用(工程问题)】【例5】(2021•汇川区三模)为了主题为“醉美遵义,酒都仁怀”第十三届遵义文化旅游产业发展大会召开,仁怀某社区计划对面积为2000m2的区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2.5倍,并且在独立完成面积为500m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是1.5万元,乙队每天绿化费用为0.5万元,且甲乙两队施工的总天数不超过19天,则如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.【变式5-1】(2021春•青羊区期末)甲、乙两个工程队分别同时铺设两条公路,所铺设公路的长度y (m)与铺设时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)在2时~6时段时,乙队的工作效率为 5 m/h;(2)分别求出乙队在0时~2时段和2时~6时段,y与x的关系式,并求出甲乙两队所铺设公路长度相等时x的值;(3)求出当两队所铺设的公路长度之差为5m时x的值.【变式5-2】(2021春•沙坪坝区校级期末)甲、乙两人同时开始共同组装一批零件,工作两小时后,乙因事离开,停止工作.一段时间后,乙重新回到岗位并提高了工作效率.最后40分钟,甲休息,由乙独自完成剩余零件的组装.甲在工作过程中工作效率保持不变,乙在每个工作阶段的工作效率保持不变.甲、乙两人组装零件的总数y(个)与工作时间x(小时)之间的图象如图.(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差40个时,求x的值.【变式5-3】(2020秋•郑州期末)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组加工多长时间时,甲、乙两组加工零件的总数为480个.【题型6 一次函数的应用(其他问题)】【例6】(2021春•沙河口区期末)为预防疫情传播,学校对教室定期喷药消毒.如图为一次消毒中,某教室每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)的函数图象,它是由关闭门窗集中喷药,通风前和打开门窗后通风三段不同的一次函数组成的.在下面四个选项中,错误的是( )A.经过5min集中喷药,教室每立方米空气中含药量最高达到10mg/m3B.持续11min室内空气中的含药量不低于8mg/m3C.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才有效杀灭病毒.由此判断此次消毒有效D.当室内空气中的含药量低于4mg/m3时,对人体是安全的.从室内空气中的含药量达到10mg/m3开始,需经过40min后学生才能进入室内【变式6-1】(2021春•朝阳区校级期末)某地自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是 元;若用水2800吨,水费是 元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?【变式6-2】(2021春•河东区期末)一个水库的水位在某段时间内持续上涨,表格中记录了连续5h 内6个时间点的水位高度,其中x表示时间,y表示水位高度.0123453 3.3 3.6 3.9 4.2 4.5(1)水位高度y是否为时间x的函数?若是,请求出这个函数解析式;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8m时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报?【变式6-3】(2021•涧西区三模)某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x(件),销售人员的月收入为y(元),原有的薪酬计算方式y1元采用的是底薪+提成的方式,且y1=k1x+b,已知每销售一件商品另外获得15元的提成修改后的薪酬计算方式为y2(元),且y2=k2x+b,根据图象回答下列问题:(1)求y1和y2的解析式,并说明b的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)根据函数图象请判断哪种薪酬计算方式更适合销售人员.一次函数的应用-重难点题型第3步:列函数。
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)
二元一次方程组与一次函数综合复习一.选择题1.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.2.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④3.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④二.填空题4.方程组解的情况是,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是.5.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC 分成面积相等的两部分.那么b=.6.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.8.如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A 的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.三.解答题9.已知方程组,求:(1)当m为何值时,x,y的符号相反,绝对值相等;(2)当m为何值时,x比y大1.10.阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2,即x+y=1,③③×16得16x+16y=16,④②﹣④得x=﹣1,从而可得y=2所以原方程组的解是.请你仿上面的解法解方程组.11.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代入”的解法:解:由①得x﹣y=1③将③代入②得:4×1﹣y=5,即y=﹣1把y=﹣1代入③得x=0,∴方程组的解为请你模仿小军的“整体代入”法解方程组,解方程.12.如图所示,矩形OABC中,OA=4,OC=2,D是OA的中点,连接AC、DB,交于点E,以O为原点,OA所在的直线为x轴,建立坐标系.(1)分别求出直线AC和BD的解析式;(2)求E点的坐标;(3)求△DEA的面积.13.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.14.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?15.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各付多少元?(2)设工作总量为单位1,单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可盈利200元,你认为请哪个装修组施工能使商店的利益最大化?说说你的理由.16.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下列问题:(1)货车离甲地距离y(千米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.17.甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.18.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,两个采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.19.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?20.温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃)华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为﹣20℃时,华氏温度为﹣4℉请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为﹣5℃时,华氏温度为多少?(3)当华氏温度为59℉时,摄氏温度为多少?21.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?22.某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.23.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.甲、乙商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,顾客到哪家商场购物花费少?25.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.26.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.28.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=10OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与DE平行,当它与矩形OABC有公共点时,直接写出b的取值范围.29.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A 点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.如图,直线y=kx+6与x、y轴分别交于E、F.点E坐标为(﹣8,0),点A的坐标为(﹣6,0),P(x,y)是直线y=kx+6上的一个动点.(1)求k的值;(2)若点P是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OP A的面积S与x 的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OP A的面积为,并说明理由.31.如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,),请用含a的式子表示四边形ABPO的面积,并求出当△ABP 的面积与△ABC的面积相等时a的值.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=和y =﹣x+7的图象于点B、C,连接OC,若BC=OA,求△ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.34.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?参考答案一.选择题1.解:根据∠AOC的度数比∠BOC的2倍多10°,得方程x=2y+10;根据∠AOC和∠BOC组成了平角,得方程x+y=180.列方程组为.故选:B.2.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.3.解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且用时3小时,即比早小带到1小时,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y小路=100t﹣100,令y小带=y小路,可得:60t=100t﹣100,解得:t=2.5,即小带、小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车,∴③不正确;令|y小带﹣y小路|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y小带=50,此时小路还没出发,当t=时,小路到达B城,y小带=250;综上可知当t的值为或或或时,两车相距50千米,∴④不正确;故选:C.二.填空题4.解:方程组解的情况是无解,则一次函数y=2﹣2x与y=5﹣2x图象之间的位置关系是平行.故答案为无解,平行.5.解:∵将矩形OABC分成面积相等的两部分,∴直线经过矩形的中心,∵B点坐标为B(12,5),∴矩形中心的坐标为(6,),∴×6+b=,解得b=1.故答案为:1.6.解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF(AAS),∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).7.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.8.解:由折叠的性质得:△ADB≌△ADC,∴AB=AC,BD=CD,对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴OA=4,OB=3,在Rt△AOB中,根据勾股定理得:AB=5,∴OC=AC﹣OA=AB﹣OA=5﹣4=1,即C(﹣1,0);在Rt△COD中,设CD=BD=x,则OD=3﹣x,根据勾股定理得:x2=(3﹣x)2+1,解得:x=,∴OD=,即D(0,).故答案为:(﹣1,0);(0,)三.解答题9.解:方程组整理解得:x=﹣2,y=0.5m+3.5,(1)当x,y的符号相反,绝对值相等,可得0.5m+3.5=2,解得:m=﹣3;(2)当x比y大1,可得:0.5m+3.5=﹣3解得:m=﹣1310.解:①﹣②得:3x+3y=3,即x+y=1③,③×2013得:2013x+2013y=2013④,②﹣④得:x=﹣1,把x=﹣1代入③得:y=2,则方程组的解为.11.解:将①代入②得:1+2y=9,即y=4,将y=4代入①得:x=7,∴原方程组的解为:.12.解:(1)设直线AC的解析式为:y=kx+b,由题意可得:A(4,0),C(0,2),∴,解得:,∴直线AC的解析式为:y=﹣x+2,设直线BD的解析式为:y=mx+n,由题意可得:B(4,2),D(2,0),∴,解得:.∴直线BD的解析式为:y=x﹣2;(2)由题意得:,解得:,∴E点的坐标为(,);(3)△DEA的面积=×2×=.13.解:(1)设直线AB所在的表达式为:y=kx+b,则,解得:,故直线l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△ABC=AB2=;(3)连接BP,PO,P A,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为或﹣3.14.解:设夫妇现在的年龄和为x,子女年龄和为y,共有n个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x=6y,由他们两年前年龄和是子女两年前年龄和的10倍可知:x﹣2×2=10×(y﹣2n),由6年后他们的年龄和是子女6年后年龄和的3倍可知:x+2×6=3×(y+6n),列出方程组,将x=6y代入方程组中解得:n=3.答:这对夫妇共有3个子女.15.解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,由题意可得:,解得:,答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元,(2)设甲组每天工作效率为m,乙组每天工作效率为n,由题意可得:,解得:,∴甲组单独完成装修需(天),乙组单独完成装修需(天),∴单独请甲组需付300×12=3600(元),单独请乙组需付140×24=3360(元),∵3600>3360,答:单独请乙组费用较少,(3)由第(2)已求得:甲组单独做12天完成,商店需付款12×300=3600(元),乙组单独做24天完成,商店需付款24×140=3360(元),但甲组比乙组早12天完工,商店12天的利润为200×12=2400(元),即开支为3600﹣2400=1200元<3360元,答:选择甲装修组施工能使商店的利益最大化.16.解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;(3)80÷60=,即点B的坐标(,0),∴轿车开始的速度为:(千米/时),当x=2.5时,y货=150,两车相距=150﹣80=70>20,由题意或60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.17.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.18.解:(1)由图象可得,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是:300÷10=30(元/千克),故答案为:60,30;(2)当x>10时,设y乙与x的函数表达式是y乙=kx+b,,得,即当x>10时,y乙与x的函数表达式是y乙=12x+180;(3)由题意可得,y甲=60+30×0.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.19.:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.20.解:(1)设y关于x的函数关系式为y=kx+b,由温度计的示数得x=0,y=32;x=20时,y=68.所以,解得:.故y关于x的函数关系式为y=x+32;(2)当x=﹣5时,y=×(﹣5)+32=23.即当摄氏温度为﹣5℃时,华氏温度为23℉;(3)令y=59,则有x+32=59,解得:x=15.故当华氏温度为59℉时,摄氏温度为15℃.21.解:(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30.(2)当0≤x≤2时,y=15x;当x>2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x ≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4;当30x﹣30﹣(10x+100)=50时,解得:x=9;当300﹣(10x+100)=50时,解得:x=15.答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.22.解:(1)由题意可得:y=120x+140(100﹣x)=﹣20x+14000;(2)据题意得,100﹣x≤3x,解得x≥25,∵y=﹣20x+14000,﹣20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y取最大值,则100﹣x=75,即商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)据题意得,y=120x+140(100﹣x),即y=﹣20x+14000 (25≤x≤60)当y=13600时,解得x=20,不符合要求y随x的增大而减小,∴当x=25时,y取最大值,即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.当x=60时,y取得最小值,此时y=12800元故这100台电脑销售总利润的范围为12800≤y≤1350023.解:(1)∵直线y=﹣x+1与x轴,y轴分别交于A,B两点,令x=0,则y=0+1=1,∴A(0,1),令y=0,则0=﹣x+1,解得:x=1.∴B(1,0).(2)∠AOP=∠BPQ.理由如下:过P点作PE⊥OA交OA于点E,∵A(0,1),B(1,0).∴OA=OB=1,∴∠OAB=∠OBA=45°,∵PE⊥OA,∴∠APE=45°,∵∠OPQ=45°,∴∠OPE+∠BPQ=90°,∵∠AOP+∠OPE=90°,∴∠AOP=∠BPQ.(3)△OPQ可以是等腰三角形.理由如下:如图,过P点PE⊥OA交OA于点E,(ⅰ)若OP=OQ,则∠OPQ=∠OQP=∠OPQ,∴∠POQ=90°,∴点P与点A重合,∴点P坐标为(0,1),(ⅱ)若QP=QO,则∠OPQ=∠QOP=45°,所以PQ⊥QO,可设P(x,x)代入y=﹣x+1得x=,∴点P坐标为(,),(ⅲ)若PO=PQ∵∠OPQ+∠1=∠2+∠3,而∠OPQ=∠3=45°,∴∠1=∠2,又∵∠3=∠4=45°,∴△AOP≌△BPQ(AAS),PB=OA=1,∴AP=﹣1由勾股定理求得PE=AE=1﹣,∴EO=,∴点P坐标为(1﹣,),∴点P坐标为(0,1),(,)或(1﹣,)时,△OPQ是等腰三角形.24.解:设在甲商场购买x元的花费为W甲元,在乙商场购买的花费为W乙元,由题意,得W甲=100+(x﹣100)×0.9=0.9x+10(x≥100)W乙=50+0.95(x﹣50)=0.95x+2.5(x≥50).当W甲>W乙时,0.9x+10>0.95x+2.5,x<150W甲=W乙时,0.9x+10=0.95x+2.5,x=150W甲<W乙时,0.9x+10<0.95x+2.5,x>150.综上所述:当x<150时,在乙商场购买优惠些,当x=150时,在甲、乙两商场购买一样优惠,当x>150时,在甲商场购买优惠些.25.解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).26.解:(1)设y1=kx,则将(10,600)代入得出:600=10k,解得:k=60,∴y1=60x(0≤x≤10),设y2=ax+b,则将(0,600),(6,0)代入得出:解得:∴y2=﹣100x+600 (0≤x≤6);(2)当两车相遇时,y1=y2,即60x=﹣100x+600解得:;∴当两车相遇时,求此时客车行驶了小时;(3)若相遇前两车相距200千米,则y2﹣y1=200,∴﹣100x+600﹣60x=200,解得:,若相遇后相距200千米,则y1﹣y2=200,即60x+100x﹣600=200,解得:x=5∴两车相距200千米时,客车行驶的时间为小时或5小时.27.解;(1)∵点P(m,3)为直线l1上一点,∴3=﹣m+2,解得m=﹣1,∴点P的坐标为(﹣1,3),把点P的坐标代入y2=x+b得,3=×(﹣1)+b,解得b=;(2)∵b=,∴直线l2的解析式为y=x+,∴C点的坐标为(﹣7,0),①由直线l1:y1=﹣x+2可知A(2,0),∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t,∴S=AQ•|y P|=×(9﹣t)×3=﹣t;当Q在A的右边时,AQ=t﹣9,∴S=AQ•|y P|=×(t﹣9)×3=t﹣;即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=P A时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=P A时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.28.解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,BE===6,∴CE=10﹣6=4,在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5.(2)∵CE=4,∴E(4,8).∵OD=5,∴D(0,5),设直线DE的解析式为y=mx+n,∴,解得,∴直线DE的解析式为y=x+5.(3)∵直线y=kx+b与DE平行,∴直线为y=x+b,∴当直线经过A点时,0=×10+b,则b=﹣,当直线经过C点时,则b=8,∴当直线y=kx+b与矩形OABC有公共点时,﹣≤b≤8且b≠5.29.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).30.解:(1)∵点E(﹣8,0)在直线y=kx+6上,∴0=﹣8k+6,∴k=;(2)∵k=,∴直线的解析式为:y=x+6,∵点P(x,y)是第二象限内的直线y=x+6上的一个动点,∴y=x+6>0,﹣8<x<0.∵点A的坐标为(﹣6,0),∴OA=6,∴S=OA•|y P|=×6×(x+6)=x+18.∴三角形OP A的面积S与x的函数关系式为:S=x+18(﹣8<x<0);(3)∵三角形OP A的面积=OA•|y|=,∴×6×|y|=,解得|y|=,∴y=±.当y=时,=x+6,解得x=﹣,故P(﹣,);当y=﹣时,﹣=x+6,解得x=﹣,故P(﹣,﹣);综上可知,当点P的坐标为P(﹣,)或P(﹣,﹣)时,三角形OP A的面积为.31.解:(1)y=﹣x+1与x轴、y轴交于A、B两点,∴A(,0),B(0,1).∵△AOB为直角三角形,∴AB=2.∴S△ABC=×2×sin60°=.(2)S四边形ABPO=S△ABO+S△BOP=×OA×OB+×OB×h=××1+×1×|a|.∵P在第二象限,∴S四边形ABPO=﹣=,S△ABP=S ABPO﹣S△AOP=(﹣)﹣×OA×.∴S△ABP=﹣﹣=﹣=S△ABC=.∴a=﹣.32.解:(1)联立得:,解得:,则点A的坐标为(3,4);(2)根据勾股定理得:OA==5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,);(3)设点B(a,a),C(a,﹣a+7),∵BC=OA=×5=14,∴a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=BC•AQ=×14×(9﹣3)=42,当a=9时,a=×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2);(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:,解得:,∴直线AD′解析式为y=﹣x+,令x=9,得到y=1,则此时点E坐标为(9,1).33.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).34.解:(1)3000÷(50﹣30)=3000÷20=150(米/分),答:张强返回时的速度为150米/分;(2)(45﹣30)×150=2250(米),点B的坐标为(45,750),妈妈原来的速度为:2250÷45=50(米/分),妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分),妈妈比按原速返回提前10分钟到家;(3)如图:设线段BD的函数解析式为:y=kx+b,把(0,3000),(45,750)代入得:,解得:,∴y=﹣50x+3000,线段OA的函数解析式为:y=100x(0≤x≤30),设线段AC的解析式为:y=k1x+b1,把(30,3000),(50,0)代入得:解得:,∴y=﹣150x+7500,(30<x≤50)当张强与妈妈相距1000米时,即﹣50x+3000﹣100x=1000或100x﹣(﹣50x+3000)=1000或(﹣150x+7500)﹣(﹣50x+3000)=1000,解得:x=35或x=或x=,∴当时间为35分或分或分时,张强与妈妈何时相距1000米.。
浙教八年级上册数学第5章《一次函数》课件
则k的值为 3 。
(x4之)、间已的知函y数-1与关x系成式正为比_例_y_,___且__x_=23_-__2x_时__,_1_y。=4,那么y与
1、在下列函数中, x是自变量, y是因变量, 那些是一次
函数?那些是正比例函数?
y=2x y=-3x+1
变量与常量:
在某个变化过程中保持不变的量叫常量;
在某个变化过程中变化的量叫变量。 例1、环卫工作人员在清扫长10km街道时,路 程、效率、时间中哪些是变量,哪些是常量。
环卫工作人员在2km/小时的速度清扫街道 时,路程、速度、时间中哪些是变量,哪些是 常量。
环卫工作人员用了4小时清扫一条街道时, 路程、效率、时间中哪些是变量,哪些是常量。
当销售量 小于4吨 时,该公司亏损(收入小于成本);
y元
6000 5000 4000
l1 销售收入
l2 销售成本 P
3000
2000
1000
O 1 2 3 4 5 66 7 8 x吨
尝试园地
富阳市自来水公司为鼓励居民节约 用水,采取按月用水量分段收费办法,若 居民应交水费y(元)与用水量x(吨)的函 数关系如图所示.
一、知识要点:
1、一次函数的概念:函数y=_k_x__+__b_(k、b为常数,k__≠_0___) 叫做一次函数。当b_=_0___时,函数y=_k_x__(k_≠_0__)叫做正比例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是_1__次,⑵、比例系数_K__≠_0_。
1B
直线AB的解析式是 y=-0.5x+1
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载
第五章一次函数复习
一、填空题
1.已知函数 y 1
2 x
,x = __________时,y 的值时 0,x=______ 时,y 的值是 1;x=_______
3x 1
时,函数没有意义.
2
5
,当 x=2 时, y=_________.
2.已知 y
x
3 x
3.在函数 y
x 2
中,自变量 x 的取值范围是 __________.
x 3
4.一次函数 y = kx +b 中,k 、b 都是
,且 k
,自变量 x 的取值范围是
,
当 k , b
时它是正比例函数.
5.已知 y (m
3)x m 2
8 是正比例函数,则
m
.
6.函数 y
(m 2)x
2 n 1
m n
,当 m=
, n=
时为正比例函数;
当 m=
, n=
时为一次函数.
7.当直线 y=2x+b 与直线 y=kx-1 平行时 ,k________,b___________. 8.直线 y=2x-1 与 x 轴的交点坐标是
____________; 与 y 轴的交点坐标是 _____________. 9.已知点 A 坐标为 (-1,-2),B
点坐标为 (1,-1),C
点坐标为 (5,1), 其中在直线
y=-x+6 上的点
有 ____________. 在直线 y=3x-4 上的点有 ____________.
10.一个长为 120 米,宽为 100 米的矩形场地要扩建成一个正方形场地,设长增加
x 米,宽
增加 y 米,则 y 与 x 的函数关系式是
,自变量的取值范围
是
,且 y 是 x 的
函数.
11.直线 y=kx+b 与直线 y=
2 x
平行,且与直线 y=
2x 1
交于 y 轴上同一点,则该直线
3
3
的解析式为 ________________________________ .
二、选择题:
12.下列函数中自变量
x 的取值范围是 x ≥5的函数是
( )
A . y
5 x
B .
y
1
C .
y
25 x 2
. yx 5
x
5
5 x
D
13.下列函数中自变量取值范围选取错误 ..的是
(
)
A .
2
1
y x 中 x 取全体实数
. y=
中x ≠0
B
x-1
C . y= 1
D . y
x 1中 x ≥1
中x ≠ -1
x+1
14.某小汽车的油箱可装汽油
30 升,原有汽油 10 升,现再加汽油 x 升。
如果每升汽油 2.6 元,求油箱内汽油的总价 y (元)与 x (升)之间的函数关系是
(
)
A . y 2.6 x(0≤x ≤20)
B . y 2.6x 26(0 x 30)
C . y 2.6 x 10(0≤ x<20)
D . y
2.6x 26(0≤x ≤20)
15.在某次实验中,测得两个变量 m 和 v 之间的 4 组对应数据如下表.
则 m 与 v 之间的关系最接近于下列各关系式中的
(
)
A . v =2 m
2
C . v =3m - 1
B . v =m + 1
16.已知水池的容量为 50 米 3, 每时灌水量为 n 米 3, 灌满水所需时间为
t( 时 ), 那么 t 与 n
之间的函数关系式是
(
)
A . t=50n
B . t=50-n
C . t=
50
D .t=50+n
n
17.下列函数中,正比例函数是:
( )
A . y
2
B . y
2
x - 1 C . y
4 x 2 D . y
2 x
5x
5
5
5
18.下列说法中不正确的是
(
)
A .一次函数不一定是正比例函数
B .不是一次函数就一定不是正比例函数
C .正比例函数是特殊的一次函数
D .不是正比例函数就一定不是一次函数
19.已知一次函数 y=kx+b ,若当 x 增加 3 时, y 减小 2,则 k 的值是
(
)
A . 2
B .
3
C .
2
D .
3
3
2
3
2
20.小明的父亲饭后出去散步, 从家走 20 分钟到一个离家 900 米的报亭,看 10 分钟报纸后, 用
15 分钟返回家里.下面四个图象中,表示小明父亲的离家距离与时间之间关系的是(
)
A .
B .
C .
D .
1 1 1的点有 (
) 个
21.在直线 y=
x+ 且到 x 轴或 y 轴距离为
2
2
A .1B
.2 C . 3 D . 4
22.已知直线 y=kx+b(k ≠0) 与 x 轴的交点在 x 轴的正半轴 , 下列结论 :
① k>0,b>0; ② k>0,b<0; ③ k<0,b>0; ④ k<0,b<0. 其中正确的有
(
)
A .1个
B
.2个
C
.3个
D .4个
23.若点(- 4, y 1),(2, y 2)都在直线 y=
1 (
)
x t 上,则 y 1 与 y 2 的大小关系是
3
A . y 1>y 2
B . y 1=y 2
C . y 1<y 2
D .无法确定
三、解答题:
24.某工人上午7 点上班至 11 点下班,一开始他用 15 分钟做准备工作,接着每隔 15 分钟加工完 1 个零件.
(1)、求他在上午时间内 y(时)与加工完零件 x(个)之间的函数关系式.
(2)、他加工完第一个零件是几点?
(3)、8 点整他加工完几个零件?
(4)、上午他可加工完几个零件?
25.已知直线 y= 1
x+1 与直线 a 关于 y 轴对称,在同一坐标系中画出它们的图象,并求出2
直线 a 的解析式 .
26.已知点Q与 P(2 , 3) 关于 x 轴对称,一个一次函数的图象经过点Q,且与 y 轴的交点M 与原点距离为5,求这个一次函数的解析式.
27.如图表示一个正比例函数与一个一次函数的图象,它们交于点A( 4,3),一次函数的图象与 y 轴交于点B,且 OA=OB,求这两个函数的解析式.y
A
x
B
28.在同一直角坐标系中,画出一次函数y=- x+2 与 y=2x+2 的图象,并求出这两条直线与x 轴围成的三角形的面积与周长.
29.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加 2 千米 / 时, 4 小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加 4 千米 / 时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小 1 千米 / 时,最终停止 . 结合风速与时间的图像,回答下列问题:
( 1)在 y 轴()内填入相应的数值;
( 2)沙尘暴从发生到结束,共经过多少小时?
( 3)求出当 x≥25 时,风速 y(千米 / 时)与时间 x(小时)之间的函数关系式 .
( 4)若风速达到或超过 20 千米 / 时,称为强沙尘暴,则强沙尘暴持续多长时间?
y (千米 / 时)
()B
C
() A
D O
41025x ( 小
时)
答案:
一、 1. 1 2 1
2.9 3. x 2且
x
3 4.常数 k
0,任意实数, k 0,b 0
, ,
2 5 3
5. m
3 6. m
0, n 0; m 2, n
0 7. k 2, b
1 8. ( 1
,0),(0, 1)
2
9.C 点, B 点
10. . y x 20, x
0, 一次函数
11. y
1 x 1
3 3
二、 12.D 13. B 14. D 15.B 16.C 17.D 18.D 19.A 20 .B 21 . C 22. .B 23.A 三、 24.( 1) y 1 1 ( 2)加工完第一个零件7点
30 分
x 7
4
4
( 3) 8 点整可加工完 3 个零件 (4)上午他可加工完
15 个零件
25.图像略,直线a的解析式是
y
1
x 1
2
26.一次函数解析式为 y
4x 5或y x
5
27. y
3
x, y
2x 5
4
28.面积为 3,周长为
5 2 2 3
29.( 1)( 8)( 32) ( 2)57 小时
(3) y x 57(25 x 57)
( 4)强沙尘暴持续 30 小时。