运筹学—对策论(三)

合集下载

运筹学-第15章--对策论

运筹学-第15章--对策论

1 8 5 8 5 5*
2 2 3 2 1 1
3 4
9 0
5 2
6 3
5 5*
3
0
max 9 5* 8 5*
可知 ai* j* =5,i*=1,3,j*=2,4.故(α1,β2)(α1,β4)(α2,
β2)(α2,β4)为对策的纳管 什理均运衡,筹 V学G=5.
15
• 最优纯策略求解步骤:
• 1、行中取小,小中取大得最大化最小收益 值;
• 2、列中取大,大中取小得最小化最大支付 值;
• 3、比较两值是否相等。若相等便存在最优 纯策略。若不等,则不存在最优纯策略。
管理运筹学
16
§3 矩阵对策的混合策略
设矩阵对策 G = { S1, S2, A }。当
max
i
min
j
aij
min
j
max
i
aij
时,不存在最优纯策略。
例:设一个赢得矩阵如下:
一个局势,一个局势决定了各局中人的对策结果(量化) 称为该局势对策的益损值。
管理运筹学
3
§1 对策论的基本概念
出赛的次序是一个策略 “齐王赛马”齐王在各局势中的益损值表(单位:千金)
管理运筹学
4
§1 对策论的基本概念
其中:齐王的策略集: S1={ 1, 2, 3, 4, 5, 6 }, 田忌的策略集:S2={ 1, 2, 3, 4, 5, 6 }。
A=[aij]m×n i 行代表甲方策略 i=1, 2, …, m;j 列代表乙方策略 j=1, 2, …, n;aij 代表甲方取策略 i,乙方取策略 j,这一局势下甲方的 益损值。此时乙方的益损值为 -aij(零和性质)。

《管理运筹学-对策论》

《管理运筹学-对策论》

博弈与均衡
04
对策分析方法
CHAPTER
VS
静态分析法是一种不考虑时间因素的分析方法,主要适用于解决一次性决策问题。
详细描述
静态分析法将问题视为一个静态系统,不考虑时间变化和过程发展,只关注决策变量的当前状态和最优解。这种方法适用于确定性和静态的环境,如线性规划、整数规划等。
总结词
静态分析法
总结词
《管理运筹学-对策论》
目录
对策论概述 对策模型 对策论的基本概念 对策分析方法 对策论的应用实例 对策论的未来发展
CONTENTS
01
对策论概述
CHAPTER
对策论,也称为博弈论,是研究决策主体在相互竞争、相互依存的环境中如何进行策略选择和行动的学科。
对策论强调理性、优化和均衡,通过数学模型和逻辑推理来描述和分析竞争行为,尤其关注在不确定性和信息不对称情况下的决策问题。
对策论的定义与特点
特点
定义
竞争策略分析
对策论可以用于分析企业或组织在市场竞争中的策略选择,例如定价策略、产品差异化、市场份额争夺等。
合作协议
在某些情况下,企业间可能通过对策论的方法找到合作的可能性,例如供应链协调、合作研发等。
人力资源决策
在招聘、晋升、激励设计等方面,对策论可以帮助理解个体和团队的行为反应,优化人力资源决策。
03
对策论的基本概念
CHAPTER
策略与行动
策略
在对策中,参与者为达到目标所采取的行动方案。策略是完整的、具体的行动计划,它规定了参与者在所有可能情况下应采取的行动。
行动
在对策中,参与者实际采取的行动。行动是实现策略的具体行为或决策。
在对策中,如果一个参与者的某个策略能够使其获得比其他参与者更好的结果,则称该策略为优势策略。优势策略是相对于其他参与者的策略而言的。

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对策论基础)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(对策论基础)

圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)2× 或 ×2 对策的图解法
注意:该方法用在赢得矩阵为 2× 或 ×2 阶的对策上特别方便,也可用在 3× 或
×3 对策上。但对 和 均大于 3 的矩阵对策就丌适用了。
设缩减后的赢得矩阵为二阶无鞍点对策问题,局中人Ⅰ的混合策略为
的最优纯策略。 定理 1 矩阵对策 使得对一切
在纯策略意义下有解的充分必要条件是:存在纯局势
,均有

定义 2 设
为一个定义在

上的实值函数,如果存在
,使得对一切

,有
,则称

函数 的一个鞍点。 矩阵对策解的性质:
性质 1 无差别性。即若 性质 2 可交换性。即若
也是解。 定义 3 设有矩阵对策

是对策 G 的两个解,则
定理 11 设矩阵对策
的值为 ,则
6.矩阵对策的解法 (1)2×2 对策的公式法 所谓 2×2 对策是指局中人Ⅰ的赢得矩阵为 2×2 阶的,即
如果 A 有鞍点,则很快可求出各局中人的最优纯策略;如果 A 没有鞍点,为求最优混 合策略可求下列等式组:
上面等式组(Ⅰ)和(Ⅱ)一定有严格非负解

,其中
6 / 33
是对策 G 的两个解,则

,其中


则 和 分别称为局中人Ⅰ和Ⅱ的混的混合策略(或策略);对
,称
为一个混合局势(或局
势),局中人Ⅰ的赢得函数记成
这样得到的一个新的对策记成
,称 为对策 G 的混合扩充。
定义 4 设
是矩阵对策
的混合扩充,如果
3 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

运筹学-对策论概述

运筹学-对策论概述

局势3:盟军的侦察机重点搜索南线, 而日本舰队走北线。由于发现晚、盟 军的轰炸机群在南线,以及北线气候 恶劣,故有效轰炸只有一天。
局势4:盟军的侦察机重点搜索南线, 日本舰队也恰好走南线。此时日本舰 队迅速被发现,盟军的轰炸机群所需 航程很短,加上天气晴好,有效轰炸 时间三天。
这场海空遭遇与对抗一定会发生, 双方的统帅如何决策呢?历史的实际 情况是:局势1成为现实。肯尼将军 命令盟军的侦察机重点搜索北线;而 山本五十六大将命令日本舰队取道北 线航行。由于气候恶劣,能见度差, 盟军飞机在一天后发现了日本舰队, 基地在南线的盟军轰炸机群远程航行, 实施了两天的有效轰炸,重创了日本 舰队,但未能全歼。
则对策G*= { S1*,S2*;E}
称为对策G混合扩充。
定义4:设G*={S1*,S2*;E}是对策G混合 扩充,如果有
max min E(X,Y)= min max E(X,Y)
X S1* Y S2*
Y S2* X S1*
则称这个公共值为对策G在混合意义下 的值,记为V*G,而达到V*G 的混合局 势(X*,Y*)称为对策G在混合策略 意义下的解,而X*和Y*分别称为局中 人I,II的最优混合策略。
S1= {1、 2…… m }
同样,局中人II有n个策略:1、 2。。。 n ;用S2表示这些策略的集合: S2= { 1、 2… n } 局中人I的赢得矩阵是:
a11 a12 …… a1n a21 a22 …… a2n A= …… …… …… a m1 a m2 … a mn
局中人II的赢得矩阵是 -A 把一个对策记为G: G= { S1,S2;A}
当盟军获悉此情报后,盟军统帅 麦克阿梭命令太平洋战区空军司令肯 尼将军组织空中打击。

对策论(Theory of Games)

对策论(Theory of Games)

定义
并不是所有的对策都存在鞍点,如 A为齐王的赢得矩阵 3 1 1 1 1 -1 1 3 1 1 -1 1 A= 1 -1 3 1 1 1 -1 1 1 3 1 1 1 1 -1 1 3 1 1 1 1 -1 1 3 max(min aij)= -1 min (max aij)=3 i j j i
例如:
• 给定矩阵对策
6 5 6 A 1 4 2 8 5 7
对策的最优值为5,对策的解有两个,分 别为局势 , 和 , 。
1 2 3 2
(三)矩阵对策的混合策略
1、矩阵对策的混合策略的定义
2、原则:坏中求好的原则。 3、解的存在:一定有解 4、混合策略求解:利用期望转化成 线性规划问题求解。
三、矩阵对策模型
(一)矩阵对策的概念 (二)矩阵对策的最优纯策略 (三)矩阵对策的混合策略 (四)矩阵对策的解法
(一)矩阵对策的概念 1、矩阵对策的定义 2、建立矩阵对策模型
1、矩阵对策的定义 局中人只有两个,对策中各方只能从有限 的策略集中确定性的选择一种,且对策双 方的支付之和为零的对策称为两人零和纯 策略对策。
表2
齐 王 上中 下 田忌 上中下 3 上下 中上 中 下 1 1 中下 上 -1 下中 上 1 下上 中 1
上下中 1 中上下 1
中下上 1 下中上 1
3 1
1 -1
-1 3
1 1
1 1
3 1
1 -1
1 3
1 1
-1 1
下上中 -1
1
1
1
1
3
引例3
有两个儿童A和B在一起玩“石头-剪子布”游戏。我们规定胜者得1分,负者得 -1分,平手时各得0分。双方选定的各种 出法及相应的结果可由下表列出。双方 应取何种策略?

运筹学_对策论

运筹学_对策论
第17页
混合策略
• 混合扩充
矩阵对策扩充 N人有限对策
• 混合平衡解
矩阵对策 N人有限对策
• 均衡解的存在性
第18页
混 合 扩 充—矩阵对策
策略集
m
S * 1
{X
( x1 , x2 ,..., xm )
xi 1, xi 0, i 1,2,..., m}
i 1
nS* 2{Y( y1 ,y2 ,...,
yn )
y j 1, y j 0, j 1,2,..., n}
j 1
支付函数
mn
E( X ,Y )
aij xi y j
i1 j1
混合扩充: *
{
S1*
,
S
* 2
,
E
(
x
,
y),
x
S1* ,
y
S
* 2
}
第19页
混 合 扩 充—N人有限对策
N 人有限对策 I {1,2,..., N }, Si , i I , H i (s), i I
• 定理1 N人有限对策的混合扩充存在平衡局势. • 定理2 矩阵对策的混合扩充存在平衡局势.
第23页
矩阵对策的解法
• 问题的简化
优超 算例
• 线性规划方法
基本思想 算例
第24页
优超
给定矩阵对策 {S1 , S2 , A} , A 是 m n 的矩阵,如果
akj alj , j 1,2,..., n
则称局中人 1 的策略 k 优超于策略 l。如果
aik ail , i 1,2,..., m
则称局中人 2 的策略 k 优超于策略 l。
注:局中人 1 的策略 k 优超于策略 l 则说明对局中人 1

运筹学考研试题

运筹学考研试题

2.单纯形法中,要把数学模型化为标准型,须引入 ; 若约束条件中附加变量的系数是 或原约束为 ,则 必须引入 ,以构成初始可行基。 3.0-1规划的隐枚举法的基本思想是从所有变量等于 出 发,依次指定一些变量为 ,直到得到一个可行解。
d i 和 d i 分别表示 4.目标规划中,
对于第i个目标约束 ,如果希望 f i X bi ,则目标函数为
工厂 甲厂 乙厂 运费 利润 运费 利润 运费 利润 3 4 20 25 4 6 25 22 5 3 27 24
丙厂
5
27
3
24
4
22
该公司按以下目标调运产品: 第一目标:满足各销售点的需求; 第二目标:因路况原因,C销售点的服装最好由乙厂供应; 第三目标:甲厂因仓库限制,其产品应尽量全部调出; 第四目标:利润不少于60000元; 第五目标:调运总费用最省; 试建立该目标规划问题的数学模型(不要求求解)。(15分)
(1)求线性规划问题的最优解(20分) (2)求对偶问题的最优解(5分) (3)当△b3=-150时最优基是否发生变化?为什么?(5分) (4)求c2的灵敏度范围(5分) (5)如果x3的系数由[1,3,5]变为[1,3,2],最优基是否改变?若 改变求最优解。(5分)
二、已知某运输问题其供销关系及单位运价表如下表所示:
3.已知线性规划的数学模型如下,请写出对偶问题的 数学模型,并求其对偶问题的最优解。(15分)
max z 5 x1 3 x2 6 x3 x1 2 x2 x3 18 2 x x 3 x 16 1 2 3 s.t. x1 x2 x3 10 x1 , x2 0, x3无约束
运筹学
Operational Research

运筹学教材习题答案详解

运筹学教材习题答案详解
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)

精心整理的运筹学重点10.对策论

精心整理的运筹学重点10.对策论

v1 = max min(3 − 2 x, 2 + 2 x) , v1 = max min(3 − 2 x, 2 + 2 x) 就是折线 ABC,它是局 0≤ x ≤1 0≤ x ≤1
中人 I 的最小赢得线,B 就是折线 ABC 的最高点,所以 B 点所对应的值就是混合策略意 义下的最大最小值。
i j j i
3.无鞍点的两人有限零和对策求解 X = ( x1 , x2 ,..., xm )T 为局中人 I 的混合策略,
Y = ( y1 , y 2 ,..., yn )
T
∑ x = 1 为局中人 II 的混合策略, ∑ y = 1 , ( X , Y ) 称为混合局势。
i i
最优混合策略求解方法 y1 y2
第十章 对策论 1.对策论类型 1)根据局中人个数:二人对策、多人对策 2)根据局中人间是否允许合作:合作对策、非合作对策 3)根据局中人的策略集中的策略个数:有限对策、无限对策 4)根据各局中人的赢得函数的代数和是否为零:零和对策、非零和对策 5)根据策略的选择是否与时间推移有关:静态对策、动态对策 6)根据对策中各局中人所拥有的有关决策信息:完全信息对策、不完全信息对策 7)根据对策模型的数学特征:矩阵对策、连续对策、微分对策、随机对策 矩阵对策:又称为二人有限零和对策。 2.有鞍点的两人有限零和对策求解 G = {S1, S2 , A} 求解: maxmin{aij } = V1,minmax{aij } = V2
x1 a11 x2 a21
矩阵对策求解方法

a12 a22
有无鞍点?
无 是
获得
2*n 或 m*2 矩阵

图解

运筹学中的对策论与博弈论

运筹学中的对策论与博弈论

人工智能技术为 对策论与博弈论 提供新的研究工 具和思路
机器学习算法在 对策论与博弈论 中的应用,提高 决策效率和准确 性
深度学习技术可 以模拟复杂的博 弈场景,为对策 论与博弈论提供 更真实的数据支 持
人工智能与对策 论与博弈论的结 合将推动相关领 域的发展和创新
对策论与博弈论在商业竞争中的应用研究
不完全信息静态博弈
定义:博弈参与者在完全信息条 件下进行的一次性决策,每个参 与者只能选择一种策略,并且所 有参与者同时做出选择。
示例:寡头垄断市场中的价格竞 争、囚徒困境等。
添加标题
添加标题
添加标题
添加标题
特点:参与者之间无法进行有效 的沟通或协商,只能依靠自己的 判断和决策。
应用:在经济学、政治学、社会 学等领域有广泛应用。
03
对策论的主要内容
合作博弈与非合作博弈
合作博弈:参与者通过合作达成共赢,核心概念包括联盟和核心
非合作博弈:参与者追求个体理性,核心概念包括纳什均衡和优势策略
区别:合作博弈强调合作与共赢,非合作博弈注重竞争与冲突
应用场景:合作博弈常用于国际关系、经济合作等领域,非合作博弈适用于市场竞争、决策分 析等场景
对策论与博弈论 在商业竞争中具 有重要地位,是 制定竞争策略和 决策的重要工具。
随着大数据和人 工智能技术的发 展,对策论与博 弈论在商业竞争 中的应用将更加 广泛和深入。
对策论与博弈论 可以帮助企业预 测竞争对手的行 动,制定更加有 效的竞争策略。
在商业竞争中, 运用对策论与博 弈论需要综合考 虑各种因素,包 括市场环境、竞 争对手、自身实 力等。
面临的挑战与问题:如何将对策论与博弈论更好地应用于实际场景,解决 复杂的问题,仍需进一步的研究和探索。

运筹学教学-对策论公开课获奖课件百校联赛一等奖课件

运筹学教学-对策论公开课获奖课件百校联赛一等奖课件
局中人称为“i旳对手”,记为-i。
对策中利益一致旳参加者只能看成一种局中人,例:桥牌中 旳东、西两方。 对策论中对局中人旳一种主要假设:每个局中人都是“理智 旳”,即每一种局中人都不存在侥幸心理,不存在利用其他 局中人决策旳失误来扩大本身利益旳行为。
基本概念
在策略型博奕中,一种对策有下列几种基本要素: 一.局中人 二.策略(strategies):
-1
1

1
0
-1
剪刀
-1
1
0
第三节 矩阵对策旳纯策略
例:设有一矩阵对策 G {S1, S2; A} 其中
6 1 8
A
3
2
4
9 1 10
3 0
6
解:对局中人I而言,最大赢得是9,若想得到这个赢得,
他要选择纯策略 ,3因为局中人II也是理智旳竞争 者,他已考虑到局中人I打算出 旳3心理,则准备 以 3对付之,使局中人I不但得不到9,反而失掉10. 局中人I当然也会猜到局中人II旳心理,故而出 4
I {1,2,..., n}
Si ;i 1,2,..., n
局势----状态
n
S Si i 1
支付函数
支付有关局势旳函数----决策根据和原则 H i (s);i 1,2,..., n, s S
模型 I {1,2,..., N }, Si , i I , H i (s), i I
二人:参加对策旳局中人有两个;
有限:局中人旳策略集都为有限集;
零和:在任一局势下,两个局中人旳赢得之和总等于0,即,
一种局中人旳所得值恰好是另一种局中人旳所失值,双方旳 利益是完全对抗旳。
设局中人I和II旳策略集分别为
S1 {1,2 ,...,m } S2 {1, 2 ,..., n}

浅析解 “对策问题” 的两种思路

浅析解 “对策问题” 的两种思路
思路二:特殊性方法 平衡状态: Fibonacci数 决策规律: 反复缩小范围,找最大Fibonacci数
特殊性方法 空间复杂度 O(1) 时间复杂度 O(logN)
大大降低
一般性方法 空间复杂度 O(N2) 时间复杂度 O(N3)
浅析解 “对策问题” 的两种思路
思路二:特殊性方法
l 状 态 l 逆向分析
浅析解 “对策问题” 的两种思路
一般性方法 与 特殊性方法
《取石子》问题的推广:
1一次可取先前对方所取石子数的3倍
1一次可取先前对方所取石子数的4倍 1一次可取先前对方所取石子数的5倍
一般性方法
VS 特殊性方法
1…………
1一次可取先前对方所取石子数的K倍
浅析解 “对策问题” 的两种思路
一般性方法 与 特殊性方法
注:这里的胜败指的均是先手胜败。
浅析解 “对策问题” 的两种思路
1如果一个状态至少有一个子状态是先手败,则该状态是先手胜
(4, 3)
胜 胜
(3, 2)


(2, 2)
胜 败
(1, 1)

(2, 2)


(1, 1) (1, 1) (0, 0) (0, 0)
败 败
(1, 1) (0, 0) (0, 0) (0, 0)
“特殊性方法”是从结局或残局出发,自底而上分析,无须 构造“状态转移的拓扑结构”,无须考察所有可能的状态与策略, 时间和空间复杂度相对于“一般性方法”都不高。 例如POI99 《多边形》 ,IOI96的取数字也可以用“特殊性 方法”来解决。
浅析解 “对策问题” 的两种思路
思路二:特殊性方法
l 状 态 列举影响结局胜负的所有因素,综合描述成“状态”,但并不需 要构造出“状态转移的拓扑结构”。

运筹学对策论全解

运筹学对策论全解

赢 A
B
石头
剪子

石头 0 1 -1
剪子 -1 0 1

1 -1
0
分析:无确定最优解,可用“混合策略”求解。
4.齐王赛马
战国时期,齐国国王有一天提出要与大将军田忌赛马。 田忌答应后,双方约定: 1)每人从上中下三个等级中各出一匹马,共出三匹; 2) 一共比赛三次,每一次比赛各出一匹马; 3) 每匹被选中的马都得参加比赛,而且只能参加一次; 4) 每次比赛后输者要付给胜者一千金。
例:囚犯困境中,每个囚犯均有2个策略:
{坦白,抵赖}
(3)局势
坦白 抵赖
坦白 抵赖 -9,-9 0,-10 -10,0 -1,-1
当每个局中人从各自策略集合中选择一策略而组 成的策略组成为一个局势,用 (si , d j )来表示。
(4)赢得(支付)
局中人采用某局势时的收益值。
例:当局中人甲选择策略si ,局中人乙选策略 dj 时,局中人甲的赢得值可用 R甲(si , d j )表示。
九十年代以来博弈理论在金融、管理和经济领域中 得到广泛应用
• 九十年代以来对策理论在金融、管理和经济领域 中得到广泛应用
• 博弈论和诺贝尔经济奖
1994:非合作博弈:纳什(Nash)、泽尔腾(Selten) 、海萨尼 (Harsanyi) 1996:不对称信息激励理论:莫里斯(Mirrlees)和维克瑞(Vickrey) 2001:不完全信息市场博弈:阿克罗夫(Akerlof)(商品市场)、斯潘 塞(Spence)(教育市场)、斯蒂格里兹(Stiglitze)(保险市场) 2005: 授予罗伯特·奥曼与托马斯·谢林,以表彰他们通过博弈理论的分析 增强世人对合作与冲突的理解。 2007年,授予赫维茨(Leonid Hurwicz)、马斯金(Eric S. Maskin)以及 迈尔森(Roger B. Myerson)。三者的研究为机制设计理论奠定了基础。 2012年,授予罗斯(Alvin E. Roth)与沙普利(Lloyd S. Shapley)。他 们创建“稳定分配”的理论,并进行“市场设计”的实践。

大连理工20春《运筹学》期末题

大连理工20春《运筹学》期末题

大连理工2020年春《运筹学》期末题一、单项选择题1、下列叙述正确的是()。

A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、数学规划的研究对象为()。

A.数值最优化问题 B.最短路问题 C.整数规划问题 D.最大流问题答案:A3、下列方法中可以用来求解部分树的方法的为()。

A.闭回路法 B.破圈法 C.踏石法 D.匈牙利算法答案:B4、把各种备选方案、可能出现的状态和概率以及产生的后果绘制在一张图上,称为()。

A.决策树 B.最大流 C.最小支撑树 D.连通图答案:A5、以下说法中,不属于无概率决策问题(不确定型决策问题)的特点的为()。

A.决策人面临多种决策方案B.对每个决策方案对应的几个不同决策状态无法估计其出现概率的大小C.仅凭个人的主观倾向和偏好进行方案选择D.未来情况和条件出现的概率已知答案:D6、线性规划问题中决策变量应为()。

A.连续变量 B.离散变量 C.整数变量 D.随机变量答案:A7、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A.非负条件 B.顶点集合 C.最优解 D.决策变量答案:D8、典型的无概率决策准则,不包括()。

A.乐观准则 B.折中准则 C.等可能准则 D.最大后悔值准则答案:D9、以下说法中不正确的为()。

A.完成各个作业需要的时间最长的路线为关键路线 B.关键路线上的作业称为关键作业C.所有关键作业的总时差为0 D.以上说法均不正确答案:D10、()也称小中取大准则。

这是一种在不确定型决策问题中,充分考虑可能出现的最小收益后,在最小收益中再选取最大者的保守决策方法。

A.悲观准则 B.折中准则 C.等可能准则 D.后悔值准则答案:A11、当某个非基变量检验数为零,则该问题有()。

A.无解B.无穷多最优解C.退化解D.唯一最优解答案:B12、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有()。

第十二章-对策论(运筹学讲义)课件

第十二章-对策论(运筹学讲义)课件

局中人2 出1指
5 -5
出2指 -5 5
局中人1从局中人2该如何选择策略,已获得利益?
-
3
例2 囚徒困境。两个嫌疑犯作案后被警察抓住,分别被关在 不同的屋子里审讯。警察告诉他们: 如果两人都坦白,各 判刑8年;如果两人都抵赖,由于证据不充分,两人将各 判刑2年;如果其中一人坦白,,另一人抵赖,则坦白者 立即释放,抵赖者判刑10年。在这个例子中两人嫌疑犯 都有两种策略: 坦白或抵赖。可以用一个矩阵表示两个嫌 疑犯的策略的损益
3.一局势对策的益损值: 局中人各自使用一个对策就形成了一 个局势,一个局势决定了各局中人的对策结果(量化)称 为该局势对策的益损值。
赢得函数(payoff function): 定义在局势上,取值为相应益 损值的函数
4. 纳什均衡: 纳什均衡指所有局中人最优策略组成的一种局势,
既在给定其他局中人策略的情况下,没有任何局中人有积
A
1
4
3
2
解因
m i a x m j in a ij 2 , m j in m i a x a ij 3
m a ixm jina ij m jinm a ixa ij
不符合鞍点条件, 故G的鞍点不存在。
例6 求解矩阵对策,其中: 解 容易得到
A 11
0 1
1 1
v a i * j * 1i * 1 ,2 ;j * 3
A
a
2
1
a22
a1m
a2
m
a
m
1
am2
amn
aij为局中人甲在局势
( i , j )下的赢得 -
9
“齐王赛马”是一个矩阵策略。
其中: 齐王的策略集: S1={ 1, 2, 3, 4, 5, 6 },

运筹学教材习题答案详解

运筹学教材习题答案详解
X(2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:

运筹学()——精选推荐

运筹学()——精选推荐

4
1.3 设有单人打字室一间,顾客的到达为 Poisson 流,平均到达时间间隔为 20 分钟,打字 时间服从负指数分布,平均为 15 分钟。求: (1)顾客来打字不必等待的概率; (2)打字室内顾客的平均数; (3)顾客在打字室内的平均逗留时间; (4)若顾客在打字室内的平均逗留时间超过 1.25 小时,则主人将考虑增加设备及打字员。 问顾客的平均到达率为多少时,主人才会考虑这样做?
(1)根据 / 说明增加工人的原因;
(2)增加工人后店内空闲的概率;店内至少有 2 个或更多的顾客的概率 ;
(3)求 L, Lq ,W ,Wq 。
1.13 某火车站的电话问讯处有 3 部电话,可以视为 M/M/3/3 系统。已知平均每隔 2 分钟 有一次问讯电话(包括接通和未接通的),每次通话平均时间为 3 分钟。试问打来问讯处的 电话能接通的概率为多少?
1.15 顾客以每小时 4 人的平均到达率到一个双人理发店理发,顾客到达过程为 Poisson 流。当顾客到达理发店 时发现理发店已 有顾客在理发, 则该顾客就拒绝 进入此店,并不再 来。若理发店的理发时间服从负指数分布。试问:
(1)若要保证在可能到达的顾客中至多有 40% 的顾客不进入理发店,则每个理发师 必须以怎样的服务率进行服务?
(2)进入理发店的平均顾客数是多少? (3)顾客的平均理发时间是多少?
二、对策论题(以下试题选做一道题,20 分)
2.1 甲、乙两游泳队举行包括两个项目的对抗比赛,两队各有一名健将级运动员(甲队为
李,乙队为王),在 3 个项目上的成绩都很突出。但规则规定他们每人只许参加两项比赛,
每队的其他两名运动员可参加全部 3 项比赛。已知各运动员的平时成绩(秒)见表 2。假定 各运动员在比赛中正常发挥水平,又设比赛的第一名得 5 分,第二名得 3 分,第三名得 1 分。问教练应决定让自己队健将参加那两项比赛,可使本队得分最多?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 1 设G1和G2赢得矩阵分别为
5 A1= 2 4 1 4 0 7 A2= 4 6 3 6 2
定理7 设有两个矩阵对策 G1= {S1, S2;A},G2= {S1, S2; α A} ,其中α>0为任一常数,则有⑴ VG2= α VG1 ⑵ T(G1)=T(G2) 例 2 设G1和G2赢得矩阵分别为 6 4 3 2 A2= 4 8 A1= 2 4 4 0 2 0 定义5 设G={S1 , S2;A}为矩阵对策,其中 S1={α1,α2, …,αm},S2={ β 1, β 2, …, β n} ,A=(aij) 0 ≥ a 0 即矩阵A 。如果对一切 j=1,2, …,n, 都有 a m× n i j k j 的第i0行均不小于第k0行的对应元素,则称局中人Ⅰ 的纯策略αi0优超于αk0 ;同样,若对一切i= 1,2, …,m, 都有aij0≤ ail0即矩阵A的第l0列均不小于第j0列的对应 元素,则称局中人Ⅱ的纯策略β j0优超于β l0。
例 3 设G赢得矩阵为
3 A= 5 2
2 2 5
2 3 1
定理8 设G={S1 , S2;A}为矩阵对策,其中 S1={α1,α2, …,αm},S2={ β 1, β 2, …, β n} ,
A=(aij)m×n 。如果纯策略α1被α2, …,αm中之一所优 超 ,由G可得到一个新的矩阵对策G′: G′= {S1 ′, S2; A ′} 其中S1 ′= {α2, …,αm}, A ′ =(aij ′)(m-1)×n aij ′= aij , i=2, …,m , j=1,2, …,n ,则⑴V G′ =VG ;⑵ G′中局中人Ⅱ的最优 策略就是其在G中的最优策略;⑶若(x2*, …, xm*)T是 G′中局中人Ⅰ的最优策略,则x*= (0,x2*, …, xm*)T便 是其在G中的最优策略。
对于A3,易知无鞍点,应用定理4,求解不等式组 7y1+3y2≤ υ 7x3+4x4≥ υ 4y1+6y2≤ υ 3x3+6x4≥ υ y1+y2=1 x3+x4=1 和 y1,y2 ≥ 0 X3,x4 ≥ 0 首先考虑方程组的解 7x3+4x4= υ 7y1+3y2= υ 3x3+6x4= υ 4y1+6y2= υ x3+x4=1 y1+y2=1 求解得x3*=1/3,x4 *=2/3; y1*=1/2,y2 *=1/2; υ=5 于是,原矩阵对策的一个解就是: X*=(0,0,1/3,2/3,0)T, Y*=(1/2, 1/2,0,0,0 ) T , 3 0 5 0 2 5 9 A= 7 3 9 5 9 求解这个矩 4 6 8 7 5.5 阵对策。 6 0 8 8 3 解: 由于第4行优超第1行,第3行优超第2行,故可划 去第1行和第2行,得到新的赢得矩阵 7 3 9 5 9 A1= 4 6 8 7 5.5 6 0 8 8 3 对A1第1列优超第3列,第2列优超第4列,1/3×(第1 列)+2/3 (第2列)优超第5列,故可划去第3﹑ 4﹑5列,得 到新的赢得矩阵 A2第1行优超第 7 3 7 3 A3= 4 6 3行,故划去第 A2= 4 6 6 0 3行,得到
练习题
“二指莫拉问题”。甲乙二人游戏,每人 出一个或两个手指,同时又把猜测对方所出 的指数叫出来。如果只有一个人猜测正确, 则他所赢得的数目为二人所出指数之和,否 则重新开始。写出该对策中各局中人的策略 集合及甲的赢得矩阵,并回答局中人是否存 在某种出法比其它出法更为有利。
复习已讲的矩阵对策内容
定理1 矩阵对策G={S1 , S2;A}在纯策略意义下有解 的充要条件是:存在纯局势( α i* , β j* )使得对一切 i=1,2, …,m, j=1,2, …,n, 均有aij*≤ ai*j* ≤ ai*j 。
定理2 矩阵对策G= {S1, S2;A} 在混合策略意义下有解 的充要条件是:存在x*∈ S1* ,y*∈ S2*,使(x*,y*)为E(x,y) 的一个鞍点,即对一切x∈ S1* ,y∈ S2*,有 E(x,y*) ≤ E(x*,y*) ≤ E(x*,y)
运筹学—对策论(三)
定理5 对任一矩阵对策G= {S1, S2;A},一定存在混合 策略意义下的解。 记矩阵对策G的解集为T(G), 关于对策解集有下列 两个性质:
定理6 设有两个矩阵对策 G1= {S1, S2;A1},G2= {S1, S2;A2} ,其中A1 =(aij), A2 =(aij+L),L为任一常数,则有 ⑴ VG2= VG1+L ⑵T(G1)=T(G2)
推论 : 在定理8中,若纯策略α1不是为α2, …,αm中 之一所优超 ,而是为α2, …,αm的某个凸线性组合所 优超,定理的结论仍然成立。
例:
A=
7 4 6
3 6 0
9 8 8
9 5.5 3
1/3×(第1列)+2/3 (第2列)优超第4列
优超原则:定理8给出了一个简化赢得矩阵A的原则, 称之为优超原则。根据这个原则,当局中人Ⅰ的某 纯策略αi被其它纯策略或纯策略的凸线性组合所优 超,可在矩阵A中划去第i行而得到一个与原对策G 等价但赢得矩阵阶数较小的对策G′,通过求G′而得 到G的解。
定理3 设x*∈ S1* ,y*∈ S2*,则(x*,y*)是G的解的充要条 件是:对任意i=1,2, …,m和j=1,2, …,n,有 E(i,y*) ≤ E(x*,y*) ≤ E(x*,j)
定理4 设x*∈ S1* ,y*∈ S2*,则(x*,y*)是G的解的充要条 件是:存在v,使得x*和y*分别是不等式组 m E(x,j) ∑ aijxi ≥ v , j=1,2, …,n E(i,y) i=1 m n ∑ xi = 1 ∑ aijyj i=1 ≤ v , i=1,2, …,m j=1 xi≥0 , i=1,2, …,m n 和 ∑ yi =1 j=1 yj≥0 , j=1,2, …,n 的解,且v=VG 。
相关文档
最新文档