The Inflammasomes----炎症小体
Nature探寻NLRP3炎症小体激活之谜
Nature探寻NLRP3炎症⼩体激活之谜炎症(inflammation)是机体对病原微⽣物感染和组织损伤⼀种快速⽽协调的反应。
这些刺激导致免疫细胞向感染和损伤部位迁移。
对于许多⼈来说,炎症被认为是⼀种不良的机体反应,因为它可以导致严重的后果,如免疫功能障碍,组织损伤,败⾎症,器官衰竭,甚⾄死亡。
然⽽,炎症是⼀个关键的先天免疫过程,它试图控制感染,激活适应性免疫,修复受损组织,并恢复到保持机体的稳态。
炎症⼩体(inflammasome)是炎症反应中重要的组成部分,由多个蛋⽩组合⽽成的复合物,以caspase-1依耐性⽅式激活促炎细胞因⼦,包括interleukin-1β(IL-1β),以及诱导炎性细胞死亡。
NLRP3炎性⼩体的不同寻常之处在于,它可以由许多不同的刺激触发,⽐如nigericin(⼀种链霉菌的抗⽣素)或受损细胞释放的ATP。
不受控制的NLRP3刺激可导致感染、⾃⾝免疫性疾病、神经退⾏性疾病、代谢紊乱和许多其他⼈类疾病。
考虑到这些刺激的化学性质和结构的多样性,以及⽬前缺乏NLRP3直接与任何这些分⼦相互作⽤的证据,NLRP3被激活的机制仍然是⼀个未知之谜。
2018年底,美国德克萨斯⼤学西南医学中⼼的陈志坚课题组在Nature上在线发表了题为“PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation”的重量级⽂章,剥开了 NLRP3炎症⼩体是如何识别⼤量多样性的激动剂,从⽽使机体对外界病原体⼊侵和组织创伤等做出反应的。
该⽂发现了⼀种不同NLRP3刺激下游共同的细胞信号机制:⾼尔基体反⾯⽹络结构(TGN,trans-Golgi network)分解成各种分散的结构,即形成分散的⾼尔基体反⾯⽹络结构(dTNG,dispersed TGN)。
然后NLRP3上的⼀个多碱性区域与dTGN上带负电荷的PtdIns4P相互作⽤,将NLRP3招募到dTGN上。
NLRC4炎性小体的研究进展
2019年4月第39卷第4期基础医学与临床Basic &Clinical MedicineApril 2019Vol.39No.4收稿日期:2018-08-15修回日期:2018-12-10基金项目:国家自然科学基金(81770730);湖南省自然科学基金(2017JJ2352)*通信作者(corresponding author ):1278018214@qq.com文章编号:1001-6325(2019)04-0564-05短篇综述NLRC4炎性小体的研究进展俞源源,刘映红,袁芳*(中南大学湘雅医学院湘雅二医院肾脏疾病与血液净化湖南省重点实验室,湖南长沙410011)摘要:炎性小体是胞质内的一组多蛋白复合体,一方面它能调节半胱氨酸天冬氨酸特异蛋白酶1的活化,促进IL-1β和IL-18成熟与分泌,引起炎性反应;另一方面可以引起细胞焦亡。
NLRC4炎性小体的主要信号途径为:激活物(如细菌鞭毛蛋白)、感应蛋白(NAIP )、核效应蛋白(NLRC4)、连接蛋白(ASC )、效应蛋白。
NLRC4活化的主要调控机制是配体结合机制和磷酸化作用。
NLRC4是肠道免疫的重要组成成分,可抵御多种病原体,并与多种人类疾病相关,如自身炎性疾病、糖尿病肾病、胸腺癌等。
关键词:NLRC4炎性小体;炎性反应;自身炎性疾病中图分类号:R34文献标志码:AAdvances for NLRC4inflammasomesYU Yuan-yuan ,LIU Ying-hong ,YUAN Fang *(Hunan Provincial Key Laboratory of Kidney Diseases and Blood Purification ,the Second Xiangya Hospital ,Xiangya Medical College ,Central South University ,Changsha 410011,China )Abstract :Inflammasomes are cytosolic multiprotein complexes that can regulate the activation of caspase-1,promote the maturation and secretion of IL-1βand IL-18,and lead to inflammation ,meanwhile initiate pyroptosis.The classic illustration of the NLRC4inflammasome paradigm is :trigger (cytosolic flagellin ),sensor (NAIP ),nu-cleator (NLRC4),adaptor (ASC ),and effector (caspase-1).The main regulatory mechanisms of NLRC4activa-tion are ligand binding and phosphorylation.NLRC4is a critical component of intestinal immune system and defense against different pathogens.In addition ,NLRC4related to a variety of human diseases :such as autoinflammatory diseases ,diabetic nephropathy ,thymic cancer.Key words :NLRC4inflammasome ;inflammation ;autoinflammation diseases1炎性小体和NLRC4炎性小体(inflammasome )是NOD 样受体家族(NOD like receptors ,NLRs )及其形成的多蛋白水解复合物,作为固有免疫系统感受器,能够识别多种危险信号,通过诱导细胞活化及炎性物质释放,引起炎性反应。
炎性小体—搜狗百科
炎性⼩体—搜狗百科炎性⼩体(inflammasome )是由多种蛋⽩质组成的复合体,分⼦量约700 KDa,此概念由Tschopp研究⼩组于2002年⾸次提出。
炎性⼩体能够调节胱冬肽酶-1(caspase-1)的活化进⽽在天然免疫防御的过程中促进细胞因⼦前体pro-IL-1β和pro-IL-18的切割成熟。
其还能调节caspase-1依赖的形式编程性细胞死亡(pyroptosis),诱导细胞在炎性和应激的病理条件下死亡。
也称炎症⼩体,是由胞浆内模式识别受体(PRRs)参与组装的多蛋⽩复合物,是天然免疫系统的重要组成部分。
炎症⼩体能够识别病原相关分⼦模式(PAMPs)或者宿主来源的危险信号分⼦(DAMPs),招募和激活促炎症蛋⽩酶Caspase-1。
活化的Caspase-1切割IL-1β和IL-18的前体,产⽣相应的成熟细胞因⼦。
炎症⼩体的活化还能够诱导细胞的炎症坏死(pyroptosis)。
⽬前已经确定多种炎症⼩体参与了针对多种病原体的宿主防御反应,病原体也已经进化出多种相应的机制来抑制炎症⼩体的活化。
该⽂总结了炎症⼩体在抗感染免疫研究领域的最新进展,重点讨论了炎症⼩体对细菌、病毒、真菌和寄⽣⾍的识别,以及炎症⼩体的活化在宿主抗感染过程中所发挥的作⽤。
⽬前已发现的炎性⼩体主要有4种,即NLRP1炎性⼩体、NLRP3炎性⼩体、IPAF炎性⼩体和AIM2炎性⼩体。
已知发现的炎性⼩体⼀般均含有凋亡相关微粒蛋⽩(apoptosis-associated speck-like protein containing CARD,,ASC)、caspase蛋⽩酶以及⼀种NOD样受体(NOD-like receptor,NLR)家族蛋⽩(如NLRP1)或HIN200家族蛋⽩(如AIM2)。
炎症小体调控机制的研究进展
中图 分 类 号 :R 3 9 2 . 1 文献标志码 : A 文 章 编 号 :1 0 0 5 — 5 6 7 3 ( 2 0 1 5 ) 0 1 — 0 0 5 9 - 0 5
DoI :1 0 . 1 3 3 0 9 / j . c n k i . p mi . 2 01 5. 0 1 . 01 2
( P R R s ) , w h i c h i n v o l v e d i n a c t i v a t i o n o f c a s p a s e 一 1 a n d m a t u r a t i o n o f I L 一 1 / 3 o r I L 一 1 8 i n i n n a t e i m m u n e r e s p o n s e , a l s o i n 印一
Ke y wor d s: I nf la mma s o me s; c a s pa s e 一 1; Ac t i va t e me c ha n i s m; Re u l g a t i o n
同期发表四篇science,这个热点该追吗?-炎症小体
同期发表四篇science,这个热点该追吗?-炎症小体近些年来,随着国家对基础科研领域的大力支持,国内涌现出了大量的优秀科学家,他们在各自的领域都取得了重大的突破。
在最新一期science杂志上同时发表了四篇炎症小体(inflammasome)相关文章,其中有两篇是由清华大学柴继杰教授完成,由此可见,在这个领域国内学者还是相当杰出的。
首先给大家介绍一下炎症小体(inflammasome)的概念,炎症小体是由细胞中的NOD样受体家族成员,ASC和蛋白剪切酶caspase-1组成的多聚蛋白复合物,在受到外界病原相关分子模式或者危险相关分子模式刺激时,NOD样受体会感知这些信号,诱导炎症小体复合物组装活化,随后caspase-1变成活化状态,一方面剪切炎性细胞因子IL-1β和IL-18,诱导后者活化释放,介导炎症反应清除病原微生物和危险信号;另一方面,caspase-1还能够剪切GSDMD,导致GSDMD 活化,诱导细胞膜穿孔,介导细胞焦亡(Pyroptosis)。
细胞焦亡相关推文:(1)细胞焦亡研究必看六篇经典综述;(2)细胞焦亡研究,这些你都知道吗?在炎症小体相关领域,除了柴教授,还有几位国内学者也相当突出。
首先要说的是北京生命科学研究所的邵峰院士,他首次发现了炎症小体的非经典通路,并且鉴定出了介导细胞焦亡的关键蛋白GSDMD,在这个领域已经发表了二十多篇主刊。
还有就是中国科学技术大学的周荣斌教授,他的主要贡献是首次阐明了线粒体活性氧(ROS)在炎症小体活化过程中的关键作用,是炎症小体活化的三大假说之一,相关文章于2011年发表在nature杂志上,目前已经被引用2400次,是炎症小体领域引用次数最高的文章。
除此之外,华人学者陈志坚教授在炎症小体领域也有较大建树,特别是他近期发表在nature上的文章阐明了高尔基体在NLRP3炎症小体活化过程中的重要作用。
闲话少说,下面简要看看这期science上的四篇关于炎症小体的文章。
NLRP3炎症小体与心血管疾病
NLRP3炎症小体与心血管疾病谭红梅【摘要】Inflammasomes are molecular platforms built around several proteins ,composed of intracellular pattern-recognition receptors,the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain(ASC)and caspase-1. The inflammasome was believed as the cellular machinery triggering the maturation of proinflammatory cytokines such as interleukin-1β(IL-1β)to engage innate immune defenses. Several types of inflammasomes have been identified ,and among them NLRP3 inflam?masome is currently the most fully characterized inflammasome. Recent studies showed that a variety of cardiovascular risk factors , including dyslipidemia,hypertension and kidneydisease,hyperhomocysteinemia,obesity,diabetes and metabolic syndrome,can activate NLRP3 inflammasomes,process the maturation of proinflammatory cytokines IL-1βand IL-18,and promote atherosclerosis. The activation of NLRP3 inflammasomes was also associated with decreased stability of atherosclerotic plaque. These studies suggested an important role of NLRP3 inflammasomes in the pathogenesis of cardiovascular disease. Targeting NLRP3 inflammasome at the stage of its assembling or activation may be a novel strategy for prevention and treatment of cardiovascular disease.%炎症小体是一类多蛋白复合物,主要由识别炎症的胞浆型模式识别受体、衍接蛋白和效应蛋白三部分组成.炎症小体组装激活可以自我切割生成活性形式的caspase-1,并进一步促进白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)等炎症因子的成熟和释放,引起炎症反应.此外炎症小体激活可介导caspase-1依赖的细胞焦亡,从而促进炎症反应的扩散.炎症小体根据识别信号的模式识别受体命名,其中NLRP3炎症小体是目前研究最多了解相对最清楚的炎症小体.最新研究表明心血管疾病的多种危险因素如脂代谢紊乱、高血压及肾脏疾病、高同型半胱氨酸血症、肥胖、糖尿病及代谢综合征等均可以激活NLRP3炎症小体,促进炎性介质IL-1β和IL-18等的表达、释放,促进动脉粥样硬化发生发展,并影响动脉粥样斑块的稳定性,提示其在心血管疾病发病机制中的重要作用.干预NLRP3炎症小体的生成、活化,可望为心血管疾病的防治提供新的思路.【期刊名称】《中山大学学报(医学科学版)》【年(卷),期】2017(038)002【总页数】7页(P215-221)【关键词】NLRP3;炎症小体;白细胞介素-1β;心血管疾病;动脉粥样硬化【作者】谭红梅【作者单位】中山大学中山医学院病理生理学教研室,广东广州 510080;中山大学中山医学院心血管研究群体,广东广州 510080【正文语种】中文【中图分类】R363;R54心血管疾病(cardiovascular diseases,CVD)发病率高、危害巨大,号称“第一杀手”。
炎症小体的临床应用研究进展
炎症小体的临床应用研究进展马明坤【摘要】炎症小体是核结合寡聚化结构域样受体家族、含N端胱冬酶募集结构域的凋亡相关颗粒样蛋白和半胱天冬氨酸酶共同构成的高分子量蛋白复合体,是固有免疫的重要组成部分.NOD样受体家族含热蛋白结构域蛋白3炎症小体是目前研究最多的一种炎症小体,它可以被多种物质激活,介导炎症反应发生.当其过度活化时,机体将负反馈调节,抑制促炎因子产生,维持内环境稳定.炎症小体在呼吸系统疾病、肝脏疾病、肿瘤以及自身免疫疾病的固有免疫中都发挥了重要作用.对炎症小体的活化、致病机制的进一步研究将有助于发现上述疾病的治疗新靶点,为临床医师提供诊疗新思路.【期刊名称】《医学综述》【年(卷),期】2016(022)001【总页数】3页(P48-50)【关键词】炎症小体;固有免疫;临床应用【作者】马明坤【作者单位】天津中医药大学第二附属医院检验科,天津300150【正文语种】中文【中图分类】R392固有免疫也称天然免疫,是机体最古老的抗感染机制之一,是宿主抵抗病原体或其他危险信号的第一道防线,该系统一方面可以通过诱导吞噬作用和炎症反应等途径对入侵的病原体快速识别和清除,另一方面在诱导和激活获得性免疫反应中也发挥着重要作用[1]。
各国学者开始应用动物模型与分子遗传学手段研究固有免疫防御的分子机制。
现已证实[2-5],炎症小体除在宿主抗病原微生物感染的固有免疫过程中发挥重要作用外,还参与2型糖尿病、痛风、阿尔茨海默病等多种疾病的发生、发展。
现就炎症小体的临床应用研究进展予以综述。
在固有免疫中,细胞内的信号级联反应是由模式识别受体及其识别的各种病原相关分子模式及损伤相关分子模式所触发[6]。
模式识别受体主要包括4类:Toll样受体、维甲酸诱导基因Ⅰ样受体、核结合寡聚化结构域样受体[nucleotide-binding and oligomerization domain(NOD) like receptors,NLRs]以及C型凝集素受体[7]。
dc细胞氧化磷脂激活炎症小体
dc细胞氧化磷脂激活炎症小体
DC细胞(树突状细胞)是一种重要的免疫细胞,主要功能是捕获、处理和展示抗原,以激活免疫反应。
氧化磷脂是一种磷脂结构,在激活炎症小体(inflammasome)过程中发挥重要作用。
炎症小体是一种多聚体蛋白复合物,存在于细胞质内,参与炎症的调节。
炎症小体的激活通常通过信号分子诱导,并导致促炎细胞因子的释放,如IL-1β和IL-18。
研究发现,氧化磷脂可以作为信号分子,直接激活炎症小体。
具体来说,氧化磷脂能够与NLRP3(NACHT, LRR, 和 PYD 结构域包含3)蛋白相互作用,导致NLRP3蛋白的激活和多聚化,从而激活炎症小体。
炎症小体的激活在炎症反应和免疫调节中起到重要作用。
它可以引发炎症反应,并促使免疫细胞选择合适的免疫反应方式,以对抗感染和损伤。
然而,过度激活的炎症小体可能导致炎症相关疾病和自身免疫疾病的发生。
总而言之,DC细胞氧化磷脂的激活可以直接导致炎症小体的激活,从而参与炎症反应和免疫调节。
这一发现有助于我们更好地理解免疫系统的调节机制,并为炎症相关疾病的治疗提供新的靶点。
炎症小体的分类及组成
炎症小体是一类由多种蛋白质组成的复合物,它们在细胞内发挥着重要的调节作用。
根据其结构和功能的不同,可以将炎症小体分为三类:核糖体蛋白小体、线粒体蛋白小体和溶酶体蛋白小体。
一、核糖体蛋白小体
核糖体蛋白小体是由核糖体RNA(rRNA)和蛋白质组成的复合物,主要参与蛋白质的合成过程。
在细胞内,核糖体蛋白小体会与mRNA结合,形成核糖体-mRNA复合物,从而促进蛋白质的翻译。
此外,核糖体蛋白小体还可以通过调节mRNA的稳定性和选择性剪接等机制来影响基因表达。
二、线粒体蛋白小体
线粒体蛋白小体是由线粒体内膜上的蛋白质组成的复合物,主要参与能量代谢过程。
在细胞内,线粒体蛋白小体会与ATP合成酶结合,形成线粒体-ATP合成酶复合物,从而促进ATP的合成。
此外,线粒体蛋白小体还可以通过调节线粒体的形态和功能等机制来影响细胞的能量代谢。
三、溶酶体蛋白小体
溶酶体蛋白小体是由溶酶体内的蛋白质组成的复合物,主要参与细胞内的消化和降解过程。
在细胞内,溶酶体蛋白小体会与溶酶体酶结合,形成溶酶体-酶复合物,从而促进细胞内的消化和降解。
此外,溶酶体蛋白小体还可以通过调节溶酶体的形态和功能等机制来影响细胞内的消化和降解。
总之,不同类型的炎症小体在细胞内发挥着不同的调节作用。
通过对这些炎症小体的深入研究,我们可以更好地理解细胞内的生命活动过程,并为疾病的治疗提供新的思路和方法。
炎症小体—连接天然免疫和获得性免疫的桥梁
炎症小体—连接天然免疫和获得性免疫的桥梁十五年前,炎症小体(Inflammasome)的发现成为科学界了解炎症发生的突破性研究1。
炎症小体被证明在不同的生理环境中起关键作用,因此成为药物研发的重要靶点。
本篇综述集中讨论炎症小体在天然免疫和适应性免疫之间的中心作用。
炎症小体是由细胞质传感器,细胞凋亡相关斑点样蛋白(ASC或PYCARD)和pro-caspase-1组成的三体复合物。
传感器的多样性和特异性赋予其对外源(微生物)或内源(压力信号,警报素)等各种刺激的响应。
传感器包括NLRP1,NLRP3和NLRC4(属于NOD样受体家族),AIM2(absent in melanoma-2)或Pyrin。
多样性和特异性的传感器可以广泛识别外源性(微生物分子)和内源性(危险信号)刺激物。
研究最多的炎症小体代表是NLRP3炎症小体。
其活化分两步:第一个信号(Priming)触发NF-κB依赖的pro-IL1β和NLRP3表达,第二个信号由不同结构的微生物分子(例如“毒素”)或危险信号(尿酸单钠,MSU)触发炎症小体多聚体形成。
NLRP3诱导ASC活化并形成斑点,进而促使caspase-1自我切割并活化。
活化的caspase-1促使IL-1β和IL-18水解成熟;并且促使Gasdermin D (GSDMD)切割。
切割的GSDMD随后在细胞膜上形成孔,引发促炎性细胞死亡,即细胞焦亡(Pyroptosis)。
这个过程伴随着IL-1β,IL-18和警报素如HMGB1的释放,将危险信号从受损或死亡的细胞传播出去并调动免疫细胞,特别是体现在中性粒细胞的招募2,3。
此外,寡聚炎性体颗粒可通过吞噬作用(phagocytosis)被周围巨噬细胞吞噬进而放大炎症反应4。
有趣的是,在吞噬细胞处于“超活化(Hyperactivation)”状态时,IL-1β的分泌可独立于细胞焦亡的发生5,6。
事实上,炎症小体诱导树突细胞(DCs)超活化,后者触发增强T细胞(enhanced T cell)应答:除保留其功能和抗原递呈外,增强T细胞促使微环境中的辅助T 细胞(T helper)做出反应并分泌IL-1β和IL-18。
炎症小体与中枢神经系统疾病
炎症小体与中枢神经系统疾病杜秀明;张子腾;宗英;余琛琳;张晓冬;陆国才【摘要】Inflammasome is the body of protein complex which is able to identify different stimulation signals and can in‐duce immune and inflammatory responses when it is activated .NLRP3 inflammasome has been extensively studied in the central nervoussystem .Microglia ,perivascular macrophages and meningeal macrophages express inflammasomes .The occurrence and development of acute brain infection ,aseptic acute brain injury ,Parkinson disease and Alzheimer disease are closely related to inflammasomes .Based on mechanisms exploration of the inflammasome′s role in the central nervous system disorders ,its tar‐get drug research and development will be greatly addressed in the future .%炎症小体是一蛋白复合物,能够识别不同刺激信号,活化后能诱导免疫和炎症应答。
NLRP3炎症小体是中枢神经系统中研究最广泛的炎症小体。
小胶质细胞、血管周围的巨噬细胞和脑膜巨噬细胞均能表达炎症小体,而炎症小体与急性脑部感染、急性无菌性脑损伤、帕金森病和阿尔茨海默病等的发生发展有密切关系。
炎症的启动:炎性小体
炎症的启动:炎性⼩体适配器和酶原Proaspase-1组成的多聚蛋⽩复合物。
炎性⼩体(Inflammasome)是由传感器传感器、适配器炎性⼩体的组装是对病原体相关分⼦模式(PAMP)和损伤相关分⼦模式(DAMP)的反应。
炎性⼩体通过引起Caspase-1⾃我剪切,活化,进⽽裂解Pro-IL-1β,Pro-IL-18,形成成熟IL-1β,IL-18.细胞焦亡活化的caspase-1也能裂解GasderminD,从⽽导致⼀种特殊的细胞死亡,称为细胞焦亡(pyroptosis)。
编码炎性⼩体组分的基因突变与许多炎症性疾病有关,过去⼗年的研究强调了炎性⼩体的适当激活在稳态和疾病发病机制中的重要性。
炎性⼩体组装NLR蛋⽩家族的所有成员都含有⼀个中央核苷酸结合域(NBD),⽽且⼤多数成员都有⼀个可变的N-末端结构域和⼀个C-末端LRR结构域。
根据N端pyrin结构域(PYD)或CARD的存在,该家族进⼀步分为NLRP或NLRC受体。
⼈和⼩⿏的NLR基因分别编码22个NLRs和34NLRs。
其中,NLRP1、NLRP3和NLRC4是能够诱导炎性⼩体形成的平台,可以激活caspase-1。
NLRP12、NLRP6和NLRP9B也被认为参与炎性⼩体,但它们的作⽤是还没有很好的确认。
相互作⽤,⽽PYD和CARD结构域都可以炎性⼩体组装需要同类型同类型CARD-CARD或PYD-PYD相互作⽤被诱导齐聚,这是炎性⼩体组装的基础。
当配体被检测到时候,传感器从抑制状态释放,并聚集,ASCs它们的PyDs之间的同型相互作⽤成核。
接下来,ASCs通过它的Card结构域相互作⽤招募propasse-1,合成的多聚炎症体复合物含有传感器、适配器和酶。
NLRP 3、AIM 2和pyrin炎症⼩体的组装严格依赖于适配器依赖于适配器ASC。
相反,NLRP1和NLRC4拥有⼀个CARD域,可以直接招募caspase-1。
NLRP1和NLRC 4可独⽴于ASC诱导炎症⼩体组装和细胞焦亡。
炎症小体的弱激活
炎症小体的弱激活
炎症小体是一种多蛋白复合物,由不同的家族成员组成,并可以被多种病原体相关分子模式(PAMPs)或损伤相关分子模式(DAMPs)激活。
炎症小体的主要功能是激活半胱天冬酶1(caspase-1),进而引起促炎细胞因子白细胞介素(IL)-1β和IL-18的成熟和分泌,并诱导细胞焦亡。
关于炎症小体的弱激活,其具体机制尚未完全明确。
但一般来说,弱激活可能涉及炎症小体的部分或不完全激活,导致产生的促炎细胞因子量较少或活性较低。
这可能是由于病原体或损伤信号的强度较弱,或者细胞内的信号转导通路存在某种程度的障碍或调节。
例如,NLRP3炎症小体的激活需要两个信号:启动信号和激活信号。
在启动阶段,模式识别受体(如Toll样受体)识别病原体或危险信号,导致核因子-kappa B(NF-κB)通路的激活。
NF-κB通路诱导NLRP3基因和前白细胞介素-1β(pro-IL-1β)的转录。
然后,在激活阶段,NLRP3经过翻译后修饰后可被完全激活。
如果在这个过程中,任何一个步骤受到干扰或阻碍,都可能导致NLRP3炎症小体的弱激活。
总的来说,炎症小体的弱激活可能与病原体或损伤信号的强度、细胞内的信号转导通路的障碍或调节,以及炎症小体本身的表达和修饰状态等多种因素有关。
这种弱激活状态可能在某些疾病的发生和发展中起到重要作用,因此深入研究其机制对于理解和治疗这些疾病具有重要意义。
以上内容仅供参考,如需更专业的解释,建议查阅相关领域的最新研究文献或咨询相关领域的专家。
炎症小体及其相关疾病的研究进展
炎症小体及其相关疾病的研究进展王岩;孙兵【期刊名称】《中国免疫学杂志》【年(卷),期】2015(000)006【摘要】炎症小体是细胞内多种蛋白质组成的蛋白复合体,其形成可导致炎性天冬氨酸特异性的半胱氨酸蛋白水解酶( caspase)自我剪切,后者通过对促炎因子IL-1β和IL-18的激活,引起宿主的炎症反应,并抵抗病原微生物的入侵。
通过应对多种多样的危险信号,炎症小体参与并调控了多种疾病。
本文将讨论各种炎症小体的激活效应及机制,综述炎症小体及其相关分子基因突变或活性异常导致的疾病。
对炎症小体在多种人类疾病中的作用机制进行研究,将为这些疾病的治疗提供坚实的理论基础和有效的治疗策略。
【总页数】7页(P721-727)【作者】王岩;孙兵【作者单位】中国科学院上海巴斯德研究所,上海 200031;中国科学院上海巴斯德研究所,上海 200031【正文语种】中文【中图分类】R392【相关文献】1.线粒体自噬核苷酸结合寡聚化结构域样受体蛋白3炎症小体轴在衰老相关心血管疾病中的研究进展 [J], 李邵琦;王举;于雪;刘婷;赵雅君2.LncRNA及miRNA对NLRP3炎症小体信号的调控机制及其在相关疾病中的意义 [J], 陆佳伟;刘效谷;张文波3.中医药干预NLRP3炎症小体治疗相关疾病的研究进展 [J], 黄静[1];卢建峰[1];马萍[1]4.红景天苷抑制NLRP3炎症小体活性干预相关疾病的研究进展 [J], 闫珊;周俊;余文君;王启斌;郑涛;陈黎5.核苷酸结合寡聚化结构域样受体蛋白3炎症小体在脓毒血症中的变化及其与疾病严重程度的相关性 [J], 于苏淮;马春燕因版权原因,仅展示原文概要,查看原文内容请购买。
NLRPs炎性小体的构成和功能探究
NLRPs炎性小体的构成和功能探究引言炎症反应是机体对外来病原体侵袭以及组织损伤所迅速产生的一种生理反应。
它对机体来说具有很大的保护意义,但是当炎症反应持续存在或过度发生时,会失去控制,导致一系列炎症反应相关性疾病。
其中一个主要调节机制是由炎症小体(inflammasome)介导的细胞凋亡和促炎症细胞因子(IL-1β和IL-18)产生。
近年来,NLRPs炎症小体的研究成为快速发展领域,它在慢性炎症反应,肿瘤和微生物感染等方面有着广泛的研究和应用。
NLRPs炎症小体的构成炎症小体是由多种分子构成的多部分复合物,包括一个感受病原体分子的受体,适配分子(ASC)和细胞裂解酶原(CASP)家族的分子,这些分子的组合是根据该感官分子的不同。
当前已知的感受病原体分子有NLRPs,如NLRP1、NLRP3、NLRC4、NLRP6、NLRP7、NLRP12等。
NLRPs炎症小体的构成在大多数的细胞类型都被发现,特别是在巨噬细胞、树突细胞和内皮细胞中分布较为广泛。
其中NLRP3小体是研究最深入的小体之一,因此接下来以NLRP3小体为例进行详细介绍。
NLRP3感受病原体分子NLRP3是当前比较广泛研究的感受病原体分子。
NLRP3在细胞质中以蛋白质的形式存在,并通过结构域NACHT(NAIP、CIITA、HET-E和TP1)负责NLRP3的引导器功能;通过LRR(leucine-rich repeat)结构域与AMPs(抗菌肽)结合,调节NLRP3的激活;通过PYD(Pyrin / AIM2-like receptor)结构域,连接到适配蛋白ASC,促进炎症小体的组装。
NLRP3需要第二信使杂多糖(ATP)、晶体、细胞内代谢物(尤其是ROS)和细胞内循环内毒素的存在以产生响应。
NLRP3静息状态可以通过SOD2、蒟蒻硫酸酰酶、HX20和RTP801等转录因子维持。
适配分子ASC适配分子(ASC)是一种被广泛研究的炎症小体组分。
疟原虫感染引起的炎症小体反应研究进展
疟原虫感染引起的炎症小体反应研究进展
李昕;董彬;李承桓;袁泉;冯颖;姜宁
【期刊名称】《动物医学进展》
【年(卷),期】2022(43)5
【摘要】炎症小体(inflammasome)是细胞感染或应激时激活的分子平台,可触发促炎细胞因子(如IL-1β)的成熟,从而参与先天免疫防御。
炎症小体活性失调与人类遗传性和获得性炎症疾病之间的密切关系突出了这一途径在调节免疫反应中的重要性。
疟原虫感染可触发多种先天免疫应答,其中疟原虫及其gDNA、RNA、疟色素(hemozoin,Hz)和糖基磷脂酰肌醇(glycosylphosphatidylinositols,GPIs)被免疫细胞捕获,激活AIM2、NLRP3或NLRC4等炎症小体,并生成TNF-α、IFN-γ、IL-12、IL-1β和IL-18等细胞因子,引起反复发热等疟疾的典型症状。
疟原虫感染中的炎症小体反应是疟疾治疗的一个新兴研究方向,近年来相关研究受到了越来越多的关注,论文主要就近年来对疟原虫感染所引起机体的炎症小体反应进行综述,为疟疾治疗探索新的方向。
【总页数】5页(P92-96)
【作者】李昕;董彬;李承桓;袁泉;冯颖;姜宁
【作者单位】沈阳农业大学
【正文语种】中文
【中图分类】R531.3
【相关文献】
1.炎症小体在真菌感染中的作用机理研究进展
2.NLRP3炎症小体在大肠杆菌血流感染免疫反应机制中的作用
3.NLRP3炎症小体在真菌感染中的作用机制研究进展
4.NLRP3炎症小体对急性胰腺炎小鼠全身炎症反应及代偿性抗炎反应综合征的调节作用
5.炎症小体NLRP3在抗寄生虫感染中调控机制的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
炎性小体在炎性衰老及老年性疾病发生中的作用
炎性小体在炎性衰老及老年性疾病发生中的作用
宋菲;白雪源
【期刊名称】《老年医学与保健》
【年(卷),期】2014(20)6
【摘要】近年研究发现免疫炎症与衰老的发生有关.在机体衰老过程中,固有免疫反应被激活,导致机体出现一种低水平、慢性炎症状态,即炎性衰老(inflammaging).炎性小体(inflammasome)是由细胞内感受分子如pattern recognition receptors(PRRs)与接头蛋白ASC及procaspase-1蛋白组装而成的高分子量多蛋白复合物,是固有免疫系统的重要组成部分.炎性小体能被多种外源性病原微生物或内源性危险信号分子激活,进而诱导caspase-1酶活化.
【总页数】5页(P359-363)
【作者】宋菲;白雪源
【作者单位】100853北京市,解放军总医院肾病科,肾脏疾病国家重点实验
室;100853北京市,解放军总医院肾病科,肾脏疾病国家重点实验室
【正文语种】中文
【中图分类】R339.3+8
【相关文献】
1.NLRP3炎性小体在动脉粥样硬化发生发展中的作用 [J], 甘祥海;吕湛;
2.NLRP3炎性小体在动脉粥样硬化发生发展中的作用 [J], 甘祥海;吕湛
3.炎性衰老在骨关节炎发生中的作用 [J], 王增坤;马志强;刘建宇
4.炎性衰老在阿尔茨海默病发生中的作用机制 [J], 康美美;王蓉
5.炎性小体诱导的细胞焦亡在动脉粥样硬化斑块发生发展中的作用 [J], 张宇擎;杨慧
因版权原因,仅展示原文概要,查看原文内容请购买。
炎症小体在炎症调节中的研究现况
炎症小体在炎症调节中的研究现况薛绯;束蓉;谢玉峰【期刊名称】《口腔医学研究》【年(卷),期】2013(29)12【摘要】炎症小体(inflammasomes)是一类由胞浆内模式识别受体(PatternRecognitionReceptors,PRRs)参与组装的蛋白复合物,是人体天然免疫系统的重要组成部分,在炎症介导中起重要作用[1]。
参与组装的PRRs主要为核苷酸结合寡聚化结构域样受体(nucleotide binding oligomerization domainlikereceptors,NLRs)。
炎症小体可通过识别病原相关分子模式(pathogen-associated molecular patterns,PAMPs)或宿主来源的危险信号分子模式(danger-associa tedmolecu-lar patterns,DAMPs)招募和激活半胱天冬酶Caspase-1.活化的Caspase-1可水解蛋白底物,调控IL-1G和IL-18等炎症因子前体的合成、分泌并诱导细胞程序性死亡(pyro-prosis)[2]。
【总页数】3页(P1191-1193)【关键词】炎症介导;小体;模式识别受体;Caspase-1;病原相关分子模式;细胞程序性死亡;调节;天然免疫系统【作者】薛绯;束蓉;谢玉峰【作者单位】上海交通大学医学院附属第九人民医院牙周科.上海市口腔医学研究所【正文语种】中文【中图分类】R781.4【相关文献】1.NLRP3炎症小体与炎症性肠病的关系及针灸调节作用研究进展 [J], 吴丽洁;张霁;张丹;杨延婷;杨玲;智方圆;吴凌翔;谢晨;马晓芃2.基于缺氧组织中NLRP3炎症小体的活化研究膝痹宁减轻KOA滑膜炎症的效应机制 [J], 张力; 张立; 邢润麟; 黄正泉; 李晓辰; 徐波; 肖延成; 茆军; 王培民3.益气化痰方调节高血压大鼠脑血管适应性功能及炎症小体的研究 [J], 袁冬梅;张涨;谭炜;莫霄云;林琳;张清伟;何贵新4.NLRP3炎症小体在炎症性肠病及炎症相关性肠癌作用中的研究进展 [J], 胡韵;陆军;王章桂5.黄芪甲苷通过NLPR3炎性小体调节糖尿病动脉粥样硬化早期大鼠血脂及炎症因子的研究 [J], 葛凡;王文恺;朱景天;李子航;孙悦;薛梅因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Leading EdgeReviewThe InflammasomesKate Schroder1,2and Jurg Tschopp1,*1Department of Biochemistry,University of Lausanne,CH-1066Epalinges,Switzerland2Monash Institute of Medical Research,Monash University,Melbourne,Victoria3800,Australia*Correspondence:jurg.tschopp@unil.chDOI10.1016/j.cell.2010.01.040Inflammasomes are molecular platforms activated upon cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1b to engage innate immune defenses.Strong associations between dysregulated inflammasome activity and human heritable and acquired inflammatory diseases highlight the importance this pathway in tailoring immune responses.Here,we comprehensively review mechanisms directing normal inflammasome func-tion and its dysregulation in disease.Agonists and activation mechanisms of the NLRP1,NLRP3, IPAF,and AIM2inflammasomes are discussed.Regulatory mechanisms that potentiate or limit inflammasome activation are examined,as well as emerging links between the inflammasome and pyroptosis and autophagy.Traditionally,innate immunity has been viewed as thefirst line of defense discriminating‘‘self’’(e.g.,host proteins)from‘‘nonself’’(e.g.,microorganisms).However,emerging literature suggests that innate immunity actually serves as a sophisticated system for sensing signals of‘‘danger,’’such as pathogenic microbes or host-derived signals of cellular stress,while remaining unre-sponsive to nondangerous motifs,such as normal host mole-cules,dietary antigens,or commensal gutflora.The notion that innate immunity functions as a danger sentinel has similarities to Matzinger’s‘‘danger hypothesis,’’proposed for adaptive immune responses(Matzinger,1994).Such a model for recog-nizing situations of host danger allows for coordinate activation of immune system antimicrobial and tissue repair functions in response to infection or injury,while avoiding collateral damage in situations in which harmless nonself is present.The innate immune system engages an array of germline-encoded pattern-recognition receptors(PRRs)to detect invari-ant microbial motifs.PRRs are expressed by cells at the front line of defense against infection,including macrophages,mono-cytes,dendritic cells,neutrophils,and epithelial cells,as well as cells of the adaptive immune system.PRRs include the membrane-bound Toll-like receptors(TLRs)and C-type lectins (CTLs),which scan the extracellular milieu and endosomal compartments for pathogen-associated molecular patterns (PAMPs).Intracellular nucleic-acid sensing PRRs cooperate to provide cytosolic surveillance,including the RNA-sensing RIG-like helicases(RLHs),RIG-I and MDA5,and the DNA sensors, DAI and AIM2.The outcome of PAMP recognition by PRRs depends upon the nature of both the responding cell and the invading microbe.However,signal transduction from these receptors converges on a common set of signaling modules, often including the activation of the NF-k B and AP-1transcrip-tion factors that drive proinflammatory cytokine/chemokine production and members of the IRF transcription factor family that mediate type I interferon(IFN)-dependent antiviral responses.A further set of intracellular PRRs,distinct from those described above,are the NOD-like receptors(NLRs)that recog-nize PAMPs,as well as host-derived danger signals(danger-associated molecular patterns,DAMPs).Microbial detection by PRRs such as TLRs is reviewed elsewhere(see Review by O.Takeuchi and S.Akira et al.on page805of this issue).This Review focuses on those PRRs that assemble into high-molec-ular weight,caspase-1-activating platforms called‘‘inflamma-somes’’that control maturation and secretion of interleukins such as IL-1b and IL-18,whose potent proinflammatory activities direct host responses to infection and injury.The NLR FamilyThe NLRs are comprised of22human genes and many more mouse genes because of gene expansion since the last common ancestor.The NLR family is characterized by the presence of a central nucleotide-binding and oligomerization(NACHT) domain,which is commonlyflanked by C-terminal leucine-rich repeats(LRRs)and N-terminal caspase recruitment(CARD)or pyrin(PYD)domains.LRRs are believed to function in ligand sensing and autoregulation,whereas CARD and PYD domains mediate homotypic protein-protein interactions for downstream signaling.The NACHT domain,which is the only domain com-mon to all NLR family members,enables activation of the signaling complex via ATP-dependent oligomerization.Phyloge-netic analysis of NLR family NACHT domains reveals3distinct subfamilies within the NLR family:the NODs(NOD1-2,NOD3/ NLRC3,NOD4/NLRC5,NOD5/NLRX1,CIITA),the NLRPs (NLRP1-14,also called NALPs)and the IPAF subfamily,consist-ing of IPAF(NLRC4)and NAIP(Figure1A).The phylogenetic rela-tionships between subfamily members(Figure1A)are also sup-ported by similarities in domain structures(Figure1B).This is particularly clear for the NLRPs,which all contain PYD,NACHT, and LRR domains,with the exception of NLRP10,which lacks LRRs.This Review uses the most common NLR family nomen-clature;however,an alternative nomenclature based on NLR family member domain structure was proposed(Ting et al., 2008),and a full list of alternative gene names for NLRP1, NLRP3,and IPAF are given in Table S1available online.Cell140,821–832,March19,2010ª2010Elsevier Inc.821The class II transactivator (CIITA)was the first NLR to be char-acterized,and is a key regulator of class II MHC genes that is mutated in bare lymphocyte syndrome (Steimle et al.,1993).The transcriptional coactivator factor function of CIITA appears to be distinct among NLRs,as no other NLRs have been shown to exert transcriptional regulator activity or other nuclear func-tions.Other members of the NLR family are generally considered to perform cytoplasmic surveillance for PAMPs or DAMPs.NOD1and NOD2both recognize breakdown products of bacte-rial cell walls (mesodiaminopimelic acid and muramyl dipeptide [MDP],respectively)and,upon ligand sensing,oligomerize and recruit RIP2via CARD-CARD interactions.Assembly of NOD1and NOD2signalosomes ultimately culminates in the activation of the NF-k B transcription factor,which drives proinflammatory gene regulation (reviewed in Kufer et al.,2006).Mutations in NOD2are associated with human inflammatory diseases such as Crohn’s disease and Blau syndrome (Hugot et al.,2001;Miceli-Richard et al.,2001;Ogura et al.,2001).The functions of NOD3and NOD4await clarification.The function of NOD5(NLRX1)is a matter of debate;recent reports position NOD5within the mitochondrial matrix,or,alternatively,as recruited to the outer mitochondrial membrane,and propose functions in either suppressing MAVS-dependent antiviral pathways or promoting the generation of reactive oxygen species (ROS)(Arnoult et al.,2009;Moore et al.,2008;Tattoli et al.,2008).Many of the remaining NLR family members are poorly charac-terized at present;however,we describe below the function of those NLR family members that regulate caspase-1activity through inflammasome formation.Inflammasomes:Platforms for Caspase-1Activation and IL-1b MaturationCaspases are cysteine proteases that initiate or execute cellular programs,leading to inflammation or cell death.TheyareFigure 1.Human and Mouse NLR Family Members(A)Phylogenetic relationships between NACHT domains of each human (uppercase)and mouse (lowercase)NLR (NOD-like receptor)protein show 3distinct subfamilies within the NLRs:the NOD,NLRP,and IPAF subfamilies.(B)Domain structures for human NLRs reveal commonalities within the subfamilies.Domains are classified according to the NCBI domain annotation tool for the longest human protein product,with the exception of the FIIND domain that was identified independently of NCBI (Tschopp et al.,2003).It should be noted that CIITA is often annotated as harboring a CARD domain,because a splice variant expressed in dendritic cells contains a domain with homology to CARD domains (Nickerson et al.,2001);however,the translated transcript variant is not classified as containing a classical CARD domain by typical approaches (NCBI conserved domains,Simple Modular Architecture Research Tool [SMART]).Likewise,these domain prediction approaches do not classify NOD3and NOD4as CARD-containing and experimental evidence for a CARD domain function has yet to be reported.Domains:BIR,baculoviral inhibition of apoptosis protein repeat domain;CARD,caspase recruitment domain;FIIND,domain with function to find;LRR,leucine-rich repeat;NACHT,nucleotide-binding and oligomerization domain;PYD,pyrin domain.822Cell 140,821–832,March 19,2010ª2010Elsevier Inc.synthesized as inactive zymogens,and their potent cellular activities are tightly controlled by proteolytic activation.Cas-pases are categorized as either proinflammatory or proapop-totic,depending upon their participation in these cellular programs.The proinflammatory caspases are comprised of cas-pase-1,-11and-12in mouse and caspase-1,-4,and-5in human(Martinon and Tschopp,2007).Caspase-12is mutated to encode a nonfunctional protein in most human populations (Xue et al.,2006).Of the proinflammatory caspases,caspase-1 is the most fully characterized.Its catalytic activity is tightly regu-lated by signal-dependent autoactivation within multiprotein complexes called‘‘inflammasomes’’that mediate caspase-1-dependent processing of cytokines such as IL-1b(Martinon et al.,2002).IL-1b is an important proinflammatory mediator that is gener-ated at sites of injury or immunological challenge to coordinate programs as diverse as cellular recruitment to a site of infection or injury and the regulation of sleep,appetite,and body temper-ature(see Review by C.A.Dinarello on page935of this issue). IL-1b activity is rigorously controlled by expression,maturation, and secretion;proinflammatory stimuli induce expression of the inactive IL-1b proform,but cytokine maturation and release are controlled by inflammasomes.An endogenous IL-1receptor antagonist(IL-1RA)also regulates IL-1b action.Most reports characterizing inflammasomes have focused on cells of the myeloid lineage,such as macrophages or dendritic cells; however,cells outside the myeloid compartment can activate inflammasomes.For example,keratinocyte exposure to skin irri-tants or ultraviolet B(UVB)irradiation triggers NLRP3inflamma-some activation(Feldmeyer et al.,2007;Watanabe et al.,2007). Inflammasomes are assembled by self-oligomerizing scaffold proteins.A number of NLR family member have been reported to exhibit inflammasome activity in vitro;however,few NLR family members have clear physiological functions in vivo.NLRP1, NLRP3,and IPAF are danger sentinels that self-oligomerize via homotypic NACHT domain interactions to form high-molecular weight complexes(probably hexamers or heptamers)that trigger caspase-1autoactivation.The HIN-200family member, AIM2,also mediates inflammasome assembly.Inflammasome components and activation mechanisms depend on the nature of the individual protein scaffolds(Figure2).Domain structure conservation between NLRPs(Figure1B)suggests that unchar-acterized family members may also mediate or regulate inflam-masome activation.The NLRP3InflammasomeThe NLRP3inflammasome is currently the most fully character-ized inflammasome and consists of the NLRP3scaffold,the ASC (PYCARD)adaptor,and caspase-1.NLRP3is activated upon exposure to whole pathogens,as well as a number of structurally diverse PAMPs,DAMPs,and environmental irritants(Table S1). Whole pathogens demonstrated to activate the NLRP3inflam-masome include the fungi Candida albicans and Saccharomyces cerevisiae that signal to the inflammasome via Syk(Gross et al., 2009),bacteria that produce pore-forming toxins,including Listeria monocytogenes and Staphylococcus aureus(Mariatha-san et al.,2006),and viruses such as Sendai virus,adenovirus, and influenza virus(Kanneganti et al.,2006;Muruve et al., 2008).In some cases,the individual microbial components (PAMPs,virulence factors)that activate the inflammasome have been identified(for instance,the alpha-toxin of S.aureus; Craven et al.,2009).The unexpectedfinding that the NLRP3inflammasome can be activated by host-derived molecules forms part of an emerging literature supporting a model in which the innate immune system detects endogenous indicators of cellular danger orstress, Figure2.Minimal NLRP1,NLRP3,IPAF,and AIM2Inflammasomes For simplicity,the unoligomerized inflammasome complexes are depicted. Removal of the CARD domain and processing of the caspase domain of cas-pase-1by autocleavage at the indicated sites results in the formation of the active caspase-1p10/p20tetramer.It should be noted that although human NLRP1contains a PYD,mouse NLRP1proteins do not harbor functional PYDs.Human NLRP1can also recruit a second caspase,caspase-5,to the complex(not shown).Maximal caspase-1activation in response to IPAF agonists can require ASC or NAIP,depending on the stimulus.The interaction of these proteins with the IPAF inflammasome activation is currently unclear. Domains:CARD,caspase recruitment domain;FIIND,domain with function tofind;HIN,HIN-200/IF120x domain;LRR,leucine-rich repeat;NACHT,nucle-otide-binding and oligomerization domain;PYD,pyrin domain.Cell140,821–832,March19,2010ª2010Elsevier Inc.823a hypothesis with similarities to the‘‘danger model’’proposed for adaptive immune responses in place of the more simplistic self/nonself recognition model(Matzinger,1994).A number of host-derived molecules indicative of injury activate the NLRP3 inflammasome,including extracellular ATP(Mariathasan et al., 2006)and hyaluronan(Yamasaki et al.,2009)that are released by injured cells.Fibrillar amyloid-b peptide,the major compo-nent of Alzheimer’s disease brain plaques,also activates the NLRP3inflammasome(Halle et al.,2008).The NLRP3inflamma-some also detects signs of metabolic stress,including elevated extracellular glucose(Zhou et al.,2010)such as that occurring in metabolic syndrome,and monosodium urate(MSU)crystals that form as a consequence of hyperuricemia in the autoinflamma-tory disease gout(Martinon et al.,2006).Uric acid can also be released during cell injury,and uric acid-dependent pathways in this context also activate the inflammasome(Gasse et al., 2009;Griffith et al.,2009).Additionally,the NLRP3inflamma-some drives inflammation in response to a number of environ-mental irritants,including silica(Cassel et al.,2008;Dostert et al.,2008;Hornung et al.,2008),asbestos(Cassel et al., 2008;Dostert et al.,2008),UVB irradiation(Feldmeyer et al., 2007),and skin irritants such as trinitrophenylchloride,trinitro-chlorobenzene,and dinitrofluorobenzene(Sutterwala et al., 2006;Watanabe et al.,2007).NLRP3inflammasome activation in response to these insults has been linked to pathology asso-ciated with silicosis,asbestosis,sunburn,and contact hypersen-sitivity reactions,respectively.Models for NLRP3ActivationPrior to agonist treatment,the NLRP3LRR domains are thought to mediate autoinhibition in a manner similar to that described for IPAF(Poyet et al.,2001).This may be mediated by the SGT1and HSP90chaperones that appear to hold NLRP3in an inactive,but signal-competent state;these chaperones also interact with IPAF(Mayor et al.,2007).Upon NLRP3activation,NLRP3oligo-merization leads to PYD domain clustering and presentation for homotypic interaction with the PYD-and CARD-containing adaptor ASC,whose CARD domain in turn recruits the CARD of procaspase-1.Procaspase-1clustering permits autocleavage and formation of the active caspase-1p10/p20tetramer,which then processes cytokine proforms such as IL-1b to generate the active molecules.Mature IL-1b is secreted alongside cas-pase-1by an unconventional protein secretion pathway that is currently unclear.Mechanisms leading to NLRP3inflammasome activation are intensely debated.Three models that may not be exclusive are widely supported in the literature(Figure3).Extracellular ATP stimulates the purogenic P2X7ATP-gated ion channel(Kahlen-berg and Dubyak,2004),triggering K+efflux and inducing gradual recruitment of the pannexin-1membrane pore(Kanne-ganti et al.,2007).Thefirst model posits that pore formation allows extracellular NLRP3agonists to access the cytosol and directly activate NLRP3(Kanneganti et al.,2007).However,the structural diversity within NLRP3agonists argues against direct interaction between NLRP3and all of its activators.A second model was proposed for activators that form crystal-line or particulate structures,such as MSU,silica,asbestos, amyloid-b,and alum,wherein engulfment of these agonists by phagocytes leads to lysosomal damage,resulting incytosolic Figure3.NLRP3Inflammasome ActivationThree major models for NLRP3inflammasome activation are favored in the field,which may not be exclusive:(1)The NLRP3agonist,ATP,triggers P2X7-dependent pore formation by the pannexin-1hemichannel,allowing extracellular NLRP3agonists to enter the cytosol and directly engage NLRP3.(2)Crystalline or particulate NLRP3agonists are engulfed,and their physical characteristics lead to lysosomal rupture.The NLRP3inflammasome senses lysosomal content in the cytoplasm,for example,via cathepsin-B-dependent processing of a direct NLRP3ligand.(3)All danger-associated molecular patterns(DAMPs)and pathogen-associated molecular patterns (PAMPs),including ATP and particulate/crystalline activators,trigger the generation of reactive oxygen species(ROS).A ROS-dependent pathway trig-gers NLRP3inflammasome complex formation.Caspase-1clustering induces autoactivation and caspase-1-dependent maturation and secretion of proin-flammatory cytokines,such as interleukin-1b(IL-1b)and IL-18.824Cell140,821–832,March19,2010ª2010Elsevier Inc.release of lysosomal contents that are somehow sensed by the NLRP3inflammasome(Halle et al.,2008;Hornung et al.,2008).A role for the lysosomal protease,cathepsin B,in activation of a direct NLRP3ligand was suggested in this model(Halle et al.,2008;Hornung et al.,2008).However,cathepsin B-defi-cient macrophages exhibit normal caspase-1activation and IL-1b maturation in response to particulate NLRP3agonists (Dostert et al.,2009),implicating off-target effects of the cathepsinB inhibitor,as was recently suggested for NLRP1 (Newman et al.,2009).Under the third model,all NLRP3agonists trigger the genera-tion of ROS,and this common pathway engages the NLRP3 inflammasome(Cassel et al.,2008;Cruz et al.,2007;Dostert et al.,2008).The production of ROS represents one of the most evolutionarily conserved pathways of response to infection or injury;for example,a gradient of ROS is the apical signal directing wound healing in zebrafish(Niethammer et al.,2009), and ROS are antimicrobial effectors in plants(Bolwell,1999). In support of this model,all NLRP3agonists tested,including ATP and particulate activators,induce ROS and ROS blockade by chemical scavengers suppresses inflammasome activation (Cassel et al.,2008;Cruz et al.,2007;Dostert et al.,2008;Gross et al.,2009;Pe´trilli et al.,2007;Shio et al.,2009).The source of ROS is currently unclear,but one or several NADPH oxidases are implicated,as suppression of the common p22subunit inhibits inflammasome activation(Dostert et al., 2008);alternatively,ROS may be of mitochondrial origin.Mech-anisms directing ROS-dependent NLRP3inflammasome activa-tion remain to be characterized in detail;however,a recent report implicates a ROS-sensitive NLRP3ligand,thioredoxin-interact-ing protein(TXNIP/VDUP1),in NLRP3activation(Zhou et al., 2010).Despite strong evidence for the ROS model,a number of aspects of this model require resolution.For example,some ROS-inducing agents(such as cytokines)do not engage the NLRP3inflammasome,suggesting that while necessary,ROS alone is insufficient for triggering NLRP3activity.Alternatively, a very specific ROS location or nature may be required.Addition-ally,superoxide directly inhibits caspase-1activity by modifying redox-sensitive cysteines(Meissner et al.,2008);whether such a mechanism provides temporal-or dose-dependent negative feedback to limit caspase-1function triggered by a ROS-depen-dent NLRP3pathway requires clarification.The manner by which cytoplasmic K+concentration modulates NLRP3activity is also currently unclear.Macrophages cultured in medium containing a high concentration of K+show decreased capacity for NLRP3-dependent caspase-1activation in response to a range of agonists,suggesting that K+efflux is necessary upstream of NLRP3activation(Dostert et al.,2008;Fernandes-Alnemri et al.,2007;Franchi et al.,2007a;Gross et al.,2009;Pe´trilli et al.,2007;Shio et al.,2009).Future studies are required to determine whether ionicflux and ROS pathways are inter-regu-lated or independently required for NLRP3activation.The NLRP1InflammasomeThe NLRP1inflammasome was thefirst to be described.Human NLRP1has three orthologs in mouse(Nlrp1a-c,Figure1)that are highly polymorphic between inbred mouse strains(Boyden and Dietrich,2006).Strain variation in the mouse Nlrp1b locus appears to underlie susceptibility to Bacillus anthracis lethal toxin(LeTx),as macrophages from susceptible,but not resis-tant,mouse strains activate caspase-1after LeTx exposure (Boyden and Dietrich,2006).The NLRP1inflammasome can also be activated by MDP(Faustin et al.,2007).As a consequence of domain structure differences between NLRP1and NLRP3,the minimal components of the NLRP1 inflammasome are somewhat different to its NLRP3counterpart (Figure2).NLRP1contains a C-terminal extension that harbors a CARD domain,which can interact directly with procaspase-1 and bypass the requirement for ASC,although ASC inclusion in the complex augmented human NLRP1inflammasome activ-ity(Faustin et al.,2007).Unlike human NLRP1,murine NLRP1 orthologs lack functional PYD domains and are predicted to be unable to interact with ASC.Indeed,ASC is dispensable for cas-pase-1activation by NLRP1b in mouse macrophages(Hsu et al., 2008).In addition to caspase-1,NLRP1also interacts with cas-pase-5,which may contribute to IL-1b processing in human cells (Martinon et al.,2002).The exact mechanisms of NLRP1activa-tion remain obscure,but,as for NLRP3,K+efflux appears to be essential(Fink et al.,2008;Wickliffe et al.,2008).The IPAF InflammasomeThe IPAF inflammasome is activated by gram-negative bacteria possessing type III or IV secretion systems,such as Salmonella typhimurium,Shigellaflexneri,Legionella pneumophila,and Pseudomonas aeruginosa(Amer et al.,2006;Franchi et al., 2007b;Mariathasan et al.,2004;Miao et al.,2008;Sutterwala et al.,2007;Suzuki et al.,2007).As IPAF contains a CARD domain,it could be expected to interact directly with procas-pase-1,which is indeed the case(Figure2)(Poyet et al.,2001). Maximal caspase-1activation in response to S.typhimurium, S.flexneri,and P.aeruginosa requires the ASC adaptor(Franchi et al.,2007b;Mariathasan et al.,2004;Suzuki et al.,2007).The role for ASC in the IPAF inflammasome remains unclear;it is presumed that these proteins do not interact directly as IPAF does not contain a PYD domain.It is possible that IPAF collabo-rates with a PYD-containing protein(such as an NLRP)for responses to these pathogens.ASC is dispensable for IPAF-dependent caspase-1activation in response to L.pneumophila (Case et al.,2009),but protection against this pathogen appears to require IPAF collaboration with another NLR family member, NAIP(Ren et al.,2006;Zamboni et al.,2006).IPAF-dependent caspase-1activation is accompanied by rapid cell death(Fink and Cookson,2006).Interestingly,the pathways downstream of IPAF appear to be independently regulated;maximal cas-pase-1activation by the IPAF inflammasome requires ASC,but IPAF-dependent cell death is independent of ASC upon macro-phage infection with S.flexneri(Suzuki et al.,2007;Suzuki and Nu´n˜ez,2008)and P.aeruginosa(Sutterwala et al.,2007).The exact mechanisms directing IPAF inflammasome activa-tion and the participation of ASC and NAIP in this process remain elusive.The LRR domain of IPAF is likely to autorepress in the absence of ligand,as removal of the LRR domain from IPAF results in a spontaneously active mutant(Poyet et al.,2001). The IPAF inflammasome is activated by cytosolicflagellin (Miao et al.,2007).It is likely that other PAMPs modulate IPAF function,as P.aeruginosa appears to activate IPAF through flagellin-dependent and-independent pathways(Miao et al., Cell140,821–832,March19,2010ª2010Elsevier Inc.8252008;Sutterwala et al.,2007),and nonflagellated bacteria such as S.flexneri trigger IPAF inflammasome activity(Suzuki et al., 2007).IPAF activation depends upon virulence factor injection into the cytosol via bacterial type III and IV secretion systems (Ren et al.,2006;Sun et al.,2007;Suzuki et al.,2007).Cytosolic localization offlagellin by other means(liposomes,expression systems)is sufficient for IPAF-dependent caspase-1activation, suggesting that the sole function of bacterial secretion systems in IPAF activation is cytoplasmic injection of bacterial compo-nents(Franchi et al.,2006;Lightfield et al.,2008;Miao et al., 2006).Unlike NLRP3,IPAF inflammasome activity is not inhibited by high extracellular K+,suggesting that IPAF is not a sensor for ionicflux(Pe´trilli et al.,2007).Direct interaction between IPAF and an activating ligand has not been demonstrated,so it is possible that IPAF senses a common pathway induced by cyto-solic PAMPs,analogous to the ROS pathway proposed for NLRP3.The AIM2InflammasomeThe recent identification of the HIN-200family member,AIM2,as a cytosolic double-stranded DNA(dsDNA)sensor that induces caspase-1-dependent IL-1b maturation is an important advance in the inflammasomefield(Bu¨rckstu¨mmer et al.,2009;Fer-nandes-Alnemri et al.,2009;Hornung et al.,2009;Roberts et al.,2009).It is thefirst identification of a non-NLR family mem-ber forming an inflammasome scaffold,and oligomerization of the complex is suggested to be mediated not by a central oligomerization domain within the inflammasome scaffold pro-tein(as for the NLR NACHT domain)but by clustering upon multiple binding sites in the ligand,dsDNA,to which AIM2binds via its C-terminal HIN domain(Bu¨rckstu¨mmer et al.,2009;Fer-nandes-Alnemri et al.,2009;Hornung et al.,2009).The AIM2 inflammasome is composed of AIM2,ASC,and caspase-1. AIM2contains a PYD domain that,as for NLRP3,interacts with ASC via homotypic PYD-PYD interactions,allowing the ASC CARD domain to recruit procaspase-1to the complex(Figure2). As for other inflammasomes,upon autoactivation,caspase-1 directs proinflammatory cytokine maturation and secretion (such as IL-1b and IL-18).Ligand requirements for AIM2are quite permissive,as cytosolic dsDNA from virus,bacteria,or the host itself can activate the AIM2inflammasome(Hornung et al.,2009; Muruve et al.,2008).Further studies are required tofirmly estab-lish the physiological relevance of this pathway,but AIM2is proposed to function in cytosolic surveillance for DNA viruses and may contribute to autoimmune responses against self-DNA in systemic lupus erythematosus.Regulation of Inflammasome Activityand IL-1b SecretionTLRs and Other Proinflammatory Signaling Pathways Both inflammasome activity and pro-IL-1b availability are highly influenced by integration with proinflammatory signaling path-ways such as those triggered by TLR ligation.For this reason, experimental protocols examining inflammasome activation commonly include‘‘priming’’with a TLR agonist(such as lipo-polysaccharide,LPS)or a proinflammatory cytokine(such as tumor necrosis factor,TNF).Most importantly,although inflam-masome-dependent caspase-1activation can be observed in the absence of priming,IL-1b secretion is minimal,because most cells do not constitutively express pro-IL-1b.Pro-IL-1b is potently induced by proinflammatory signals such as LPS or TNF that activate the NF-k B transcription factor and allow IL-1b promoter activation(Hiscott et al.,1993).Although the primary function of priming in experimental protocols is to induce pro-IL-1b,it also potentiates NLRP3inflammasome activity through NF-k B-dependent induction of NLRP3,which may be a limiting component of the complex(Bauernfeind et al.,2009). Whether other inflammasomes are similarly subject to synergy from priming signals has yet to be determined.The IFN-inducible nature of AIM2(DeYoung et al.,1997)suggests that it could also be primed in such a manner by TLR agonists that induce auto-crine type I IFN or indeed by IFNs themselves.A recent report suggests that inflammasome activity is modu-lated by antiviral pathways(Poeck et al.,2010).RIG-I ligation by vesicular stomatitis virus or synthetic RNA triggered caspase-1 activity and IL-1b maturation,in a manner independent of the MAVS and CARD9adaptors that mediate RIG-I-dependent tran-scriptional responses(e.g.,NF-kB and IFN pathways).The exact mechanisms directing RIG-I-dependent caspase-1activation are currently unclear.RIG-I-dependent caspase-1cleavage is ASC dependent but occurs independently of NLRP3,suggesting either that RIG-I can form its own inflammasome or that it regu-lates the activity of a known or uncharacterized NLRP3-indepen-dent inflammasome.Antiviral pathways triggered by the related RIG-I-like helicase,MDA5,also modulate caspase-1cleavage; MDA5collaborates with NLRP3for inflammasome responses to encephalomyocarditis virus(Poeck et al.,2010).In this case, augmented NLRP3inflammasome activity may be mediated at least partially through MDA5-dependent‘‘priming’’of inflamma-some activity,for instance by sensitizing cells to NLRP3agonists via NLRP3induction.Negative Regulation of Inflammasome ActivationThe importance of the inflammasome in controlling infection is highlighted by microbial evolution of inflammasome inhibi-tors.These include viral PYD proteins and various bacterial viru-lence factors that inhibit caspase-1activation.Such factors are reviewed extensively elsewhere(Martinon et al.,2009).A number of host mechanisms also suppress inflammasome activation and presumably function to inhibit the extent of potentially dangerous immune activation.Most recently,mouse CD4+effector and memory T cells were demonstrated to suppress NLRP1and NLRP3,but not IPAF, inflammasome-mediated caspase-1activity and IL-1b secretion (Guarda et al.,2009).Inhibition is dependent on cell-cell contact and is mediated by signaling by specific TNF family ligands (Guarda et al.,2009).Such an inhibitory pathway is likely to aid in‘‘switching off’’innate immune responses once the adaptive arm of the immune system is engaged.A number of CARD-and PYD-containing proteins have been proposed to suppress inflammasome activity by blocking inflam-masome component recruitment.Such PYD-containing proteins include pyrin,POP1(PYDC1),and POP2(PYDC2).The biological relevance of POP1-and POP2-dependent inflammasome inhibi-tion is difficult to assess,as these genes are only present in primates.Conversely,modulation of inflammasome activity by pyrin has clear physiological relevance,as human pyrin mutations are responsible for familial Mediterranean fever826Cell140,821–832,March19,2010ª2010Elsevier Inc.。