【精选】八年级三角形解答题专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
【分析】
(1)根据四边形内角和等于360°列式计算即可得解;
(2)延长DE交BF于G,根据角平分线的定义可得∠CDE= ∠ADC,∠CBF= ∠CBM,然后求出∠CDE=∠CBF,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可;
(3)先求出∠CDE+∠CBE,然后延长DC交BE于H,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.
【详解】
(1)如图(1),连接AD并延长至点F,
根据外角的性质,可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
【精选】八年级三角形解答题专题练习(解析版)
一、八年级数学三角形解答题压轴题(难)
1.如图1,直线 与直线 、 分别交于点 、 , 与 互补.
(1)试判断直线 与直线 的位置关系,并说明理由.
(2)如图2, 与 的角平分线交于点 , 与 交于点 ,点 是 上一点,且 ,求证: .
(3)如图3,在(2)的条件下,连接 , 是 上一点使 ,作 平分 ,求 的度数.
【详解】
(1)解:∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°-90°×2=180°;
故答案为180°;
(2)解:延长DE交BF于G,
∵DE平分∠ADC,BF平分∠CBM,
∴∠CDE= ∠ADC,∠CBF= ∠CBM,
又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ABaidu NhomakorabeaC,
∴∠ABX+∠ACX=90°-40°=50°;
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴ (∠ADB+∠AEB)=90°÷2=45°,
∵DC平分∠ADB,EC平分∠AEB,
∴ , ,
∴∠DCE=∠ADC+∠AEC+∠DAE,
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
【答案】(1)详见解析;(2)①50°;②85°;③63°.
【解析】
【分析】
(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;
(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;
②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;
③由②得∠BG1C= (∠ABD+∠ACD)+∠A,设∠A为x°,即可列得 (133-x)+x=70,求出x的值即可.
【答案】(1)AB//CD,理由见解析;(2)证明见解析;(3) .
【解析】
【分析】
(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,即可证明;
(2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG⊥PF,再结合GH⊥EG,即可证明;
(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=- ∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.
∴∠CDE=∠CBF,
又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,
∴∠BGE=∠C=90°,
∴DG⊥BF,
即DE⊥BF;
(3)解:由(1)得:∠CDN+∠CBM=180°,
∵BE、DE分别四等分∠ABC、∠ADC的外角,
∴∠CDE+∠CBE= ×180°=45°,
延长DC交BE于H,
由三角形的外角性质得,∠BHD=∠CDE+∠E,∠BCD=∠BHD+∠CBE,
∴∠BCD=∠CBE+∠CDE+∠E,
∴∠E=90°-45°=45°
【点睛】
本题考查了三角形的内角和定理,四边形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键,要注意整体思想的利用.
3.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,
2.已知在四边形ABCD中,∠A=∠C=90°.
(1)∠ABC+∠ADC=°;
(2)如图①,若DE平分∠ADC,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明;
(3)如图②,若BE,DE分别四等分∠ABC、∠ADC的外角(即∠CDE= ∠CDN,∠CBE= ∠CBM),试求∠E的度数.
【答案】(1)180°;(2)DE⊥BF;(3)450
= (∠ADB+∠AEB)+∠DAE,
=45°+40°,
=85°;
③由②得∠BG1C= (∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴设∠A为x°,
∵∠ABD+∠ACD=133°-x°
∴ (133-x)+x=70,
∴13.3- x+x=70,
解得x=63,
即∠A的度数为63°.
【点睛】
此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.
【详解】
(1) ,
理由如下:如图1,
图1
∵ 与 互补,
∴ ,
又∵ , ,
∴ ,
∴ ;
(2)如图2,由(1)知, ,
图2
∴ .
又∵ 与 的角平分线交于点 ,
∴ ,
∴ ,即 .
∵ ,
∴ ;
(3)如图3,
∵ ,
.
又∵ ,
∴ .
∴ .
∵ 平分 ,
∴ .
∴ .
【点睛】
本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.
相关文档
最新文档