知识讲解 传感器(原理及典型应用)
传感器原理介绍及应用ppt课件
目录
1 传感器的基本概念 2 常用传感器 3 公司产品介绍 4 产品应目方案分析
项目评估 工艺流程图
沈阳某电视台网管中心空调自控工程
一、项目背景 通常现代建筑中的中央空调系统冷冻主机的负荷能 随季节气温变化自动调节负载,而与冷冻主机相匹 配的冷冻泵、冷却泵却不能自动调节负载,不仅造 成电能的极大耗费,同时也恶化了中央空调的运行 环境和运行质量。 随着新技术、新设备在电视台的 广泛应用,数字化、网络化、智能化有效的提高了 电视信号的播出水平。沈阳某电视台网管中心集中 着电视的大部分关键设备,使用空调自控系统对设 备的安全起到保障作用。因此,这对电视台网管中 心的空调系统自动控制改造提出了更高要求。沈阳 新华控制系统有限公司成功中标沈阳某电视台网管 中心的空调自控系统的设计、安装与调试工程。
常用传感器—霍尔传感器
概念:霍尔传感器是根据霍尔效应制作的一种磁
场传感器。
分类:霍尔传感器分为线型霍尔传感器和开关型
霍尔传感器两种。
结构:霍尔电流传感器一般由原边电路、聚磁环、
霍尔器件、(次级线圈)和放大电路等组成。
应用:测量电流、位移、转速、风速、流速、自
动电路。
常用传感器—温度传感器
概念:是指能感受温度并转换成可用输出信号的
SITRANS FM MAG 1100 F电 磁流量传感器是 特地为食品、饮 料和制药工业而 设计的,配置各 种卫生型快速接 头。
公司产品介绍—西门子工业业务
西门子 SITRANS P ZD 系列压力测量仪表可 配置的压力变送器, 测量气体、液体和蒸 汽的表压和绝压。带 数字显示,量程比10 ︰1,数字显示与过程 连接的可选经向或轴 向两种方式。
传感器的工作原理与应用
传感器的工作原理与应用传感器是一种能够将环境中的物理量或化学量转换为电信号的设备。
它们在现代科技中起着至关重要的作用,广泛应用于各个领域,如工业生产、交通运输、环境监测等。
本文将详细介绍传感器的工作原理与应用,并分点列出具体内容。
一、传感器的工作原理1. 传感器接收物理量或化学量信号:传感器通过感受物理量或化学量的变化,如温度、湿度、光照强度、压力、气体浓度等。
2. 传感器将信号转换为电信号:传感器接收到的物理量或化学量信号将经过内部的转换装置转换为电信号。
3. 传感器将电信号传输至处理装置:传感器将转换后的电信号传输至外部处理装置,如计算机、控制系统等。
4. 处理装置分析电信号并作出响应:处理装置对传感器传输的电信号进行分析,并根据分析结果作出相应的响应,比如控制输出设备的运行状态。
二、传感器的应用1. 工业应用:- 温度传感器:用于监测工业生产过程中的温度变化,确保设备和产品的正常运行。
- 压力传感器:用于测量管道和容器中的压力,及时发现异常情况并采取相应措施。
- 液位传感器:用于监测液体的容器中的液位,防止过度溢出或过度抽空造成的危险。
2. 医疗应用:- 心率传感器:用于监测患者的心率情况,提供实时数据,方便医生进行诊断和治疗。
- 血糖传感器:用于监测糖尿病患者的血糖水平,提醒患者及时调整饮食和胰岛素剂量。
3. 交通运输应用:- 车速传感器:用于测量车辆的速度,提供准确的数据供驾驶员参考,确保车辆安全行驶。
- 排放传感器:用于检测车辆的尾气排放,减少环境污染。
4. 环境监测应用:- 光照传感器:用于测量光照强度,广泛应用于室内和室外照明系统的自动调节。
- 气体传感器:用于监测环境中的气体浓度,如一氧化碳、二氧化碳等有害气体。
5. 智能家居应用:- 湿度传感器:用于测量房间内的湿度,实现空气湿度的自动调节。
- 火灾传感器:用于检测房间内的烟雾和火焰,及时报警并采取相应的紧急措施。
6. 农业应用:- 土壤湿度传感器:用于测量土壤中的湿度,帮助农民合理浇水,提高农作物的产量和品质。
传感器原理及应用PPT教程课件专用
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
传感器应用举例及原理
传感器应用举例及原理传感器是一种可以感知和测量某种物理量或环境参数的设备。
它可以将所测量的物理量转化为电信号或其他形式的输出信号,以便于被其他设备或系统处理和使用。
传感器被广泛应用于工业控制、智能家居、医疗设备、汽车电子等领域。
以下是几个传感器应用的举例及其工作原理:1. 温度传感器:温度传感器是最常见的传感器之一,它可以测量物体或环境的温度。
其中一个常见的例子是室内温度传感器,被广泛应用于智能家居系统中。
它的工作原理是基于温度对物质的影响,如电阻、压力或电磁放射等。
常见的温度传感器包括热敏电阻、热电偶和红外线温度传感器。
2. 压力传感器:压力传感器可以测量液体或气体的压力,常用于工业自动化、汽车电子等应用中。
汽车轮胎压力传感器是一个常见的例子,它可以检测轮胎的压力是否过低或过高。
工作原理通常是基于敏感元件的弯曲或拉伸来测量压力。
常见的压力传感器包括应变片、电容式压力传感器和压电传感器等。
3. 湿度传感器:湿度传感器可以测量空气中的湿度,常用于气象观测、农业、温室控制等领域。
一个例子是空调系统中的湿度传感器,它可以感知室内空气的湿度,从而控制空调系统的制冷或加湿。
工作原理通常是基于湿度对敏感材料的吸收或释放水分来进行测量。
常见的湿度传感器包括电容式湿度传感器和电阻式湿度传感器等。
4. 光学传感器:光学传感器可以检测光的吸收、散射、反射或发射等现象,广泛应用于光学仪器、机器人、安防系统等领域。
一个例子是红外线传感器,它可以感知物体是否存在,被广泛用于自动门、人体检测和反射型光电传感器等应用。
工作原理通常是基于光敏材料的电阻、电容或输出电压的变化。
常见的光学传感器包括光电传感器、光纤传感器和光电开关等。
5. 加速度传感器:加速度传感器可以测量物体的加速度、振动或冲击,常用于移动设备、运动控制和体感游戏等领域。
一个例子是手机中的加速度传感器,它可以感知手机的倾斜、旋转或摇动。
工作原理通常是基于质量与受力之间的关系,通过测量质量与加速度之间的变化来判断物体的运动状态。
传感器的工作原理及应用场景
传感器的工作原理及应用场景传感器是指能将某一物理量或化学量转变为可读取或可控制的信号输出的传感器件。
传感器是现代科技快速发展的重要组成部分,目前已广泛应用于各个领域,如环保、医疗、交通、工业等。
本文主要介绍传感器的工作原理及其应用场景。
一、传感器的工作原理传感器的工作原理基本上都是根据一个参数的变化来将其转换为电信号输出,从而实现检测和控制。
传感器的核心就是敏感元件,而敏感元件的选择要根据不同的应用场景来选择。
常见的传感器类型如下:1.压力传感器压力传感器广泛应用于工业制造、航空航天、汽车、医疗等领域。
传感器的基本架构包括压阻、金属箔应力、压电效应等,通过测量被测量对象力的大小来进行工作。
2.温度传感器温度传感器主要分为接触式和非接触式两类。
接触式温度传感器使用热电偶、热电阻等方式来感知温度变化;而非接触式温度传感器则可以使用红外线或激光来探测之前的物体表面温度,并通过计算来得到其温度。
3.光学传感器光学传感器一般采用光电或光阻效应,用于检测环境光线的变化。
常见的应用场景包括测量胶印等工业制造、光学测距、光学编码器和自动化控制。
4.气体传感器气体传感器可以感知环境中不同气体的浓度变化,常用于工业污染源检测、室内空气质量检测等领域。
同样,该类型的传感器也有接触式和非接触式之分。
二、传感器的应用场景传感器被广泛应用于各个领域,下面列举几个常见的应用场景:1.工业制造传感器在工业制造中发挥着重要作用,如生产线中的检测、自动化控制等。
例如,在润滑油的添加过程中,可使用嵌入式压力传感器检测液压油的泵入工况,在正确泵入的同时避免加油过多或过少。
2.环境监测传感器在环境监测中也是非常重要的。
例如,在城市交通中可运用悬挂式磁场强度传感器来监测车辆的行驶轨迹,以及酷暑天气下的车辆散热情况。
3.医疗行业传感器在医疗行业中的应用也是越来越普遍,如心源性猝死的预警装置、体征监测装置、有限空间下的呼吸氧浓度检测等。
它们可以很好地提高医疗设备的效率,提供更好的诊断结果。
传感器工作原理及应用实例
传感器工作原理及应用实例传感器是一种能够将环境中的物理量、化学量、生物量等转化为可量化的电信号或其他形式信号的装置,以实现对环境信息的感知和获取。
传感器广泛应用于工业控制、医疗健康、环境监测、智能家居等领域。
下面将介绍传感器的工作原理及应用实例。
一、传感器的工作原理传感器的工作原理主要包括两个方面:感知原理和信号转换原理。
1.感知原理传感器的感知原理是指传感器利用特定的感应机制感知环境中的物理量、化学量、生物量等。
常见的感知机制包括光电效应、热敏效应、压电效应、磁敏效应、电化学效应等。
例如,利用热敏电阻作为温度传感器时,测量温度的原理就是根据材料在不同温度下的热敏特性,将温度转化为电阻值的变化。
2.信号转换原理传感器的信号转换原理是指传感器将感知到的物理量、化学量、生物量等转化为可量化的电信号或其他形式信号。
常见的信号转换方式包括电阻变化、电荷变化、电压变化、电流变化等。
例如,利用应变计作为力传感器时,原理就是根据应变导致的电阻或电容的变化,将受力转化为电阻或电容值的变化。
二、传感器的应用实例传感器在各个领域都有广泛的应用。
下面介绍几个常见的传感器应用实例。
1.温度传感器温度传感器广泛应用于工业控制、农业、气象、医疗等领域。
例如,工业中的温度传感器可以用于监测物体的温度,控制生产过程的温度;农业中的温度传感器可以用于监测土壤和空气的温度,为农作物的生长提供参考;医疗中的温度传感器可以用于测量人体的体温,判断患者的健康状态。
2.湿度传感器湿度传感器主要用于测量环境中的湿度。
在农业领域,湿度传感器可以用于监测土壤的湿度,为灌溉提供参考;在气象领域,湿度传感器可以用于测量大气中的湿度,预测天气变化;在建筑物内部,湿度传感器可以用于监测室内的湿度,控制空调系统的运行。
3.光照传感器光照传感器可以用于测量环境中的光照强度。
在智能家居领域,光照传感器可以用于感知室内的光照情况,调节灯光的亮度和色温;在养殖业中,光照传感器可以用于监测光照强度,为动植物的生长提供合适的光照环境;在交通领域,光照传感器可以用于监测路面的光照情况,控制道路照明系统的开关。
常用传感器及工作原理及应用
常用传感器及工作原理及应用传感器是指能够将其中一种感知量变换成电信号或其他可以辨识的输出信号的装置。
它们广泛应用于工业自动化、环境监测、医疗器械、汽车电子、智能家居以及移动设备等各个领域。
本文将介绍一些常用传感器的工作原理及应用。
1.温度传感器温度传感器用于测量环境的温度。
常见的温度传感器有热电偶、热电阻和半导体温度传感器。
热电偶通过两个不同金属之间的温差来产生电压,热电阻则利用温度对电阻的敏感性来测量温度,而半导体温度传感器则利用半导体材料的特性来测量温度。
温度传感器广泛应用于气象观测、工业生产过程中的温度控制和家电中的温度监测等领域。
2.光敏传感器光敏传感器可以测量光的强度和光的频率。
常见的光敏传感器有光敏电阻、光敏二极管和光敏晶体管。
光敏电阻根据光照的强弱改变电阻值,光敏二极管和光敏晶体管则根据光照的强弱改变电流值。
光敏传感器广泛应用于照明控制、安防监控和光电设备等领域。
3.声音传感器4.湿度传感器湿度传感器可以测量环境中的湿度。
常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器。
电容式湿度传感器利用电容的变化来感应湿度,电阻式湿度传感器则是利用湿度对电阻的敏感性来感应湿度。
湿度传感器广泛应用于气象观测、室内湿度控制和农业领域等。
5.加速度传感器加速度传感器可以测量物体的加速度。
常见的加速度传感器有压电式加速度传感器和微机械式加速度传感器。
压电式加速度传感器利用压电效应来感应加速度,微机械式加速度传感器则是利用微机械结构的变化来感应加速度。
加速度传感器广泛应用于汽车电子、智能手机以及航空航天领域等。
总的来说,传感器在现代社会中扮演着重要的角色,广泛应用于各个领域。
通过测量和感应物理量,传感器能够实现自动化控制、环境监测和智能化等功能,为社会的发展和人们的生活带来了便利和效益。
传感器原理与应用
传感器原理与应用
传感器是一种能够将非电信号转化为电信号的设备。
它通过感知某种特定的物理量或化学量,并将其转化为可测量的电信号,从而实现对环境和物体的感知和测量。
传感器的工作原理包括以下几种:
1. 电阻传感器:利用电阻的变化来测量被测量物理量的变化,如温度传感器、光敏电阻等。
2. 容抗传感器:利用电容值的变化来测量被测量的物理量的变化,如压力传感器、湿度传感器等。
3. 电感传感器:利用电感值的变化来测量被测量物理量的变化,如液位传感器、接近传感器等。
4. 磁阻传感器:利用磁阻值的变化来测量被测量物理量的变化,如磁场传感器、位置传感器等。
5. 光电传感器:利用光电效应来测量被测量物理量的变化,如光电传感器、光纤传感器等。
传感器在各个领域有广泛的应用,包括但不限于以下几个方面:
1. 工业自动化:传感器被广泛应用于工业领域,用于监测和控制各种物理量,如温度、湿度、压力、流量等。
2. 环境监测:传感器被用于监测环境中的各种污染物、气体浓度、温度、湿度等物理量,以保障环境质量。
3. 医疗健康:传感器被应用于医疗设备中,如心率传感器、血氧传感器、体温传感器等,用于监测患者的生理参数。
4. 智能家居:传感器被应用于智能家居系统中,用于感知环境的状态和人的行为,实现自动控制和智能化。
5. 汽车领域:传感器被广泛应用于汽车中,用于检测车辆状态、驾驶行为、环境条件等,实现安全监控和驾驶辅助功能。
6. 物联网:传感器是物联网的重要组成部分,通过感知和收集各种物理量的数据,实现设备间的通信和数据交互。
传感器原理及应用
传感器原理及应用传感器是一种能够将物理量转换为电信号的设备,其原理是通过感知周围环境中的变化,从而能够实现对物体、气体等的检测、测量和控制。
传感器广泛应用于各个领域,比如工业自动化、交通运输、环境监测、医疗健康等。
本文将着重介绍传感器的原理和应用。
传感器的原理主要基于以下几种方法。
一、电阻变化原理传感器通过测量电阻的变化来感知环境的变化。
例如,温度传感器可以通过测量电阻的变化来获取环境的温度。
当温度发生变化时,电阻值也会相应变化,通过测量电阻的变化就可以推算出温度的变化。
这种原理同样适用于光电传感器、湿度传感器等。
二、压力变化原理传感器通过测量被测物体所受到的压力变化来获取物体的信息。
例如,压力传感器可以通过测量被测物体所受到的压力变化来获得力的大小。
当外力作用于被测物体时,被测物体产生变形,压力传感器就可以通过测量被测物体的变形程度来获得力的大小。
三、电磁感应原理传感器通过电磁感应原理来感知环境的变化。
例如,磁力传感器可以通过感应磁场的强度来检测磁场的变化。
当磁场发生变化时,磁力传感器感应到的磁场强度也会相应变化,通过测量感应到的磁场强度的变化就可以推算出磁场的变化。
四、声波传播原理传感器利用声波的传播特性来感知环境的变化。
例如,超声波传感器可以通过发射超声波,并接收回波来获得物体与传感器之间的距离。
物体与传感器之间的距离越远,回波所需时间就越长,通过测量回波的时间就可以推算出物体与传感器之间的距离。
传感器在各个领域有广泛的应用。
在工业自动化领域,传感器用于监测和测量生产过程中的各种参数。
例如,温度传感器和压力传感器被广泛应用于化工、冶金等行业,用于监测和控制工艺中的温度和压力,从而确保生产过程的安全和质量。
在交通运输领域,传感器被用于实现智能交通系统。
例如,车辆探测器可以通过感应车辆经过的时间和速度,来获取道路上的交通流量和车速信息,为交通管理提供参考依据,提高道路利用效率。
在环境监测领域,传感器被用于监测大气污染、水质污染等环境因素。
传感器原理及应用的总结
传感器原理及应用的总结传感器是一种用于检测和测量其中一种物理量的装置,它能够将检测到的物理量转换为可以进行处理和分析的电信号。
传感器的原理和应用非常广泛,可以应用于各个领域,如工业自动化、环境监测、医学诊断等。
传感器的原理可以分为以下几种:1.电阻器传感器原理:根据物体的压力、力或拉力来改变电阻值的感应装置。
如测量压力、力、重量等的压力传感器,其原理是根据电阻在压力作用下的变化来测量物体的压力。
2.电容器传感器原理:根据外源引起的电容变化,来检测物理量的感应装置。
如湿度传感器,通过测量周围空气的湿度,电容器的电容值会发生相应的变化,从而可以得知湿度的大小。
3.磁敏传感器原理:根据物体对磁场的感应特性,来检测物体的位置、方向和速度等物理量的感应装置。
如磁力传感器,通过测量物体所受磁力的大小和方向,来判断物体的位置和运动状态。
4.光敏传感器原理:根据物体对光的敏感程度,来检测物体的光强度、颜色和形状等感应装置。
如光电传感器,通过测量光电效应的变化,来判断物体的光照条件和透明度。
5.声敏传感器原理:根据物体对声波的感应特性,来检测物体的声音、噪音和震动等感应装置。
如声音传感器,通过测量空气中的声波振动,来判断声音的强度和频率。
传感器的应用非常广泛,主要包括以下几个方面:1.工业自动化:传感器在工业生产中起到了关键的作用。
例如温度传感器、湿度传感器可用于监测工业生产中的环境参数,光敏传感器用于检测生产线上物体的位置和形状,加速度传感器用于监测机械设备的振动情况等。
2.环境监测:传感器在环境监测中可以用来检测空气质量、水质污染、土壤湿度等。
例如气体传感器可用于检测空气中各种有害气体的浓度,水质传感器用于监测水体中的溶解氧和污染物的浓度等。
3.医疗诊断:传感器在医疗领域中可用于检测人体的生理参数,如心率、体温、血压等。
如心率传感器可以实时监测患者的心率变化,体温传感器用于检测患者的体温变化等。
4.汽车科技:传感器在汽车科技中起到了重要的作用,例如车速传感器用于测量车辆的速度,加速度传感器用于检测车辆的加速度和制动情况,气囊传感器用于检测交通事故时的撞击力等。
五种常用的传感器原理及应用
五种常用的传感器原理及应用目录1.序言 (1)2.传感器定义 (3)3.传感器选择的标准 (3)4.传感器分类的标准 (3)5.五种常用的传感器类型及其特点 (5)5.1.温度传感器 (5)1.2.红外传感器 (5)1.3.紫外线传感器 (7)1.4.触摸传感器 (8)1.5.接近传感器 (8)6.传感器选用原则 (9)7.先进的传感器技术 (10)7.1.条形码识别 (10)7.2.转发器 (11)7.3.制造部件的电磁识别 (11)7.4.表面声波 (11)7.5.光学字符识别(OCR) (11)1.序言一台设备所采用的的传感器是否先进、可靠有时直接决定了设备的先进性和可靠性。
图1传感器工作原理很多机械工程师在观念上有一个误区:机械工程师只负责机构的东西,传感器、电气元件选用及控制方案是电气工程师或系统工程师的事。
如果你是某个项目的总设计工程师,在方案构想阶段就要考虑到选用哪些类型的传感器以及设备的动作流程和控制方式。
生物信息:是反映生物运动状态和方式的信息。
碱基序列便是生物信息。
自然界经过漫长时期的演变,产生了生物,逐渐形成了复杂的生物世界。
生物信息形形色色,千变万化,不同类的生物发出不同的信息。
,人们对生物信息的研究已取得了一些可观的成果,人们发现,鸟有“鸟语”,兽有“兽语”,甚至花也有“花语”。
人们还发现生物信息与非生物信息之间有着某种必然的联系,如燕子、大雁的飞来飞去,预示着季节的变换和气温的升降;鱼儿浮出水面预示着大雨即将来临;动物的某些反常现象,预示着地震即将发生的信[息、******。
物理信息:包括声、光、颜色等。
这些物理信息往往表达了吸引异性、种间识别、威吓和警告等作用。
比如,毒蜂身上斑斓的花纹、猛兽的吼叫都表达了警告、威胁的意思。
萤火虫通过闪光来识别同伴。
红三叶草花的色彩和形状就是传递给当地土蜂和其它昆虫的信息。
化学信息:生物依靠自身代谢产生的化学物质,如酶、生长素、性诱激素等来传递信息。
传感器的原理及应用
传感器的原理及应用一、传感器的原理及分类:传感器是一种能够根据感知到的物理量的变化产生电信号输出的设备,它是将非电信号转换为电信号的装置。
传感器的原理基本上可以分为以下几种:1.电阻传感器:电阻传感器是根据电阻值的变化来检测物理量的,常见的有光敏电阻、热敏电阻等。
2.压力传感器:压力传感器是通过测量物体受力所产生的电信号来检测压力的,常见的有电阻应变式压力传感器、压电式压力传感器等。
3.光电传感器:光电传感器是利用光敏元件感知光信号并转换为电信号输出的传感器,常见的有光电二极管、光敏电阻等。
4.温度传感器:温度传感器是通过感知物体的温度变化来产生电信号的传感器,常见的有热电偶、热电阻等。
5.位移传感器:位移传感器是通过感知物体的位移变化来产生电信号的传感器,常见的有电容式位移传感器、霍尔元件等。
6.加速度传感器:加速度传感器是用于测量物体加速度的传感器,常见的有压电式加速度传感器、微机械加速度传感器等。
7.气体传感器:气体传感器是用于检测气体浓度的传感器,常见的有氢气传感器、氧气传感器、二氧化碳传感器等。
8.湿度传感器:湿度传感器是用于检测空气湿度的传感器,常见的有电容式湿度传感器、电阻式湿度传感器等。
9.溶解氧传感器:溶解氧传感器是用于检测水中溶解氧浓度的传感器,常见的有电极溶解氧传感器、光学溶解氧传感器等。
10.化学传感器:化学传感器是用于检测化学物质浓度或质量的传感器,常见的有氨传感器、硫化氢传感器、氨气传感器等。
二、传感器的应用:1.工业自动化:传感器在工业自动化中广泛应用,如压力传感器用于测量管道中的压力,温度传感器用于测量设备的工作温度等。
2.汽车工业:传感器在汽车工业中起到了至关重要的作用,如压力传感器用于发动机燃烧室的压力监测,湿度传感器用于空调系统的湿度控制等。
3.医疗领域:传感器在医疗领域中用于监测患者的生命体征,如血氧传感器用于监测患者的血氧饱和度,心率传感器用于监测患者的心率等。
传感器原理及应用技术
传感器原理及应用技术传感器在现代科技中扮演着重要的角色,它们能够将环境中的各种物理量转化为电信号,并通过相应的技术进行采集和处理,为各种行业和领域提供了重要的数据支持。
本文将介绍传感器的基本原理以及其在不同领域的应用技术。
一、传感器的基本原理传感器是一种能够感知环境中各种物理量并将其转化为电信号的装置。
传感器的基本原理主要包括输入、转换和输出三个环节。
输入环节:传感器接收来自环境中的物理量,比如温度、压力、湿度等,并将其转化为电信号的形式。
这些物理量可以通过各种感应元件来实现,如热敏电阻、压阻、湿敏电容等。
转换环节:传感器将输入信号转化为适合采集和处理的信号形式,通常是电压信号或电流信号。
这一过程需要借助传感器内部的电路结构来实现,如放大、滤波、线性化等。
输出环节:转换后的信号被传感器输出,通常以模拟信号或数字信号的形式向外部传递。
输出信号的特性与传感器的类型和应用有关,比如模拟量输出或数字量输出。
二、传感器的应用技术传感器的应用极为广泛,涵盖了工业、农业、医疗、环保等众多领域。
下面将介绍几个典型的应用技术。
1. 温度传感器温度传感器可用于各种温度监测和控制场景。
常见的温度传感器包括热敏电阻、热电偶和热电阻等。
它们基于物质热敏性质随温度变化的原理,将温度转化为电信号输出。
在工业生产中,温度传感器广泛应用于炉温控制、室内温度监测等领域。
2. 压力传感器压力传感器用于测量各种气体和液体的压力。
根据压力的不同,常见的压力传感器有压阻式、电容式和压电式传感器。
它们利用物理量的压力与电阻、电容或电荷之间的关系,将压力转化为电信号输出。
在汽车工业中,压力传感器用于发动机燃油喷射系统的控制,提供准确的压力数据。
3. 湿度传感器湿度传感器广泛应用于气象、农业和家庭环境等领域,用于测量和控制环境的湿度。
湿度传感器的常见类型有湿敏电阻、湿敏电容和热电式湿度传感器。
它们基于介质的湿度对电阻、电容或热敏性质的影响,将湿度转化为电信号输出。
传感器原理及应用
传感器原理及应用传感器是一种能够感知、检测某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
它在现代科技领域中起着至关重要的作用,广泛应用于工业控制、环境监测、医疗诊断、智能家居等领域。
本文将从传感器的原理及其应用展开介绍。
首先,传感器的原理是基于物理效应或化学效应实现的。
常见的传感器类型包括光电传感器、压力传感器、温度传感器、湿度传感器、气体传感器等。
光电传感器利用光电效应,将光信号转化为电信号,常用于光电开关、光电编码器等设备中。
压力传感器则是利用压电效应或电阻应变效应来检测压力变化,广泛应用于汽车制动系统、工业自动化等领域。
温度传感器则是利用热电效应、热敏电阻效应等原理来感知温度变化,常见于电子设备、空调系统等。
湿度传感器则是利用介电常数变化或电阻变化来检测湿度变化,应用于气象观测、农业温室等领域。
气体传感器则是利用气体的化学反应来检测气体浓度,常见于环境监测、工业安全等领域。
其次,传感器的应用非常广泛。
在工业控制领域,传感器常用于测量温度、压力、流量、液位等参数,用于实现自动化生产、设备监测等功能。
在环境监测领域,传感器被广泛应用于大气污染监测、水质监测、土壤湿度监测等方面,为环保工作提供重要数据支持。
在医疗诊断领域,传感器被用于测量体温、血压、心率等生理参数,为医生提供诊断依据。
在智能家居领域,传感器被用于感知人体活动、光照强度、温湿度等信息,实现智能灯光、智能门锁、智能空调等功能。
总之,传感器作为现代科技的重要组成部分,其原理和应用已经深入到人们的生活和工作中。
随着科技的不断发展,传感器的种类和性能将会不断提升,应用领域也将会不断拓展,为人们的生活和生产带来更多便利和可能。
希望本文能够为读者对传感器有更深入的了解提供一些帮助。
传感器工作原理及应用实例
传感器工作原理及应用实例传感器是一种可以检测环境参数并将其转换为可进行测量或控制的电信号的装置。
传感器通常由物理、化学或生物成分构成,可以测量光、声、温度、压力、湿度、运动等参数。
传感器的工作原理可以根据不同类型的传感器而有所差异。
下面将介绍几种常见的传感器工作原理及其应用实例。
1.光敏传感器光敏传感器通过光敏电阻、光敏二极管等器件测量环境中的光强度。
当光线照射到光敏元件上时,光敏元件的电阻会发生变化,从而产生电信号。
光敏传感器常用于街道照明、摄像机自动调节曝光、线路状态检测等应用中。
2.声音传感器声音传感器可以通过麦克风、声传感器等装置检测环境中的声音。
当声音波动引起传感器内部振动时,传感器会将振动转化为电信号。
声音传感器常用于噪音监测、声音识别、语音控制等应用中。
3.温度传感器温度传感器可以通过热敏电阻、热电偶等元件测量环境温度。
传感器内部的物理或化学特性会随温度的变化而改变,从而产生电信号。
温度传感器广泛应用于温控设备、气象检测、温度监控等领域。
4.压力传感器压力传感器可以通过应变片、半导体材料等装置测量环境中的压力。
当感应器受到压力作用时,其内部会发生形状变化或电阻变化,从而产生电信号。
压力传感器常用于工业流程控制、汽车制动系统、气体检测等领域。
5.湿度传感器湿度传感器可以通过湿敏电阻、电容式传感器等装置测量环境中的湿度。
传感器的物理或化学特性会随湿度的变化而改变,从而产生电信号。
湿度传感器广泛应用于温湿度计、农业、气象等领域。
除了上述传感器,还有许多其他类型的传感器,例如加速度传感器、运动传感器、气体传感器等。
总之,传感器通过将环境参数转换为电信号,可以实现对物理、化学或生物现象的测量和控制。
它们在工业自动化、智能家居、医疗设备、环境监测等领域中起着重要作用,为实现科学研究、生活便利和提高生产效率提供了有力的支持。
传感器的应用实例及原理
传感器的应用实例及原理1. 温度传感器•原理:温度传感器是一种基于热敏元件的传感器,利用材料在温度变化时的电阻变化来测量温度的。
其中最常见的是热敏电阻和热电偶。
热敏电阻根据温度的变化而变化,热电偶则是根据两个不同金属的热电效应而产生的电压变化。
•应用实例:温度传感器广泛应用于各个领域中,如气象观测、工业过程控制、医疗设备等。
例如,在气象观测中,温度传感器可安装在气象站中测量环境温度;在工业过程控制中,温度传感器可以监测机械设备、液体或气体的温度以实现自动控制;在医疗设备中,温度传感器可用于监测体温等。
2. 光传感器•原理:光传感器是基于光电效应原理的传感器。
光电效应是指材料在光照射下会产生电荷或电流的现象。
常见的光传感器包括光敏二极管和CMOS图像传感器。
光敏二极管通过光敏材料吸收光子转化为电流,而CMOS图像传感器则通过记录光线散射模式来生成图像。
•应用实例:光传感器在日常生活及各个行业中都有广泛应用。
例如,在智能手机中,光传感器用于调节屏幕亮度;在自动驾驶汽车中,光传感器可用于识别道路信号灯和障碍物;在工业生产中,光传感器可以用于物体识别和检测。
3. 气体传感器•原理:气体传感器是用来检测和测量气体浓度的传感器。
常见的气体传感器包括气敏电阻、电化学传感器等。
气敏电阻通过吸附、脱附和转变成电荷来测量气体浓度;而电化学传感器则通过化学反应产生电流,根据电流大小来确定气体浓度。
•应用实例:气体传感器广泛应用于环境监测、工业安全等领域。
例如,在室内空气质量监测中,气体传感器可以检测二氧化碳、甲醛等有害气体的浓度;在工业生产中,气体传感器可用于检测危险气体泄漏,以确保工作环境的安全。
4. 压力传感器•原理:压力传感器用于测量气体或液体的压力。
常见的压力传感器包括压阻传感器和压电传感器。
压阻传感器通过压阻的变化来测量压力,而压电传感器则是利用压力对压电材料的变形而产生的电荷。
•应用实例:压力传感器在工程和科学领域有重要的应用。
传感器的原理与应用
传感器的原理与应用传感器是将被测量的信息(比如温度、压力、光照等)转化为可信号转换的装置,它可以将实际的物理量变成可测量和记录的电信号。
传感器可以广泛应用于医疗、环境监测、工业自动化、智能家居等各个领域。
本文将分别介绍传感器的原理和应用。
一、传感器的原理1.敏感元件:传感器的核心部件是敏感元件,它可以感受到被测量的信息。
不同类型的传感器具有不同的敏感元件,常见的有电阻、电容、电压等。
2.物理效应:传感器的工作原理是基于其中一种物理效应。
常见的物理效应包括电阻效应、电容效应、磁阻效应、声压效应等。
3.传感器电路:传感器的敏感元件和电路相结合,用来将被测量的信息转化为电信号。
传感器电路可以包括放大器、滤波器、模数转换器等。
4.输出信号:传感器将被测量的信息转化为电信号后,输出给接收器或控制系统进行处理。
输出信号可以是模拟信号或数字信号。
5.数据处理:接收器或控制系统对传感器输出信号进行处理,比如显示测量结果、控制动作、存储数据等。
二、传感器的应用1.医疗领域:传感器在医疗领域有着广泛的应用。
例如,体温传感器可以用于监测病人的体温变化,心率传感器可以用于监测心跳情况,血糖传感器可以用于糖尿病患者的血糖监测等。
2.环境监测:传感器在环境监测中起着重要作用。
例如,空气质量传感器可以监测空气中的有害气体含量,水质传感器可以监测水的污染程度,土壤湿度传感器可以监测土壤的湿度等。
3.工业自动化:传感器在工业自动化中被广泛应用。
例如,压力传感器可以用于监测管道中的压力变化,温度传感器可以用于监测设备的温度情况,力传感器可以用于测量物体的重量等。
4.智能家居:随着智能家居的发展,传感器也被应用在智能家居系统中。
例如,光照传感器可以根据环境光线调节灯光亮度,声音传感器可以根据声音情况控制音响等。
5.汽车领域:现代汽车中也广泛使用了各种传感器。
例如,车速传感器可以监测车辆的速度,倒车雷达可以根据周围障碍物的情况进行报警,气压传感器可以监测轮胎的气压等。
生活中的传感器原理及应用
生活中的传感器原理及应用1. 什么是传感器?传感器是能够感知外界信息并将其转化为电信号或其他形式输出的设备。
传感器是不可或缺的技术组件,广泛应用于各个领域,包括生活中。
2. 传感器的原理传感器的原理基础上,有许多种类型的传感器,每种传感器都有其独特的工作原理。
以下是一些常见的传感器及其工作原理:2.1 温度传感器•温度传感器是测量物体温度的传感器。
•工作原理:–电阻温度传感器基于物体的温度变化来改变电阻值。
–热电偶传感器基于两个不同材料的接触处产生的热电势差来测量温度。
–热敏电阻传感器基于电阻值对温度变化的敏感性来测量温度。
2.2 光敏传感器•光敏传感器用于检测光线的强度。
•工作原理:–光敏二极管基于光照射时电阻值的变化来检测光强度。
–光敏电阻传感器基于光照射时电阻值的变化来检测光强度。
–光敏三极管检测光照射时电流变化来测量光强度。
2.3 湿度传感器•湿度传感器用于测量空气中的湿度。
•工作原理:–电容式湿度传感器基于空气湿度对电容值的影响来测量湿度。
–电阻式湿度传感器基于空气湿度对电阻值的影响来测量湿度。
2.4 压力传感器•压力传感器用于测量物体的压力。
•工作原理:–压阻式传感器基于物体压力变化时电阻值的变化来测量压力。
–容压传感器基于物体压力的作用下容积的变化来测量压力。
3. 生活中的传感器应用传感器在我们的日常生活中有广泛的应用。
以下是一些例子:3.1 智能家居智能家居系统中使用各种传感器来实现自动化控制。
例如:•温度传感器可用于控制空调或暖气系统,根据室内温度调整设备的工作状态。
•光敏传感器可以根据光照强度自动调节灯光。
•湿度传感器可用于智能浇花系统,根据土壤湿度自动进行浇水。
3.2 医疗设备传感器在医疗设备中起着重要的作用。
例如:•心率传感器可以监测患者的心率,并报警或发送数据到监护设备。
•呼吸传感器可以监测患者的呼吸,以便及时发现任何问题。
•血压传感器可以测量患者的血压,为医生提供重要的生理参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器(原理及典型应用)编稿:张金虎审稿:代洪【学习目标】1.知道什么是传感器,常见的传感器有哪些。
2.了解一些传感器的工作原理和实际应用。
3.了解传感器的应用模式,能够运用这一模式去理解传感器的实际运用。
4.了解传感器在生活、科技中的运用和发挥的巨大作用。
【要点梳理】要点一、传感器1.现代技术中,传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转化为电路的通断。
把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
2.传感器原理传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压值、电流值、电荷量等,这些输出信号是非常微弱的,通常要经过放大后,再送给控制系统产生各种控制动作。
传感器原理如下图所示。
3.传感器的分类常用传感器是利用某些物理、化学或生物效应进行工作的。
根据测量目的不同,可将传感器分为物理型、化学型和生物型三类。
物理型传感器是利用被测量物质的某些物理性质(如电阻、电压、电容、磁场等)发生明显变化的特性制成的,如光电传感器、力学传感器等。
化学型传感器是利用能把化学物质的成分、浓度等化学量转换成为电学量的敏感元件制成的。
生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器,生物或生物物质主要是指各种酶、微生物、抗体等,分别对应酶传感器、微生物传感器、免疫传感器等等。
要点二、光敏电阻光敏电阻能够把光照强弱这个光学量转换为电阻大小这个电学量,一般随光照的增强电阻值减小。
要点诠释:光敏电阻是用半导体材料制成的,硫化镉在无光时,载流子(导电电荷)极少,导电性能不好,随着光照的增强,载流子增多,导电性能变好。
要点三、热敏电阻和金属热电阻1.热敏电阻热敏电阻用半导体材料制成,其电阻值随温度变化明显。
如图为某一热敏电阻的电阻—温度特性曲线。
要点诠释:(1)在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电阻器。
(2)热敏电阻器的应用十分广泛,主要应用于:①利用电阻—温度特性来测量温度、控制温度和元件、器件、电路的温度补偿。
②利用非线性特性完成稳压、限幅、开关、过流保护作用。
③利用不同媒质中热耗散特性的差异测量流量、流速、液面、热导、真空度等。
④利用热惯性作为时间延时器。
2.金属热电阻有些金属的电阻率随温度的升高而增大,这样的金属也可以制作温度传感器,称为金属热电阻。
要点诠释:热敏电阻或金属热电阻都能把温度这个热学量转换为电阻这个电学量,但相比而言,金属热电阻的化学稳定性好,测温范围大,而热敏电阻的灵敏度较高。
要点四、电容式传感器霍尔元件1.电容式传感器电容器的电容C决定于极板正对面积S、板间距离d以及极板间的电介质这几个因素,如果某一物理量(如角度θ、位移x、深度h等)的变化能引起上述某个因素的变化,从而引起电容的变化,那么,通过测定电容器的电容就可以确定上述物理量的变化,作这种用途的电容器称为电容式传感器。
如图甲所示是用来测定角度θ的电容式传感器。
当动片和定片之间的角度θ发生变化时,引起极板正对面积S的变化,使电容C发生变化,知道C的变化,就可以知道θ的变化情况。
如图乙所示是测定液面高度h的电容式传感器。
在导线芯的外面涂上一层绝缘物质,放入导电液体中。
导线芯和导电液体构成电容器的两个极,导线芯外面的绝缘物质就是电介质。
液面高度h发生变化时,引起正对面积发生变化,使电容C发生变化。
知道C的变化,就可以知道h的变化情况。
如图丙所示是测定压力,的电容式传感器,待测压力F作用于可动膜片电极上的时候,膜片发生形变,使极板间距离d发生变化,引起电容C的变化。
知道C的变化,就可以知道F的变化情况。
如图丁所示是测定位移x 的电容式传感器。
随着电介质进入极板间的长度发生变化,电容C 发生变化。
知道C 的变化,就可以知道x 的变化情况。
2.霍尔元件(1).如图所示,在一个很小的矩形导体(例如砷化铟)薄片上,制作四个电极E F M N 、、、,就成为一个霍尔元件。
霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
(2).霍尔电压HIB U k d=,其中k 为比例系数,称为霍尔系数,其大小与薄片的材料有关。
(3).霍尔元件的工作原理霍尔元件是利用霍尔效应来设计的。
一个矩形半导体薄片,在其前、后、左、右分别引出一个电极,如图所示,沿PQ 方向通入电流,,垂直于薄片加匀强磁场B ,则在MN 间会出现电势差U ,设薄片厚度为d ,PQ 方向长度为1l ,MN 方向长度为2l ,薄片中的带电粒子受到磁场力发生偏转,使N 侧电势高于M 侧,造成半导体内部出现电场。
带电粒子同时受到磁场力和电场力作用,当磁场力与电场力平衡时,MN 间电势差达到恒定,此时有2U q qvB l ==。
根据电流的微观解释I nqSv =,整理后得IB U nqd=。
令1k nq=,因为n 为材料单位体积内的带电粒子个数,q 为单个带电粒子的电荷量,它们均为常数,所以IBU k。
dU与B成正比,这就是霍尔元件能把磁学量转换成电学量的原因。
要点五、力传感器1.应变式力传感器(1)组成:由金属梁和应变片组成。
(2)工作原理:如图所示,弹簧钢制成的梁形元件右端固定,在梁的上下表面各贴一个应变片,左梁的自由端施力F,则梁发生弯曲,上表面拉伸,下表面压缩,上表面应变片的电阻变大,下表面电阻变小。
F越大,弯曲形变越大,应变片的阻值变化越大。
如果让应变片中通过的电流保持恒定,那么上面应变片两端的电压变大,下面应变片两端的电压变小。
传感器把这两个电压的差值输出。
外力越大,输出的电压差值也就越大。
2.测定压力的电容式传感器如图所示,当待测压力F作用于可动膜片电极上时,可使膜片产生形变,从而引起电容的变化,如果将电容器与灵敏电流表、电源串联,组成闭合电路,当F向上压膜片电极时,电容器的电容将增大,电流表有示数。
要点六、声传感器的应用——话筒1.话筒的作用把声音信号转换为电信号。
2.电容式话筒(1)原理:如图所示,Q是绝缘支架,薄金属膜M和固定电极N形成一个电容器,被直流电源充电。
当声波使膜片振动时,电容发生变化,电路中形成变化的电流,于是电阻R两端就输出了与声音变化规律相同的电压。
(2)优点:保真度好。
3.驻极体话筒(1)极化现象:将电介质放人电场中,在前后两个表面上会分别出现正电荷与负电荷的现象。
(2)驻极体:某些电介质在电场中被极化后,去掉外加电场,仍然会长期保持被极化的状态,这种材料称为驻极体。
(3)原理:同电容式话筒,只是内部感受声波的是驻极体塑料薄膜。
(4)特点:体积小,重量轻,价格便宜,灵敏度高,工作电压低。
要点七、温度传感器的应用——电熨斗1.温度传感器:由半导体材料制成的热敏电阻和金属热电阻均可制成温度传感器,它可以把热信号转换为电信号进行自动控制。
2.电熨斗的构造如图所示。
3.电熨斗的自动控温原理内部装有双金属片温度传感器,如图所示,其作用是控制电路的通断。
常温下,上、下触头应是接触的,但温度过高时,由于双金属片受热膨胀系数不同,上部金属膨胀大,下部金属膨胀小,双金属片向下弯曲,使触点分离,从而切断电源,停止加热。
温度降低后,双金属片恢复原状,重新接通电路加热,这样循环进行,起到自动控制温度的作用。
注意:熨烫棉麻衣物和熨烫丝绸衣物需要设定不同的温度,此时可通过调温旋钮调节升降螺丝,升降螺丝带动弹性铜片升降,从而改变触点接触的难易,达到控制在不同温度的目的。
4.传感器应用的一般模式5.动圈式话筒的工作原理如图所示是动圈式话筒的构造原理图,它是利用电磁感应现象制成的。
当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动。
音圈在永磁铁的磁场里振动,其中就产生感应电流(电信号)。
感应电流的大小和方向都变化,振幅和频率的变化由声波决定,这个电信号经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。
【典型例题】类型一、热敏电阻的特性例1.如图所示,1R 为定值电阻,2R 为负温度系数热敏电阻,L 为小灯泡,当温度降低时( )A .1R 两端的电压增大B .电流表的示数增大C .小灯泡的亮度变强D .小灯泡的亮度变弱【思路点拨】运用热敏电阻特性解决问题。
【答案】C【解析】本题考查了负温度系数热敏电阻的特性以及电路的动态分析。
2R 与灯L 并联后与1R 串联,与电源构成闭合电路,当热敏电阻温度降低时,电阻2R 增大,外电路电阻增大,电流表读数变小,灯L 两端电压增大,灯泡亮度变强,1R 两端电压减小,故C 正确,其余各项均错。
【总结升华】牢记热敏电阻特性是解决此题的关键。
热敏电阻的阻值随温度的升高不一定减小,正温度系数的热敏电阻(PTC )的阻值随温度的升高而增大。
举一反三:【高清课堂:传感器(原理及典型应用)例2】【变式】如图是一火警报警的一部分电路示意图。
其中2R 为用半导体热敏材料制成的传感器,电流表为值班室的显示器,a b 、之间接报警器。
当传感器2R 所在处出现火情时,显示器的电流I 、报警器两端的电压U 的变化情况是()A .I 变大,U 变大B . I 变小,U 变小C .I 变小,U 变大D . I 变大,U 变小【答案】B【解析】出现火情时温度升高,2R 减小,R 总减小,I 总增大,ab U 减小,U 并减小,A I 减小,正确答案为B 。
类型二、光敏电阻的特性例2.如图所示,1R 、2R 为定值电阻,L 为小灯泡,3R 为光敏电阻,当照射到3R 上的光强度增大时( )A .电压表的示数增大B .2R 中电流减小C .小灯泡的功率增大D .电路的路端电压增大【答案】ABC【解析】本题综合考查光敏电阻的特性以及电路的动态分析。
当光强度增大时,3R 阻值减小,外电路电阻随见的减小而减小,1R 两端电压因干路电流增大而增大,同时内电压增大,故电路路端电压减小,而电压表的示数增大,A 项正确,D 项错误;由路端电压减小,而1R 两端电压增大知,2R 两端电压必减小,则2R 中电流减小,故B 项正确;结合干路电流增大知流过小灯泡的电流必增大,则小灯泡的功率增大。
【总结升华】牢记光敏电阻的阻值随光强度的增加而减小。
例3.如图所示为光敏电阻自动计数器的示意图,其中1R 为光敏电阻,2R 为定值电阻。
此光电计数器的基本工作原理是( )A .当有光照射1R 时,信号处理系统获得高电压B .当有光照射1R 时,信号处理系统获得低电压C .信号处理系统每获得一次低电压就计数一次D .信号处理系统每获得一次高电压就计数一次【思路点拨】光电计数器的工作原理:物体由挡光到不挡光,信号系统由低电压转到高电压,计数一次。