弹塑性力学试题及答卷-2011

合集下载

弹塑性力学习题解答

弹塑性力学习题解答

第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。

A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。

A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。

A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。

4.展开一个张量时,对于自由下标操作的原则是按其变程C。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

5.展开一个张量时,对于哑脚标操作的原则是按其变程B。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。

这些基本假设中最基本的一条是 A。

A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。

A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。

8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。

A. 18个; B. 9个; C. 6个; D. 2个。

9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。

A.主应力值; B.极大值; C.极小值; D.零。

10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。

A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。

11.平衡微分方程是 C 间的关系。

A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2

塑性力学考试题及答案

塑性力学考试题及答案

塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。

A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。

7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。

8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。

三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。

10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。

答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。

- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。

- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。

7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。

常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。

弹塑性力学试题及答卷-2011

弹塑性力学试题及答卷-2011

---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………中南大学考试试卷(参考答案)2010~2011 学年 二 学期 弹塑性力学 课程 时间110分钟32 学时, 2学分,闭卷,总分100分,占总评成绩 90 %一、名词解释题(每小题3分,共15分)1、应力强度因子:2、弹塑性共存:3、应力集中:4、弹塑性体5、二、填空题 (每小题2分,共24分)1、主应力平面上的切应力等于零;主切应力平面上的正应力 不一定等于零。

2、全量应变是 某时刻变形之后的应变量 ; 应变增量是 变形某时刻的应变微分量 。

3、在应力分量表达式σij 中,下标i 表示 应力分量所在平面的外法线方向 , 下标j 表示 应力分量本身的作用方向 。

4、已知主应变ε1>ε2>ε3,则最大剪应变为:γmax = ε1-ε3 。

5、表征变形体内各应力分量之间相互关系的是 应力平衡微分 方程,表征各应变分量之间相互关系的是 应变连续/协调 方程。

6、在滑开型裂纹扩展模式中,应力的作用方向与裂纹扩展方向 平行 ,裂纹面与应力作用方向 平行 。

7、如图所示,受单向均匀拉伸载荷的平板构件,其上的中心穿透小孔边缘的a 、b 及远离小孔的c 、d 点,随着外载荷增加,最先进入塑性变形状态的是 a 点,受压应力的是 b 点。

8、如图所示为变形体内某点处单元体的受力状态,已知σ=σs (屈服应力),用Tresca 屈服准则判别,该点处于 塑性变形 状态;用Mises 屈服准则判别,该点处于 弹性变形 状态。

9、圆柱体在Z 向受压缩,产生均匀塑性变形,则其塑性应变之比为:=px px px εεε::。

10、 11、 12、题二(8)图题二(7)图1.5σσx---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………三、简析题(共25分)1、试根据弹性力学原理,分析受强内压力作用的厚壁筒的结构设计方法。

高等弹塑性力学11试卷

高等弹塑性力学11试卷

课程名称:高等弹塑性力学课程编号:S064B02 课程类型:学位课考试方式:开卷
学科专业、领域:采矿工程所在学院:资源学院任课教师:杨万斌
学生姓名:专业、班级:成绩:
河北工程大学研究生2011~ 2012 学年第一学期考试试卷( A )卷
一、概念题(每小题5分,共25分)
1. S-D效应
2. 偏平面
3. 流动法则
4.运动硬化
5. Hvoslev面
二、简答题(每小题10分,共50分)
1. D-P屈服准则在π平面上的屈服曲线是如何变化的?
2. 屈服、相继屈服和破坏的关系是什么?
3. 偏平面上的屈服曲线为什么是外凸的?
4. Roscoe 面是怎样构成的?
5. 极限荷载的上下限定理有什么意义?
三、分析题(25分)
1. 某物体的一点在σ1、σ2、σ3的作用下均表现为屈服状态,在屈服曲线上如图变化,试对该物
体进行分析其材料特点。

(7分)
2. 已知一点的应力张量为 ij 3
22σ2
10204-⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,求I 1 ,I 2 ,I 3 ,J 2 ,J 3 ,并分析该点的应力状态。

(8分)
3. 设土体中某A 点应力为A (2σ,σ,0),当比例加载时,试按C-M 准则和D-P 准则分析,当
σ达到多少时,A 点开始屈服?(10分)。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

塑性力学测试题及答案

塑性力学测试题及答案

塑性力学测试题及答案一、单项选择题(每题2分,共10分)1. 塑性力学中,材料的屈服强度是指材料在受到何种应力条件下开始产生塑性变形的应力值?A. 单轴拉伸应力B. 单轴压缩应力C. 多轴应力D. 任何应力条件下答案:A2. 塑性变形与弹性变形的主要区别是什么?A. 塑性变形是可逆的,弹性变形是不可逆的B. 塑性变形是不可逆的,弹性变形是可逆的C. 塑性变形和弹性变形都是可逆的D. 塑性变形和弹性变形都是不可逆的答案:B3. 根据塑性力学理论,下列哪种材料可以被视为理想塑性材料?A. 脆性材料B. 弹性材料C. 塑性材料D. 粘弹性材料答案:C4. 在塑性力学中, Tresca 屈服准则与 Von Mises 屈服准则的主要区别是什么?A. Tresca 屈服准则基于最大剪应力,Von Mises 屈服准则基于最大正应力B. Tresca 屈服准则基于最大正应力,Von Mises 屈服准则基于最大剪应力C. Tresca 屈服准则和 Von Mises 屈服准则都基于最大剪应力D. Tresca 屈服准则和 Von Mises 屈服准则都基于最大正应力答案:C5. 塑性力学中,材料的硬化指数 n 表示什么?A. 材料的弹性模量B. 材料的屈服强度C. 材料的塑性变形能力D. 材料的断裂韧性答案:C二、填空题(每题2分,共10分)1. 塑性力学中,材料的______是指材料在受到应力作用下,从弹性状态转变为塑性状态的应力值。

答案:屈服强度2. 塑性变形与弹性变形的主要区别在于塑性变形是______的。

答案:不可逆3. 在塑性力学中,理想塑性材料是指在达到屈服点后,材料的应力______保持不变。

答案:不再增加4. Tresca 屈服准则认为,当材料的______达到一定值时,材料开始屈服。

答案:最大剪应力5. 塑性力学中,材料的硬化指数 n 越大,表示材料的______能力越强。

答案:塑性变形三、简答题(每题10分,共20分)1. 简述塑性力学中,塑性变形与弹性变形的主要区别。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

塑性力学考试题及答案

塑性力学考试题及答案

塑性力学考试题及答案一、单项选择题(每题2分,共10题)1. 塑性力学中,材料进入塑性变形阶段的条件是应力达到()。

A. 屈服强度B. 抗拉强度C. 弹性极限D. 断裂强度答案:A2. 塑性变形与弹性变形的主要区别在于()。

A. 变形量的大小B. 是否可逆C. 材料硬度的变化D. 变形速率的快慢答案:B3. 根据塑性力学理论,下列哪种材料不属于塑性材料()。

A. 低碳钢B. 铝合金C. 玻璃D. 橡胶答案:C4. 塑性力学中,材料的屈服点是指()。

A. 材料开始发生塑性变形的应力值B. 材料发生断裂的应力值C. 材料弹性极限的应力值D. 材料达到最大强度的应力值答案:A5. 在塑性力学中,安全系数的计算公式为()。

A. 安全系数 = 材料强度 / 工作应力B. 安全系数 = 工作应力 / 材料强度C. 安全系数 = 材料强度 / 材料屈服强度D. 安全系数 = 材料屈服强度 / 工作应力答案:A6. 塑性力学中,材料的硬化指数n的物理意义是()。

A. 材料的塑性变形能力B. 材料的弹性模量C. 材料的屈服强度D. 材料的硬化程度答案:D7. 塑性力学中,真应力-真应变曲线的斜率代表的是()。

A. 弹性模量B. 屈服强度C. 强度极限D. 硬化模量答案:D8. 塑性力学中,材料的塑性变形通常发生在()。

A. 弹性阶段B. 屈服阶段C. 强化阶段D. 断裂阶段答案:C9. 塑性力学中,材料的塑性变形与温度的关系是()。

A. 温度升高,塑性变形能力增强B. 温度升高,塑性变形能力减弱C. 温度降低,塑性变形能力增强D. 温度对塑性变形能力无影响答案:A10. 塑性力学中,材料的塑性变形与应变率的关系是()。

A. 应变率增加,塑性变形能力增强B. 应变率增加,塑性变形能力减弱C. 应变率对塑性变形能力无影响D. 应变率降低,塑性变形能力增强答案:A二、简答题(每题5分,共4题)1. 简述塑性力学与弹性力学的主要区别。

弹塑性力学考试

弹塑性力学考试

弹塑性力学考试————————————————————————————————作者:————————————————————————————————日期:二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为

线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有


(2)纯剪切应力状态,

故 7.10 如何利用与 Tresca 屈服条件相关联的流动法则?
第八章 理想刚塑性的平面应变问题
8.1简述滑移线的概念: 解:在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移 线。 剪切应力是最大剪应力。 平衡方程——沿线: 2k=C 或 =2k ;
沿线: +2k=C 或 = 2k ; 速度方程——沿线:dv v d=0;
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

弹塑性力学答案

弹塑性力学答案

一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。

在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。

由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。

利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。

由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。

4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。

半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。

如果能满足弹性力学的全部条件,则这个解就是正确的解答。

否则需另外假定,重新求解。

二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。

(完整word版)弹塑性力学试卷

(完整word版)弹塑性力学试卷

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析

同济大学弹塑性力学试卷及习题解答(完整资料).doc

同济大学弹塑性力学试卷及习题解答(完整资料).doc

【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。

)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。

( )(2)可用矩阵描述的物理量,均可采用张量形式表述。

( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。

( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。

( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。

( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。

( )(7)Drucker 假设适合于任何性质的材料。

( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。

( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。

( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。

P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。

)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。

(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。

(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。

(4)π平面上的一点对应于应力的失量的______________________。

P65(5)随动强化后继屈服面的主要特征为:___________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

---○---○---
---○---○---
………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………
中南大学考试试卷(参考答案)
2010~2011 学年 二 学期 弹塑性力学 课程 时间110分钟
32 学时, 2学分,闭卷,总分100分,占总评成绩 90 %
一、名词解释题(每小题3分,共15分)
1、应力强度因子:
2、弹塑性共存:
3、应力集中:
4、弹塑性体
5、
二、填空题 (每小题2分,共24分)
1、主应力平面上的切应力等于零;主切应力平面上的正应力 不一定等于零。

2、全量应变是 某时刻变形之后的应变量 ; 应变增量是 变形某时刻的应变微分量 。

3、在应力分量表达式σij 中,下标i 表示 应力分量所在平面的外法线方向 , 下标j 表示 应力分量本身的作用方向 。

4、已知主应变ε1>ε2>ε3,则最大剪应变为:γmax = ε1-ε3 。

5、表征变形体内各应力分量之间相互关系的是 应力平衡微分 方程,表征各应变分量之间相互关系的是 应变连续/协调 方程。

6、在滑开型裂纹扩展模式中,应力的作用方向与裂纹扩展方向 平行 ,裂纹面与应力作用方向 平行 。

7、如图所示,受单向均匀拉伸载荷的平板构件,其上的中心穿透小孔边缘的a 、b 及远离小孔的c 、d 点,随着外载荷增加,最先进入塑性变形状态的是 a 点,受压应力的是 b 点。

8、如图所示为变形体内某点处单元体的受力状态,已知σ=σs (屈服应力),用Tresca 屈服准则判别,该点处于 塑性变形 状态;用Mises 屈服准则判别,该点处于 弹性变形 状态。

9、圆柱体在Z 向受压缩,产生均匀塑性变形,则其塑性应变之比为:=p
x p
x p
x εεε::。

10、 11、 12、
题二(8)图
题二(7)图
1.5σ
σx
---○---○---
---○---○---
………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………
三、简析题(共25分)
1、试根据弹性力学原理,分析受强内压力作用的厚壁筒的结构设计方法。

(本题5分)
2、试分析工程应变与真应变的区别与联系。

(本题6分)
3、试画出线性硬化刚塑性材料的应力—应变关系曲线,并写出其本构方程。

(本题4分) 解:
σ=σs +k ε 其中 k=tg α
题 三(3)图
4、已知某物体受剪切应力τxy =-4.5KPa 的作用,测得其剪切应变γ
xy =-0.36×
10 -5
;若已知
该材料的泊松比μ=0.3,试求该材料的弹性模量E 。

(本题4分)
解:剪切模量G =τxy /γxy =-4.5KPa/-0.36×
10 -5
=1.25GPa (2分)
弹性模量E=G ×2(1+μ)=1.25GPa ×2(1+0.3)= 3.25GPa (2分)
5、如图所示矩形截面水坝,垂直于x-y 平面的水坝长度取1。

右侧受静水压力,顶部受集中
力P (P>0)作用。

试写出水坝左侧面、右侧面、上端面的应力边界条件。

(本题6分) 解:
四、计算题(本题共26分)
1、在Oxyz 直角坐标系中,已知某点应力张量:740410004ij σ--⎡⎤
⎢⎥=--⎢⎥
⎢⎥-⎣⎦
(i,j=x,y,z;各分量单位为MPa )。

(本题16分)
(1) 将σij (i,j=x,y,z )分解为应力球张量和应力偏张量,并图示其分解过程;(8分) (2) 求出该点的主应力,并用主应力表示应力张量σij (i,j=1,2,3);(6分)
[032213=-+-I I I σσσ; 2
222zx yz xy x z z y y x I τττσσσσσσ---++=; 2
2232xy
z zx y yz x zx yz xy z y x I τστστστττσσσ---+=] (3) 求出该点的最大剪应力。

(2分)
y
σyx
τ左侧面:
1,0
l m ==0
X Y ==代入应力边界条件公式
()()()()x s xy s y s xy s l m X m l Y
στστ+=+=()()0
0x x h xy x h
στ===⎧⎪⎨=⎪⎩右侧面: 1,0
l
m =-=,0
X y Y γ==代入应力边界条件公式,有:
()()0x x h xy x h
y σγτ=-=-=-⎧⎪⎨=⎪⎩上端面:
()
h
y h
y dx σ-=⎰
sin P α
=-cos P α
=0
()
h
yx h
y dx τ-=⎰
0()
h
y h
y xdx σ-=⎰
sin 2
h
P α=-题二(4)图
---○---○---
---○---○---
………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………
2、试用应力函数5223(,)x y Ax Bx y Cx Dy Ex Fy G Φ=++++++,求解如图所示的平面问题的应力分量(不计体力)。

其中均布载荷q 、弯矩M 和构件半厚h 均为已知参数。

(10分)
题四2图
6、如图所示为变形体内某质点的主应力状态示意图(σ>0)。

若已知受力材料的屈服强度 σs =300MPa ,试采用Mises 屈服准则判别,当σ达到多少时,该点材料开始发生塑性变形?求塑性应变增量之比,并判断塑性变形的类型。

(本题10分) 解:根据Mises 屈服准则:
当σe=σs 时材料开始发生塑性变形,即:
3300
e e e σσσσ=
==== 所以,当σ=100MPa 时,该点发生塑性屈服。

(4分)
σm =(σ1+σ2+σ3)/3=-σ 由增量理论可得:
'''
123123
1231111
2
3
123::::::():():()::():(2):(2)::2:():()2:(1):(1)
p p p p p p m m m p
p p p p p d d d d d d d d d d d d εεεσσσεεεσσσσσσεεεσσσσσσεεεσσσ==---=+-+-+=--=-- (4分)
可见,该点的塑性变形是一种延伸类型的变形。

(2分)
题二(6)图
2。

相关文档
最新文档