线性代数考试练习题带答案大全(二)
线性代数试题及答案二
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则1B -= 。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AXb =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r =B.s r ≤C.r s ≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B 三、计算题(本题总计60分。
线性代数模拟题二及参考答案
《线性代数》模拟题(二)及参考答案一、填空题1. 行列式xy x y y x y x x yxy++=+ .2. 若,A B 是两个三阶矩阵,且||1A =-,||2B =,则122()T A B -= .3. 设A 是三阶方阵,且2AB E =,||1A =,则||B = .4. 设,A B 均为n 阶矩阵,||2A =,||3B =-,则*12A B -= .5. 设三阶方阵1223A αγγ⎛⎫ ⎪= ⎪ ⎪⎝⎭,12B βγγ⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中12,,,αβγγ都是三维行向量,已知||18A =,||2B =,则||A B -= .6. 已知线性方程组1231231234,23,2x x x x x ax x x ax ++=⎧⎪+-=⎨⎪+-=⎩无解,则数a = .7. 设α是齐次线性方程组0Ax =的解,β是非齐次线性方程组Ax b =的解,则(32)A αβ+= .8. 设12243311A t-⎛⎫⎪= ⎪ ⎪-⎝⎭,B 为三阶非零矩阵,且0AB =,则t = . 9. 已知54⨯矩阵A 的列向量组线性无关,则()T R A = .10. 设A 为三阶矩阵,12,ξξ为齐次线性方程组0Ax =的基础解系,则||A = .11. 设11k α⎛⎫ ⎪= ⎪ ⎪⎝⎭是211121112A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵的特征向量,则k = .12. 设三阶方阵A 有一个特征值为1,且||0A =及A 的主对角线元素的和为0,则A 的其余两个特征值为 . 13. 已知三阶矩阵A 的特征值为1,2,3,且矩阵B 与A 相似,则2||B E += .14. 二次型222123123121323(,,)56422f x x x x x x x x x x x x =+++--的正惯性指数为 . 15. 设二次型22121212(,)4f x x tx x tx x =+-正定,则实数t 的取值范围是 . 二、单项选择题1. 若行列式1112132122233132332a a a a a a a a a =,则111213313233213122322333333a a a a a a a a a a a a ---=---()A 6-. ()B 3-. ()C 3. ()D 6 . 答 【 】2. 设,A B 是同阶方阵,且A 可逆,若()A B E E -=,则B =()A 1E A -+. ()B E A -. ()C E A +. ()D 1E A -- . 答 【 】3. 若n 阶矩阵A 满足2230A A E --=,则A 可逆,且1A -为()A 2A E -. ()B 2E A -. ()C 1(2)2A E -. ()D 1(2)3A E - . 答 【 】4. 设A 为54⨯矩阵,b 为51⨯矩阵,若方程组Ax b =有无穷多解,则必有()A ()1R A <. ()B ()2R A <. ()C ()4R A <. ()D ()5R A <. 答 【 】5. 设A 为54⨯矩阵且()3R A =,则齐次线性方程组0Ax =的基础解系中所含解向量的个数为()A 1. ()B 2. ()C 3. ()D 4. 答【 】 6. 设α是非齐次线性方程组Ax b =的解,β是其导出组0Ax =的解,则下列结论中正确的是()A αβ+是0Ax =的解. ()B αβ+是Ax b =的解.()C βα-是Ax b =的解. ()D αβ-是0Ax =的解. 答 【 】7. 方程组123123320,2640x x x x x x -+=⎧⎨-+-=⎩的基础解系中所含解向量的个数为 ()A 2. ()B 1. ()C 3. ()D 0. 答【 】 8. 方程组0Ax =仅有零解的充分必要条件是()A A 的行向量组线性无关. ()B A 的列向量组线性无关.()C A 的行向量组线性相关. ()D A 的列向量组线性相关. 答 【 】9. 设三阶矩阵A 的特征多项式为2||(2)(3)E A λλλ-=-+,则行列式||A E +=()A 18-. ()B 12-. ()C 12. ()D 18. 答【 】 10. 设矩阵121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则与矩阵A 相似的矩阵是()A 110120003-⎛⎫ ⎪- ⎪ ⎪⎝⎭. ()B 010100002⎛⎫ ⎪ ⎪ ⎪⎝⎭. ()C 211-⎛⎫ ⎪⎪ ⎪⎝⎭. ()D 121⎛⎫⎪- ⎪ ⎪⎝⎭. 答 【 】 11. 已知三阶矩阵A 的特征值为1,1,2-,则矩阵*1(3)B A -=的特征值为()A 1,1,2--. ()B 111,,663--. ()C 111,,663-. ()D 11,,122--. 答【 】 12. 二次型222123123121323(,,)222444f x x x x x x x x x x x x =+++++的规范形为 ()A 222123z z z ++. ()B 2212z z +. ()C 21z . ()D 2212z z -. 答 【 】 二、计算题:1. 计算四阶行列式1111111111111111x x x x +-----+---.2. 设矩阵A 与X 满足2AX A X =+,其中430140003A ⎛⎫⎪= ⎪ ⎪⎝⎭. (1) 求X . (2) 求()R X .3. λ取何值时,非齐次线性方程组123412341234134231,243,32374,x x x x x x x x x x x x x x x λ--+=⎧⎪--+=⎪⎨--+=⎪⎪++=⎩有解?并求出通解. 4. 求向量组1(1,2,1,0)T α=--,2(2,1,0,2)T α=-,3(3,3,3,3)T α=,4(2,4,2,6)T α=-的一个最大无关组,并把不属于最大无关组的向量用最大无关组线性表示.5. 试求一个正交的相似变换矩阵,将对称阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭化为对角矩阵.6.已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化为标准形22212325f y y y =++,求参数a 及所用的正交变换.四、证明题:1. 证明:向量组1(1,2,1)T a =-,2(3,1,0)T a =-,3(2,2,2)T a =-是3R 的一个基,并将向量(5,3,2)T b =-表示为这个基的线性组合,求出向量b 在此基下的坐标.2. 证明:矩阵001111100A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭能对角化.《线性代数》模拟题(二)参考答案一、填空题1.332()x y -+.2.2.3.8.4.2123n --.5.2.6.1-.7.2b .8.3-.9.4. 10.0. 11.1或-2. 12.1,0-. 13.100. 14.3. 15.104t <<. 二、单项选择题1.D .2.A .3.D .4.C .5.A .6.B .7.A .8.B .9.C . 10.B . 11.B . 12.C . 二、计算题:1.解 原式411111111111111111100011111110001111111xx x x x x x x x x x x xx x x ----------==⋅=⋅=-+--+-----.2.解 (1) 由题设,得(2)A E X A -=,其中2302120001A E ⎛⎫ ⎪-= ⎪ ⎪⎝⎭.由230430120140100560(2)120140~010250~010250001003001003001003A E A -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知2A E -可逆,且1560(2)250003X A E A --⎛⎫⎪=-=- ⎪ ⎪⎝⎭.(2) 因||390X =≠,故()3R X =.3.解 112311123111231211430132101321(,)~~32374013210000210110132100000B A b λλλ------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----⎪ ⎪ ⎪== ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,当20λ-=,即2λ=时, ()()24R A R B ==<,方程组有无穷多解.此时11231101120132101321~~00000000000000000000B --⎛⎫⎛⎫⎪ ⎪--⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,则13423433442,321,,,x x x x x x x x x x =--+⎧⎪=-++⎪⎨=⎪⎪=⎩故通 解为12121234112321(,)100010x x c c c c R x x --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.4.解 设123412322134(,,,)10320236A αααα-⎛⎫⎪-- ⎪==⎪-⎪⎝⎭,则123212321232039001300130~~~026002360036023600000000A ---⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,知()3R A =.因123(,,)3R ααα=,则123,,ααα线性无关,故123,,ααα即为所求的一个最大无关组.设4112233k k k αααα=++,则由123212041008013001060106~~~003600120012000000000000A --⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,得18k =-,26k =,32k =-.故所求的表示式为4123862αααα=-+-.5.解 220||212(1)(2)44(2)(1)(2)4(22)(1)(2)8(1)02A E λλλλλλλλλλλλλλλλλ---=---=---+--=---+-=---+--- 2(1)(2)8(1)(1)(28)(1)(4)(2)λλλλλλλλλλ=---+-=---=--+,求得A 的特征值为12λ=-,21λ=,34λ=.当12λ=-时,解(2)0A E x +=.由42023223220110122232~044~011~011~011022022000000000A E -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪+=------ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,得基础解系为1(1,2,2)T ξ=,将1ξ单位化,得11(1,2,2)3T p =.当21λ=时,解()0A E x -=.由120120*********~042~021~0112021021000000A E ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭,得基础解系为2(2,1,ξ=2)T -,将2ξ单位化,得21(2,1,2)3T p =-.当34λ=时,解(4)0A E x -=.由2201101024232~012~012024024000A E ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭,得基础解系为3(2,2,1)T ξ=-,将3ξ单位化,得31(2,2,1)3T p =-.故所求的一个正交矩阵为123132323(,,)231323232313P p p p ⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,并使1214P AP --⎛⎫⎪=Λ= ⎪ ⎪⎝⎭.6.解 f 的矩阵2000303A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,则依题设,知A 的特征值为11λ=,22λ=,35λ=.从而有12510A =⨯⨯=,即22(9)10a -= 2a =±.又0a >,故2a =.当2a =时,200032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.当11λ=时,解()0A E x -=.由100100022~011022000A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得基础解系为1011ξ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,将1ξ单位化,得1011p ⎛⎫⎪=-⎪⎪⎭. 当22λ=时,解(2)0A E x -=.由0000120102012~003~001021000000A E ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,单位化,得2100p ⎛⎫ ⎪= ⎪ ⎪⎝⎭.当35λ=时,解(5)0A E x -=.由3001005022~011022000A E -⎛⎫⎛⎫ ⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得基础解系为3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,将3ξ单位化,得3011p ⎛⎫⎪=⎪⎪⎭.故所用的正交变换为11223301000x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=-⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝. 四、证明题:1.证明:12313251325132510221022(,,,)2123~05613~0101~0101~0101102203030561300680014A a a a b ---------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 10023~010100143B ⎛⎫⎪= ⎪ ⎪⎝⎭,可知123(,,)3R a a a =,即三个三维向量123,,a a a 线性无关,故123,,a a a 是3R 的一个基. 由矩阵B 知所求的线性表示式为1232433b a a a =++,由此也得b 在此基下的坐标为24(,1,)33. 2.证明 2011||111(1)(1)(1)11A E λλλλλλλλλ---=--=-=--+--,得11λ=-,231λλ==.对应单根11λ=-,可求得线性无关的特征向量恰有一个.当231λλ==时,由101101101~000101000A E --⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,知()1R A E -=,则方程组()0A E x -=的基础解系中有312-=个线性无关的解,即对应于二重根231λλ==,A 有2个线性无关的特征向量.综上三阶矩阵A 有三个线性无关的特征向量,故矩阵A 能对角化.。
线性代数考试练习题带答案大全(二)
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数试题二
第一部分 选择题 (共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对任意n 阶方阵A 、B 总有( ) A.AB =BA B.|AB |=|BA | C.(AB )T =A T B TD.(AB )2=A 2B 22.在下列矩阵中,可逆的是( )A.⎪⎪⎪⎭⎫ ⎝⎛100010000B.⎪⎪⎪⎭⎫ ⎝⎛100022011C.⎪⎪⎪⎭⎫ ⎝⎛121110011D.⎪⎪⎪⎭⎫ ⎝⎛101111001 3.设A 是3阶方阵,且|A |=-2,则|A -1|等于( ) A.-2 B.21-C.21D.24.设A 是n m ⨯矩阵,则齐次线性方程组Ax =0仅有零解的充分必要条件是( )A.A 的行向量组线性无关B.A 的行向量组线性相关C.A 的列向量组线性无关D.A 的列向量组线性无关 5.设有m 维向量组(I):n 21,,,ααα⋅⋅⋅,则( ) A.当m <n 时,(I)一定线性相关 B.当m>n 时,(I)一定线性相关 C.当m <n 时,(I)一定线性无关D.当m >n 时,(I)一定线性相关6.已知1β、2β是非齐次线性方程组Ax =b 的两个不同的解,1α、2α是其导出组Ax =0的一个基础解系,k 1、k 2为任意常数,则方程组Ax=b 的通解可表成( ) A.2)(2121211ββββα-+++k k B.2)(2121211ββββα++++k kC.2212211ββαα-++k k D.2212211ββαα+++k k7.设n 阶可逆矩阵A 有一个特征值为2,对应的特征向量为x ,则下列等式中不正确...的是( ) A.Ax =2xB.A -1x =21xC.A -1x =2xD. A 2x =4x8.设矩阵A =⎪⎪⎪⎭⎫⎝⎛+λ132121111的秩为2,则λ=( ) A.2 B.1 C.0D.-19.二次型322123222132110643),,(x x x x x x x x x x f ++-+=的矩阵是( )A.⎪⎪⎪⎭⎫ ⎝⎛-405033531B.⎪⎪⎪⎭⎫ ⎝⎛-4001030061C.⎪⎪⎪⎭⎫⎝⎛-450533031D.⎪⎪⎪⎭⎫⎝⎛-41001036061 10.二次型2323223213212)()(),,(x x x x x x x x x f +++--=是( )A.正定的B.半正定的C.负定的D.不定的第二部分 非选择题 (共80分)二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
《线性代数》自测题二及 答案
测试题二(矩阵)一.单项选择题1. 设A 为n 阶矩阵,且O A =3,则( C )(A )A E A E +-,均不可逆; (B )A E -不可逆,但A E +可逆(C )A E -,E A A +-2均可逆;(D )A E -可逆,但E A A +-2不可逆2.设B A ,都是n 阶非零矩阵,且O AB =,则B A ,的秩( B )(A )必有一个等于零 (B )都小于n(C )一个小于n ,一个等于n (D )都等于n3.若A 为n 阶可逆矩阵,则下列结论不正确的是( D ).(A )11)()(--=k k A A ; (B )T k k T A A )()(=; (C )k k A A )()(**=; (D )**=kA kA )(.4. 设B A ,为n 阶矩阵,下列结论正确的是( D )(A )||||||B A B A +=+ (B )||||||B A B A -=-(C )若B AB =,则BA AB = (D )若E B AB +=,则BA AB = 5.B A ,均为三阶可逆矩阵,则下列等式成立的是( A ).(A )111)(---=B A AB ; (B )A A =-; (C )B A B A B A +-=-22; (D )A A 22=.6.设()353=⨯A R ,那么53⨯A 必满足 ( D ).(A )三阶子式全为零; (B )至少有一个四阶子式不为零;(C )二阶子式全为零; (D )至少有一个二阶子式不为零.7.⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a A 212122122111,02121≠n n b b b a a a ,秩=A (B ). (A )0; (B )1 ; (C )2; (D )n .8.设B A ,为n 阶矩阵,**,B A 是伴随矩阵,⎪⎪⎭⎫ ⎝⎛=B O O A C ,则=*C ( C ). (A ) ⎪⎪⎭⎫ ⎝⎛**B B O O A A ; (B ) ⎪⎪⎭⎫ ⎝⎛**A A O O B B ; (C ) ⎪⎪⎭⎫ ⎝⎛**B A O O A B ; (D ) ⎪⎪⎭⎫ ⎝⎛**A B O O B A .9.设B A ,均为n 阶矩阵,A 与B 等价,下列结论不正确的是( A ).(A )若0||>A ,则0||>B(B )若0||≠A ,则存在可逆矩阵P 使得E PB =(C )若A 与E 等价,则B 是可逆矩阵(D )存在可逆矩阵Q P ,,使得B PAQ =10.设)3(≥n n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a b a b a b a a A ,其中0≠ab ,若1)(-=n A r ,则b a , 应满足( B ) (A )0=+b a (B )a n b )1(-= (C )0=-b a (D )a n b )1(-=11.设B A ,均为n m ⨯矩阵,1)(r A r =,2)(r B r =,若方程组α=Ax 有解,β=Bx 无解,且r B A r =),,,(βα,则( D )(A )21r r r += (B )21r r r +≤ (C )121++=r r r (D )121++≤r r r二.填空题1.若⎪⎪⎭⎫ ⎝⎛=4321A ,⎪⎪⎭⎫ ⎝⎛=0110P ,那么=20042003AP P ⎪⎪⎭⎫ ⎝⎛2143. 2.B A ,为三阶矩阵,1-=A ,2=B ,则()='-212B A 2 . 3.已知53)(2+-=x x x f ,⎪⎪⎭⎫ ⎝⎛=b a A 00,则=)(A f ⎪⎪⎭⎫ ⎝⎛+-+-53005322b b a a . 4.若C B A ,,均为n 阶矩阵,且E CA BC AB ===,则=++222C B A 3E . 5.α是三维列向量,⎪⎪⎪⎭⎫ ⎝⎛----='111111111αα,则='αα 3 .6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A = A A n 2||-.三.判断题(正确打V ,错误打×)1.*A A =的充分必要条件是1-=A A A .( × )2.3223⨯⨯B A 不可逆.( V )3.如果E AB =,则1-=A B .( V )4.B A ,为n 阶非零矩阵,若,O AB =则0==B A .( V )5.()ij a A =为n 阶可逆矩阵,若A 的每行元素之和全为a ,则1-A 的每行元素之和全为1-a .( V )6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A A -=-( × )四.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,求n A . 五.讨论参数a 的取值,求矩阵⎪⎪⎪⎭⎫ ⎝⎛=68963642321a A 的秩.六.设122101221,021425000A B -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,是否存在可逆阵P 使PA B =,若存在,求出P 。
线性代数考试练习题带答案(2)
线性代数试题集与答案解析二、判断题(判断正误,共5道小题)9.设A ,B 是同阶方阵,则AB=BA 。
正确答案:说法错误解答参考:10. n维向量组{ α 1 , α 2 , α 3 , α 4 } 线性相关,则{ α 2 , α 3 , α 4 } 线性无关。
正确答案:说法错误解答参考:11.若方程组Ax=0 有非零解,则方程组Ax=b 一定有无穷多解。
正确答案:说法错误解答参考:12.若A ,B 均为n阶方阵,则当| A |>| B | 时,A ,B 一定不相似。
正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m×n 阶矩阵且线性方程组Ax=b 有惟一解,则m≥n 。
正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。
在线只需提交客观题答案。
)三、主观题(共12道小题)14.设A是m×n 矩阵, B是p×m 矩阵,则A T B T 是×阶矩阵。
参考答案:A T B T是n×p 阶矩阵。
15.由m个n维向量组成的向量组,当m n时,向量组一定线性相关。
参考答案:m>n时向量组一定线性相关16.参考答案:a=6(R( A )=2⇒| A |=0)17._________________。
参考答案:( 1 2 3 4 ) T+k ( 2 0 −2 −4 ) T。
因为R ( A )=3 ,原方程组的导出组的基础解系中只含有一个解向量,取为η2+ η3−2 η1,由原方程组的通解可表为导出组的通解与其一个特解之和即得。
18.时方程组有唯一解。
参考答案:当a=−2 时方程组无解,当a=1 时方程组有无穷多个解,当a≠1,−2 时方程组有唯一解。
19.参考答案:2420.参考答案:t=6 21.参考答案:22.参考答案:23.参考答案:24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得参考答案:25.参考答案:本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数第二章矩阵(答案).docx
线性代数练习题第二章矩阵系专业班姓名学号第一节矩阵及其运算一.选择题1.有矩阵A3 2,B23, C 3 3,下列运算正确的是[B]( A) AC( B) ABC( C) AB- BC( D) AC+BC2.设C (1, 0 ,0 ,1),A E C T C , B E 2C T C ,则AB[ B ] 22( A)E C T C( B)E(C)E( D)03.设 A 为任意 n 阶矩阵,下列为反对称矩阵的是[ B]( A)A A T(B)A A T( C)AA T( D)A T A二、填空题:1642011651.282342112412124321141387 2.设A 2 1 2 1, B 2 1 2 1,则 2A 3B2525 123401012165 4317353.1232657014913121400126784.13413120561402三、计算题:111设 A111,4111123B124,求 3AB2A 及 A T B0511111231113AB 2 A 3 111124 2 1111110511110582223 0562222902222132221720 ;4292111123058由 A对称,A T A,则 A TB AB11112405 6 .111051290线性代数练习题第二章矩阵系专业班姓名学号第二节逆矩阵一.选择题1.设A是 n 阶矩阵A的伴随矩阵,则[B]( A)AA A 1( B)An 1( C)( A)n A( D)( A )0 A2.设 A,B 都是 n 阶可逆矩阵,则[C]( A) A+B 是 n 阶可逆矩阵( B)A+B 是 n 阶不可逆矩阵( C)AB 是 n 阶可逆矩阵( D)| A+B| = | A|+| B|3.设 A 是 n 阶方阵,λ为实数,下列各式成立的是( A)A A(B)A A(C)A n A(D)A [ C] n A4.设 A, B, C 是 n 阶矩阵,且ABC = E ,则必有[ B]( A) CBA = E(B)BCA = E(C)BAC = E(D)ACB = E5.设 n 阶矩阵 A,B, C,满足 ABAC = E,则[ A]( A ) A T B T A T C T E (B ) A 2 B 2 A 2 C 2E(C ) BA 2CE ( D ) CA 2 B E二、填空题:1121A ,其中 B21.已知 ABB,则 A2 11122.设2 54 6,则 X =2 13 1 X21 0433.设 A , B 均是 n 阶矩阵, A2 , B3 ,则 2 A B14n64.设矩阵 A 满足 A 2A4E0 ,则 ( A E) 11 ( A 2E)2三、计算与证明题:1. 设方阵 A 满足 A 2A 2E 0 ,证明 A 及 A2E 都可逆,并求 A 1和 ( A 2E ) 1A 2A 2 E 0A( A E ) 2 E A(A2 E ) EA 可逆,且 A 1AE ;2A 2 A 2E 0A( A 2E) 3A 2E 0A( A 2E) 3( A 2E) 4E 0( A 3E )( A 2E) 4E ( A3E)( A 2E)E4A可逆,且 (A 2E)1A 3E41 2 12. 设 A3 4 2 ,求 A 的逆矩阵 A 1541解:设 A(a ij )3 ,则A 114 2 4,A 12( 1)1232 13, A 13( 1)133432,4 15154A21( 1)1221 2, A 22 ( 1)2211 6, A 23 ( 1)2312 14,41 5154A 31( 1) 13210, A 32 ( 1) 3211 1, A 33( 1) 3312 2,4232344 2 0 从而 A *1361 .32 142又由1 212c 11 00 2 1A3 4c 23 212254 1 c 3c1514 614 6A * 21 0则 A 113 31A27216 10 3 33. 设 A1 1 0 且满足 ABA2B ,求 B12 3AB A2B( A 2E) B A2 3 3 0 3 3 11 0 B 1 1 012 11 232 3 3 0 3 311 0 1 1 0 1 1 0 1 1 0 r 1r 22 3 3 03 3 12 11 2 31 2 1 1 2 31 1 0 1 1 0 1 1 01 1 0 r 22r 10 1 3 2 5 3 r 3 r 2 0 13 25 3 r 3 r 11 13 32 2 211 0 11 0110 1 10 r 3 ( 1) 0 1 3 2 5 3 r 23r 3 0 1 01 2 32 0 0 1 1 1 00 011 11 0 0 0 3 3 r 1 r2 0 1 01 2 30 0 111 00 3 3 则 B ( A 2E) 1 A1 2 31 1线性代数练习题第二章矩 阵系专业 班姓名学号第三节(一)矩阵的初等变换一、把下列矩阵化为行最简形矩阵:1 1 3 4 3 r2 3r 1 1 134 3r 2 4 1 1 3 4 3 3 3 5 4 1 0 0 4 8 8 0 0 1 2 222 3 2 0 r 3 2r 1 00 366 r 33 0 0 1 2 233 4 2 1r43r 1 0 0 5 10 10r45 012 211 34 3 11 023 r 3 r 2 0 0 1 2 2 00 1 2 2 r 4r 2 00 0 0 0 r 1 3r20 0 0 0二、把下列矩阵化为标准形:2 3 1 3 7 1 2 0 2 4 r 2 2r 1 1 2 0 2 4 1 2 0 2 4 23 1 3 7 0 1 1 1 132 83 0 r 1 r232 83 0 r 33r18 8 9 12 13 74 313 74 3 r 4 r 1 05 767122 4 122 4 r3 8r 2 0 1 1 1 1 01 1 1 1 r 45r 2 00 0 1 4 r 3 r40 2 1 20 212 00 0 14r 3 r 4 1 20 0 4120 040 1 1 0 31r 3 01 0 0 2r 2 r 4 r 20 0 2 0 20 0 2 0 2 r 1 2r 420 00 140 141 0 0 0 0 r 21 0 0 0 0 1 0 0 0 0 01 0 0 20 1 0 0 2 0 1 0 0 0r 12r20 2 0 2 1r 3 0 0 1 0 1c52c 2c34c40 1 0 00 00 14 20 0 0 140 0 0 1 0三、用矩阵的初等变换,求矩阵的逆矩阵3 2 0 1 0 2 2 1A2 3 211 213 2 0 1 1 0 0 0 1 2 3 2 0 0 1 0 0 2 2 1 0 1 0 0 0 2 2 1 0 1 0 01 2 3 2 0 0 1 r 1 r 32 0 1 1 0 0 0 03 012 1 0 0 0 1 012 1 0 0 0 11 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 02 2 1 0 1 0 0 01 2 1 0 0 0 1 r 33r14 95 1 0 3 0 r 2 r44 95 1 0 3 0 01210 00 12210 10 01 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 r 3 4r 2 0 12 1 0 0 0 1 012 1 0 0 0 1 r 42r 2 0 01 1 1 0 3 4 r 42r30 01 1 1 0 3 40 0210 10 2 0 00 12 1 6 10123 0 42 11 20120 0 1 1 2 2 r 12r4012 0 2 16 11 r 1 3r 3 0 1 00 01 0 1 r2 r 4 0 0 1 0 1 1 36 r 2 2r 3 0 0 1 0 1 1 36 r 3 r 40 00 1 2 1 6100 12 16101 0 0 0 1 1 24 r 1 2r 2 0 10 0 0 1 0 1 0 01 0 1 1 360 00 12 1 6101 12 4 A10 1 0 1 1 1 3 62 1 6 101 1 1 1 0 1 四、已知0 2 2 X 1 1 0 ,求 X110 1 41 1 1 1 0 11 1 1 10 11 1 1 1 0 1 0 22 1 1 0 r3 r 1 0 2 2 11 0 r 3r 2 0 2 2 1 1 0uuuuuruuuuur11 01 40 2 1 1 1 30 03 0 231 1 0 12 21 111 0 13r 22r3 0 20 1r 310 2 2 1 1 0 123r r30 012 1 uuuuuuur20 1 0 1331 1 01221 01 5 33 26r 210 1 0111 r 1 r2 0 1 0 111226uuuuur26uuuuur220 0 1 010 0 1 013 31 5 32 6故 X1 1 12 62 13线性代数练习题第二章矩 阵系专业班姓名学号第三节(二)矩 阵 的 秩一.选择题1.设 A , B 都是 n 阶非零矩阵,且 AB = 0,则 A 和 B 的秩[ D]( A )必有一个等于零 ( B )都等于 n(C )一个小于 n ,一个等于 n( D )都不等于 n2.设 mn 矩阵 A 的秩为 s ,则[ C]( A ) A 的所有 s( B )A 的所有 s阶子式不为零- 1 阶子式不为零( C )A 的所有 s +1 阶子式为零(D )对 A 施行初等行变换变成E s0 0112133.欲使矩阵2s126的秩为2,则s,t满足[ C ] 455t12( A)s = 3 或t = 4(B)s= 2 或t = 4( C)s = 3 且t = 4(D)s = 2 且t = 44.设A是m n 矩阵,B是 n m 矩阵,则( A)当m n 时,必有行列式| AB |0( B)当( C)当n m 时,必有行列式| AB |0( D)当[ B ] m n 时,必有行列式| AB |0n m 时,必有行列式| AB |0a11a12a13a21a22a230105.设Aa21a22a23, Ba11a12a13, P1100,a31a32a33a31a11a32a12a33a13001100P2010,则必有 B[ C ] 101( A)AP1P2(B)AP2P1( C)P1P2A( D)P2P1A二.填空题:31021.设A1 1 2 1 ,则 R( A)213441212.已知A 23a2应满足a=-1 或 3 1a的秩为 2,则 a22a21三、计算题:218371.设A230753258,求 R( A) 。
《线性代数、概率统计》期末考试试卷及详细答案 二
《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。
2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。
3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。
4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。
5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。
6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。
《线性代数》测验二答案
1
答
2
5.设 A 为 n 阶矩阵,B 为 n 阶非零矩阵,若 B 的每一个列向量都是齐次线性方程组 Ax=0 的
解,则|A|=__________________
答0
6.齐次线性方程组
2x1x1x2x2x33 x3
0
0
的基础解系所含解向量的个数为________________
答1
(D)(1)的解是(2)的解,但(2)的解不是(1)的解
1
答A
4 5 8.设矩阵 A= 5 7
6 9 (A)(1,1,1)T 答A
2
3 ,则以下向量中是 A 的特征向量的是(
)
4
(B)(1,1,3)T (C)(1,1,0)T (D)(1,0,-3)T
1 1 1
《线性代数》(向量、线性方程组、特征值与特征向量)测验二
学院
班级
姓名
成绩
一.单项选择题(每小题 2 分,共 20 分)
1.设向量组1, 2 , 3 线性无关,则下列向量组线性无关的是(
)
(A)1 2 , 2 3 , 3 1
(B)1 2 , 2 3 ,1 2 2 3
性表示,记向量组(Ⅱ)1, 2 ,, m1, ,则(
)
(A) m 不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示
(B) m 不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示
(C) m 可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示
(D) m 可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示
答B
3.设1, 2 ,, s 均为 n 维向量,下列结论不.正确的是(
答
Ab
1 0
经济数学《线性代数》期末试卷二(含答案解析)
《线性代数》试卷二一.选择题(每题3分,共30分)1.若行列式1023145xx 中,代数余子式121A =-,则21A =( ) A.2 B.2- C.3 D.3- 【解答】由于31211(1)4545x A x =-=-=-,可解得1x =,进而有32102(1)215A =-=,故选A.2.已知A ,B 均为n 阶方阵,则必有( )A.222()2A B A AB B +=++ B.TTT()AB A B = C.n n AB O ⨯=时,A ,B 中至少有一个为零矩阵 D.以上都不对 【解答】本题考察矩阵的乘法运算的性质.在A ,B 相乘可换时,选项A 才成立;()T T T AB B A =,故选项B 是错误的;n n AB O ⨯=说明B 的列向量组均为齐次方程组0Ax =的解向量,故选项C 亦不成立.故选D.3.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且AB E =,其中E 为m 阶单位矩阵,则( ). A. ()()r A r B m == B.()(),r A m r B n == C. ()(),r A n r B m == D. ()()r A r B n ==【解答】显然有()min{(),()}max{(),()}r AB r A r B r A r B m ≤≤≤,于是由AB E =可知()()r A r B m ==.故选A.4.向量组12,,,m ααα(3≥m )线性无关的充要条件是( )A. 存在不全为零的数12,,,s k k k ,使11220s s k k k ααα+++=;B. 所给向量组中任意两个向量都线性无关;C. 所给向量组中存在一个向量,它不能用其余向量线性表示;D. 所给向量组中任意一个向量都不能用其余向量线性表示.【解答】本题考察线性无关的定义.选项A 为线性相关的定义;选项B.选项C 为必要条件;故选D.5.设向量⎪⎪⎪⎭⎫ ⎝⎛=001α,⎪⎪⎪⎭⎫ ⎝⎛=100β,下列选项中( )为βα,的线性组合.A.1B.⎪⎪⎪⎭⎫ ⎝⎛-=403ηC.⎪⎪⎪⎭⎫ ⎝⎛=022ηD.⎪⎪⎪⎭⎫⎝⎛-=010η【解答】由βα,的第二个分量均为零易知其线性组合亦必满足第二个分量为零,因此选B.6.当λ取( )时,方程组12323232132(3)(4)(2)x x x x x x x +-=-⎧⎪-=-⎨⎪-=--+-⎩λλλλλλ有无穷多解.A.1B.2C.3D.4【解答】思路同上题,欲使该方程组有无穷多解,系数行列式12131301λλ--=--必为零.故选C.7.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =必有( ).A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解 B .(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解 C .(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解 D .(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解【解答】事实上,齐次方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =为同解方程组.证明如下:一方面,显然(Ⅰ)的解是(Ⅱ)的解;另一方面,设β是(Ⅱ)的解,则T0A A β=,进而()()TT T 0A A A A ββββ==,由此可知0A β=,即β亦是(Ⅰ)的解.命题得证. 由此可知选A.8.设1λ与2λ是A 的两个互异特征值,ξ与η分别为其特征向量,则下列说法正确的是( ) A .对任意非零常数12,k k ,12k k ξη+均为A 的特征向量 B .存在非零常数12,k k ,使得12k k ξη+均为A 的特征向量C .对任意非零常数12,k k ,12k k ξη+均不是A 的特征向量D .存在唯一的一组非零常数12,k k ,使得12k k ξη+均为A 的特征向量【解答】首先易知,ξ与η线性无关.又知对于任意非零常数12,k k ,若12k k ξη+为属于特征值3λ的特征向量,则有()123132A k k k k ξηλξλη+=+,()12121122A k k k A k A k k ξηξηλξλη+=+=+同时成立,于是()()1132230k k λλξλλη-+-=进而可知123λλλ==,与题设矛盾.故12k k ξη+不是A 的特征向量.选C.9.设矩阵1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭,则A 与B ( ).A.合同且相似B.合同但不相似C.不合同但相似D.不合同且不相似【解答】易知A 为对称矩阵且其特征值为4,0,0,0,故A 必可正交对角化为矩阵B .进而A 与B 合同且相似.故选A.10.二次型()2221231231223,,244f x x x x x ax x x x x =++--经正交变换化为标准形22212325f y y by =++,则( )A.3,1a b ==B.3,1a b ==-C.3,1a b =-= D.3,1a b =-=-【解答】由题意知,矩阵12022202A a -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的特征值为2,5,b ,直接计算可知3,1a b ==-,故选B.二.填空题(每题3分,共18分)1.设A 为4阶方阵,且A 的行列式13A =,则12A -= . 【解答】易知13A -=,故1412216348A A --==⨯=.2.已知1231100011000100000101n n na a a D a a ---=-,若12--=+n n n n D a D kD ,则k = .【解答】按最后一行展开,得()()121312100011000100110000011n n n n n n a a a D a D a +-----=+---()()1121211n n n n n n n n a D D a D D +-----=+--=+,所以1k =.3.若非齐次方程组123412341234 242 217411x x x x x x x x x x x x λ+-+=⎧⎪-++=⎨⎪+-+=⎩ 有解,则λ=【解答】非齐次方程组有解当且仅当增广矩阵化为行阶梯阵时,最后一个非零行不具有“有且只有最后一个元素非零”的形式,于是直接计算可知5λ=。
线性代数试题及答案2
枣庄学院2011 ——2012 学年度第 一 学期样卷2一.单项选择题(每小题3分,本题共15分)1.如果123123123a a ab b b mc c c =,则123123123222333a a a b b b c c c --- =( ). A.6m ; B.6m -; C.3323m ; D.3323m -。
2. 设A B 、是m n ⨯矩阵,则( )成立.A.R A B R A ()()+≤;B. R A B R B ()()+≤;C.R A B R A R B ()()()+<+;D. R A B R A R B ()()()+≤+。
3. 设A 是s n ⨯矩阵,则齐次线性方程组0A x =有非零解的充分必要条件是( ). A.A 的行向量组线性无关 B. A 的列向量组线性无关 C.A 的行向量组线性相关 D. A 的列向量组线性相关4. 设3523512142a b a b-⎛⎫⎛⎫=⎪ ⎪-+-⎝⎭⎝⎭,则,a b 分别等于( ). A. 12, B. 13, C. 31, D. 62,5. 若1x 是方程=A X B 的解,2x 是方程=A X O 的解,则( )是方程=A X B 的解(c 为任意常数).A.12x c x +B. 12c x c x +C. 12c x c x -D. 12c x x + 二.填空题(每小题3分,共15分)1.设A B ,均为n 阶方阵,且A a B b ,==,则2T A B ()= .2. 11101-⎛⎫⎪⎝⎭= .3. 若对任意的3维列向量12123132Tx x x x x x A x x x (,,),+⎛⎫== ⎪-⎝⎭,则A = .4.设140223a b ,,-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭c 与a 正交,且b a c =+λ则λ= ,c = .5. 设向量组123100130121T T T(,,),(,,),(,,)==-=-ααα线性 关.三.计算行列式(10分)214131211232562-四.(10分)设12341345141211232231,,,.⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-⎪ ⎪ ⎪ ⎪==== ⎪⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭a a a a 求向量组1234,,,a a a a 的秩和一个最大无关组.五.(10分)已知矩阵满足X A B =,其中130261011A ⎛⎫⎪= ⎪⎪⎝⎭,120013B ⎛⎫= ⎪⎝⎭,求X .六.(8分)设方阵A 满足220,A A E --=证明A 可逆,并求A 的逆矩阵.七.(8分)已知向量组123,,a a a 线性无关,1122b a a =+,2233b a a =+,3134b a a =+,证明向量组123,,b b b 线性无关.八.(12分)求矩阵110430102-⎛⎫⎪=- ⎪ ⎪⎝⎭A 的特征值和对应于特征值的所有特征向量。
线性代数(经济数学2)_习题集(含答案)
四、计算题 4
26. 求线性方和组的解
x1 x1
x2 2x3 3x2 x3
3 1
2x2 x3 2
27. 求解下列线性方程组
2xx11
1 2 4 1 3 4 D 2 3 1 2 1 1 (4 分)
1 1 1 1 0 1
(1)3(3)4(1)2(1)(3+) (1)32(1)23 (6 分) 令 D0 得 0 2 或 3 于是 当 0 2 或 3 时 该齐次线性方程组有非零解 (8 分)
20
4 1 10
2 1 2
2 (1)43 (5 分)
10 5 2 0 c4 7c3 10 3 2 14 10 3 14
0 117
0 01 0
4 1 10 c2 c3 9 9 10 1 2 2 0 0 2 0 (10 分)
10
3
14
c1
1 2
c3
1 0 0
0 1 1
0
2 1
的逆。
1 2 1
20.
求矩阵
3
4
2
的逆。
5 4 1
三、计算题 3
第 3 页 共 25 页
21. 设矩阵
1 1 2 2 1
A
0 2 1
2 0 1
1 3 0
5 1 4
1 31
求矩阵 A 的秩 R(A)。
(3 分)
(10 分)
(1 分) (3 分)
第 10 页 共 25 页
线性代数 习题答案2
−a1n − a2 n − ann = (−1) n D 。
a21 an1 a11 a 21 a n1
a21 a31
,则
a22 a32 an 2 a12
3a32 2a22 3a33
a2 n a3n = (−1) n −1 D 。 ann a1n
2a23 = 6d 。
2.设 D =
an1 a11
3a31
⎡0 ⎢0 1)设 A = ⎢ ⎢0 ⎢ ⎣0 ⎛0 ⎜ ⎜0 2 解: A = ⎜ 0 ⎜ ⎜0 ⎝
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0⎤ 0⎥ ⎥ ,求 A 3 , A 4 。 1⎥ ⎥ 0⎦ 0⎞ ⎛0 ⎟⎜ 0⎟ ⎜0 1⎟ ⎜0 ⎟⎜ ⎜ 0⎟ ⎠ ⎝0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0⎞ ⎛0 0 ⎟ ⎜ 0⎟ ⎜0 0 = 1⎟ ⎜0 0 ⎟ ⎜ ⎜ 0⎟ ⎠ ⎝0 0 0 1 0 0 0 1 0 0 1 0 0 0 0⎞ ⎟ 1⎟ ; 0⎟ ⎟ 0⎟ ⎠ 0 0 0 0 0 0 0 0 1⎞ ⎟ 0⎟ ; 0⎟ ⎟ 0⎟ ⎠ 0⎞ ⎟ 0⎟ 。 0⎟ ⎟ 0⎟ ⎠
⎡λ 1 0 ⎤ ⎡λ 0 0 ⎤ ⎡0 1 0⎤ ⎢ 0 λ 1 ⎥ = ⎢ 0 λ 0 ⎥ + ⎢ 0 0 1 ⎥ = λ E + B. ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 0 0 0 0 0 λ λ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
五、设 P = ⎢
⎡ 4 6⎤ ⎡ 2 − 3⎤ ⎡1 0⎤ m ,Q = ⎢ ,S = ⎢ 。 ⎥ ⎥ ⎥ ,试求 ( PSQ) ( m 为正整数) 2 4 − 1 2 0 2 ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
(完整版)线性代数第二章矩阵试题及答案
第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。
例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 是一个4⨯5矩阵.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。
元素全为0的矩阵称为零矩阵,通常就记作0。
两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。
2、n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。
n阶矩阵的从左上角到右下角的对角线称为主对角线。
下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。
(1)A是正交矩阵⇔A T=A-1 (2)A是正交矩阵⇔2A=1阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。
②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。
把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。
每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。
线性代数考试和答案解析
线性代数考试和答案解析一、单项选择题(每题2分,共20分)1. 向量组的线性相关性是指()。
A. 至少有一个向量可以表示为其余向量的线性组合B. 所有向量都是零向量C. 向量组中不存在非零向量D. 向量组中所有向量都线性无关答案:A解析:向量组的线性相关性是指至少有一个向量可以表示为其余向量的线性组合。
这是线性相关的定义,其他选项都不符合线性相关的定义。
2. 矩阵的秩是指()。
A. 矩阵中非零行的个数B. 矩阵中非零列的个数C. 矩阵中线性无关的行向量的最大个数D. 矩阵中线性无关的列向量的最大个数答案:C解析:矩阵的秩是指矩阵中线性无关的行向量的最大个数,也可以是矩阵中线性无关的列向量的最大个数。
这是矩阵秩的定义,其他选项都不符合矩阵秩的定义。
3. 线性方程组有解的充分必要条件是()。
A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的秩等于增广矩阵的秩且等于未知数的个数答案:D解析:线性方程组有解的充分必要条件是系数矩阵的秩等于增广矩阵的秩且等于未知数的个数。
这是线性方程组有解的条件,其他选项都不符合有解的条件。
4. 二次型可以表示为()。
A. 一个二次多项式B. 一个二次多项式,其中变量的系数是对称矩阵C. 一个二次多项式,其中变量的系数是反对称矩阵D. 一个二次多项式,其中变量的系数是任意矩阵答案:B解析:二次型可以表示为一个二次多项式,其中变量的系数是对称矩阵。
这是二次型的定义,其他选项都不符合二次型的定义。
5. 正交矩阵是指()。
A. 一个方阵,其转置矩阵等于其逆矩阵B. 一个方阵,其转置矩阵等于其伴随矩阵C. 一个方阵,其逆矩阵等于其伴随矩阵D. 一个方阵,其转置矩阵等于其伴随矩阵的转置答案:A解析:正交矩阵是指一个方阵,其转置矩阵等于其逆矩阵。
这是正交矩阵的定义,其他选项都不符合正交矩阵的定义。
6. 矩阵的特征值是指()。
线性代数试题集与答案解析大全(2)
线性代数期末考试试卷及答案一、单项选择题(每小题2分,共40分)。
1.设矩阵22, B 23, C 32A ⨯⨯⨯为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=1 3.设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】A. 2-B. ()n2- C. n 2- D. 14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组12312312321 21 3 321x x x x x x x x x a ++=⎧⎪++=⎨⎪++=+⎩有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=110. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1-η3,η1-η2-η311. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. },,2,1,|),,,{(21n i z a a a a i n =∈D. }1|),,,{(121∑==n i inaa a a14.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 201B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 101 B. ⎥⎦⎤⎢⎣⎡4- 1 01- C. ⎥⎦⎤⎢⎣⎡4 2-00 D. ⎥⎦⎤⎢⎣⎡4- 2-01-15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
12.设矩阵111111111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,矩阵X 满足*12A X A X -=+,求X 。
13. 求线性方程组⎪⎪⎩⎪⎪⎨⎧=--+=--+=+-+=+-13413212302432143214321421x x x x x x x x x x x x x x x 的通解。
14.已知()()()()12341,2,2,3,6,6,1,,0,3,0,4,2TTTTαααα====-,求出它的秩及其一个最大无关组。
15.设A 为三阶矩阵,有三个不同特征值123,,,λλλ123,,ααα依次是属于特征值123,,,λλλ的特征向量,令123βααα=++, 若3A A ββ=,求A 的特征值并计算行列式23A E -.四、解答题(10分)16. 已知100032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求10A五、证明题(每小题5分,共10分)17.设ξ是非齐次线性方程组AX b =的一个特解,12,,,r ηηη为对应的齐次线性方程组0AX =的一个基础解系,证明:向量组12,,,,r ξηηη线性无关。
18. 已知A 与A E -都是 n 阶正定矩阵,判定1E A --是否为正定矩阵,说明理由.线性代数期末试卷(本科A)一、单项选择题(每小题3分,共15分)1.设,A B 为n 阶矩阵,下列运算正确的是( )。
A. ();k k k AB A B =B. ;A A -=-C. 22()();A B A B A B -=-+D. 若A 可逆,0k ≠,则111()kA k A ---=;2.下列不是向量组12,,,s ααα⋅⋅⋅线性无关的必要条件的是( )。
A .12,,,s ααα⋅⋅⋅都不是零向量;B. 12,,,s ααα⋅⋅⋅中至少有一个向量可由其余向量线性表示;C. 12,,,s ααα⋅⋅⋅中任意两个向量都不成比例;D. 12,,,s ααα⋅⋅⋅中任一部分组线性无关;3. 设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( )。
A .列向量组线性无关; B. 列向量组线性相关; C. 行向量组线性无关; D. 行向量组线性相关;4. 如果( ),则矩阵A 与矩阵B 相似。
A. A B =; B. ()()r A r B =; C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值且n 个特征值各不相同;5.二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( )时,是正定二次型。
A. 1λ>-; B. 0λ>; C. 1λ>; D. 1λ≥。
二、填空题(每小题3分,共15分)6.设300140003A ⎛⎫⎪= ⎪ ⎪⎝⎭,则()12A E --= ;7.设(,1,2)ij A i j = 为行列式2131D =中元素ij a 的代数余子式,则11122122A A A A = ;8.100201100010140001201103010⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭= ;9.已知向量组123,,ααα线性无关,则向量组122313,,αααααα---的秩为 ;10. 设A 为n 阶方阵, A E ≠, 且()()3R A E R A E n ++-=, 则A 的一个特征值λ= ;三、计算题(每小题10分,共50分)11.设()111122220+aa A a nn n n a +⎛⎫⎪+⎪=≠ ⎪⎪⎝⎭,求A 。
12.设三阶方阵A ,B 满足方程2A B A B E --=,试求矩阵B 以及行列式B ,其中102030201A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭。
13.已知111011001A -⎛⎫⎪= ⎪ ⎪-⎝⎭,且满足2A AB E -=,其中E 为单位矩阵,求矩阵B 。
14.λ取何值时,线性方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有唯一解或有无穷多解?当有无穷多解时,求通解。
15. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个极大无关组。
四、解答题(10分)16.已知三阶方阵A 的特征值1,2,3对应的特征向量分别为1α,2α,3α。
其中:()11,1,1T α=,()21,2,4T α=,()31,3,9T α=,()1,1,3Tβ=。
(1)将向量β用1α,2α,3α线性表示;(2)求n A β,n 为自然数。
五、证明题(每小题5分,共10分)17.设A 是n 阶方阵,且()()R A R A E n +-=,A E ≠;证明:0Ax =有非零解。
18. 已知向量组(I) 123,,ααα的秩为3,向量组(II) 1234,,,αααα的秩为3,向量组(III)1235,,,αααα的秩为4,证明向量组12354,,,ααααα-的秩为4。
线性代数期末试卷(本科A)一、单项选择题(每小题3分,共15分)1.满足下列条件的行列式不一定为零的是( )。
(A )行列式的某行(列)可以写成两项和的形式; (B )行列式中有两行(列)元素完全相同; (C )行列式中有两行(列)元素成比例; (D )行列式中等于零的个数大于2n n -个.2.下列矩阵中( )不满足2A E =-。
(A )1211-⎛⎫ ⎪-⎝⎭; (B )1211--⎛⎫ ⎪⎝⎭; (C )1211-⎛⎫ ⎪⎝⎭; (D )1121⎛⎫ ⎪--⎝⎭.3. 设,A B 为同阶可逆方阵,则( )。
(A)AB BA =; (B) 存在可逆矩阵1,P P AP B -=使; (C) 存在可逆矩阵,TC C AC B =使; (D) 存在可逆矩阵,,P Q PAQ B =使. 4.向量组错误!未找到引用源。
线性无关的充分必要条件是( ) (A )错误!未找到引用源。
均不为零向量;(B )错误!未找到引用源。
中有一部分向量组线性无关; (C )错误!未找到引用源。
中任意两个向量的分量不对应成比例;(D )错误!未找到引用源。
中任意一个向量都不能由其余错误!未找到引用源。
个向量线性表示。
5.零为方阵A 的特征值是A 不可逆的( )。
(A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件;二、填空题(每小题3分,共15分)6.设⎪⎪⎪⎭⎫⎝⎛=101020101A ,则22A A -= ;7.已知(),,,,,,⎪⎭⎫⎝⎛==31211321βα设,A T βα=则A = ;8.设A 是三阶方阵,且1A =-,则*12A A --= ;9.已知向量组()()()()12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,αααα====则该向量组的秩为 ;10. 已知111242335A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,00020002B λ⎛⎫⎪= ⎪ ⎪⎝⎭,且A 于B 相似,则λ= 。
三、计算题(每小题10分,共50分)11.12312111111111111(0)1111n n na a D a a a a a ++=+≠+12.12.已知3阶非零矩阵B 的每一列都是方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的解.①求λ的值;②证明0B =.13.设3阶矩阵X 满足等式X B AX 2+=,其中311110012,102,004202A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭求矩阵X 。
14.求向量组123411343354,,,,22323342αααα--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭53101α⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 的秩及最大无关组。
15. 设212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2. 求A 的特征值和对应的特征向量。
四、解答题(10分)16. 12(1,3,3),(1,2,0),(1,2,3),T T T a a βαα=-==+-3(1,2,2)T b a b α=---+, 试讨论b a ,为何值时 (1)β不能用321,,ααα线性表示;(2)β可由321,,ααα唯一地表示,并求出表示式;(3)β可由321,,ααα表示,但表示式不唯一,并求出表示式。