牛头刨床的连杆机构运动分析
牛头刨床刨刀往复运动机构的分析与设计
![牛头刨床刨刀往复运动机构的分析与设计](https://img.taocdn.com/s3/m/512fa28f960590c69ec37631.png)
机械工程学院机械原理课程设计说明书设计题目:牛头刨床刨刀往复运动机构的分析与设计专业:机械设计制造及其自动化班级:13级姓名:学号指导教师:侍红岩2016年 1 月 4 日目录1 设计任务 (1)1.1 设计题目 (1)1.2 工作原理及工艺动作过程 (1)1.3 原始数据及设计要求 (1)1.4 设计任务 (2)2 系统传动方案设计 (3)2.1 曲柄滑块机构与摆动导杆机构 (3)2.2 齿轮和摆动导杆机构 (4)2.3 执行机构方案的比较 (5)2.4 执行机构方案的确定 (5)3 机构运动简图及数据分析 (7)3.1 机械结构简图 (7)3.2 牛头刨床数据分析 (8)4 机构运动分解 (10)5 主机构受力分析 (11)5.1 各运动副反力 (11)5.2 曲柄机构平衡力矩 (14)参考文献 (16)1 设计任务1.1 设计题目牛头刨床刨刀往复运动机构的分析与设计。
1.2 工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床,整个机构的运转是由原动件1带动杆2的,通过连杆3推动滑块4运动;从而实现刨刀的往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
1.3 原始数据及设计要求图1-1已知行程比系数K=1.4原动件曲柄1转速n1=60r/min,刨刀5行程H=400mm,其它参数为,L4=220mm,L5=180mm,L6=350mm,L |3=L3/2,H1=100mm,H2尺寸应满足传动角尽可能大;故刨刀5移动导路位于D点圆弧轨迹弦高一半处;构件重量分别为G2=200N,G5=700N,质心位于S3、S5处;构件3绕质心转动惯量J S3=1.1kg.m2,回程阻力为零,其它忽略不计。
刨刀工作阻力如图1-1所示,回程阻力为零,其它条件忽略不计。
表 11.4 设计任务(1)绘制机构运动简图。
机械原理课程设计——牛头刨床
![机械原理课程设计——牛头刨床](https://img.taocdn.com/s3/m/2274c723453610661ed9f461.png)
机械能变化曲线:
飞轮设计:
V
A4
=
A2 A4 A2
速度图解法:
V1A+V12=V 2A VF+VFB=V 2B V2B=βV 2A Β为常数比
加速度图解分析: a4An+a4Ar+a24Ar+ak24A =a2A 大小 方向
a4b+aF4Br=aF a4A=βV 4B
进给凸轮机构设计
主体机构设计
牛头刨床主体机构
主体结构设计
设计要求
(1)刨刀工作行程要求速度比较平稳,空回行程时 刨刀快速退回,机构行程速比系数在1.4左右。 (2)刨刀行程H=300mm或H=150mm。曲柄转速、 切削力、许用传动角等见表1,每人选取其中一组数据。 (3)切削力P大小及变化规律如图1所示,在切削行 程的两端留出一点空程。具体数据如下:
主体机构
电机转速n(r/mi n)
切削力P(N)
75
许用传动角[γ]
H=150mm
4500N
45°
刨刀行程:H=150 速比系数:K=1.4
主体机构(方案一)
方案一: 摆动导杆机构与摇杆滑块机构组合机构
机构简图:
计算机构的自由度 F=3×5-2×7=1
主体机构(方案一)
机构尺寸的计算:
在满足压力角条件确定基圆半径,摆杆中心间的中心距。
• 推程许用压力角为[α]= 38°; • 回程许用压力角为[α’]= 65°; • 试凑法:对照摆杆长度为L,赋值基圆半径, 中心距a=90,r0=50;经试验符合要求
滚子半径rf:rf<ρ mi n -3(mm)及rf<0.8ρ mi n(mm) 方法1用图解法确定凸轮理论廓线上某点A的曲率半径R: 以A点位圆心,任选较小的半径r 作圆交于廓线上,在圆A 两边分别以理论廓线上的B、C为圆心,以同样的半径r 画圆,三个小圆分别交于E、F、H、M四个点处。过E、 F H、M O点 O点近似为凸轮廓线上A OA。并且曲率中心肯定在曲线过A 点的法线上。可以通 过法线与直线EF或HM的交点求曲率中心。
机械原理牛头刨床的VB
![机械原理牛头刨床的VB](https://img.taocdn.com/s3/m/b2b96ba4680203d8ce2f2489.png)
一·机构简介·1.1牛头刨床的组成牛头刨床主要由床身、滑枕、刀架、工作台、横梁、进给机构和变速机构等组成。
(1)床身床身内部有变速机构和曲柄摇杆机构。
床身的顶面有水平导轨,滑枕沿水平导轨作往复直线运动。
在床身前面有垂宜导轨,横梁带动工作台沿垂直导轨升降。
2)滑枕滑枕的前端有环状T形槽,用来安装刀架和调节刀架的偏转角度:滑枕的内部装有调整滑枕行程位置的机构,它是由一对锥齿轮和丝杠组成。
滑枕的下部有两条燕尾型导轨,它与床身上部的水平导轨配合。
在曲柄摇杆机构的带动下,滑枕在床身水平导轨上作往复直线运动。
(3)横梁与工作台校梁安装在床身前部垂直导轨上。
横梁的底部装有升降丝杠,使校梁能沿着床身前部的垂直导轨作上下移动。
工作台和滑板连接在一起,安装在横梁水平导轨上,转动安装在校梁凹框内的横向进给丝杠,工作台就沿着横梁的水平导轨作横向移动。
工作台的前部底下装有支架,以防止工作台在刨削过程中产生向下倾斜和振动现象。
工作台的上平面和两侧面均制有T形槽、v 形槽和圆孔,用来固定不同形状的工件或夹具。
(4)刀架刀架用于装夹刨刀,并使刨刀沿着垂直方向和倾斜方向移动。
刀架由手柄、丝杠、刻度转盘、夹刀座、拍板、拍板座、滑板等组成。
刻度转盘6用T形职栓5紧固在滑枕前端的“环”状T形槽内。
可按加工的需要作160’的回转。
刻度转盘6与滑板13通过导轨相配合,只要摇动丝杠3上端的手柄1,就可使滑板13沿着刻度转盘6上的导轨移动,通过刻度环2来控制背吃刀量的大小。
拍板10与拍板座11的凹槽相配合,用铰链销7连接。
在拍板10的孔内装有夹刀座8刨刀就装在它的槽孔内,拍板10可以绕铰链销7向前上方拾起,这样可避免滑枕回程时刨刀与工件已加工。
(5)进给机构进给机构主要用来控制工作台横向进给运动的大小。
(6)变速机构操纵变速机构的手柄,可以把各种不同的转速传递到曲柄摆杆机构而改变格杆在相同时间间隔内的摆动次数。
(7)曲柄摇杆机构主要作用是把电动机的旋转运动转换为滑枕的往复直线运动。
牛头刨床的连杆机构运动分析
![牛头刨床的连杆机构运动分析](https://img.taocdn.com/s3/m/ef322a36b7360b4c2e3f64f4.png)
牛头刨床的连杆机构运动分析0 前言机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。
许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。
以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。
连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。
工作台的纵向往复运动是机床的主运动,实现工件的切削。
工作台的横向运动即是进给运动,实现对切削精度的控制。
本文中只分析纵向运动的运动特性。
牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。
刨床工作时,通过六杆机构驱动刨刀作往复移动。
刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。
当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。
由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。
1 牛头刨床的六连杆机构牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。
图1所示的为一牛头刨床的六连杆机构。
杆1为原动件,刨刀装在C点上。
假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。
牛头刨床机械原理课程设计点和点
![牛头刨床机械原理课程设计点和点](https://img.taocdn.com/s3/m/d3ca8d6d16fc700aba68fc65.png)
机械原理课程设计说明书设计题目牛头刨床课程设计说明书—牛头刨床1. 机构简介牛头刨床是一种用于平面切削加工的机床。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每次削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容量。
图1-11.导杆机构的运动分析已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
1.1设计数据导杆机构的运动分析设计内容符号n2L O2O4L O2A L o4B L BC L o4s4xS6yS6单位r/mmmin64 350 90 580 0.3L o4B0.5 L o4B200 50方案Ⅱ1.2曲柄位置的确定曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。
图1-2取第Ⅱ方案的第4位置和第10位置(如下图1-3)。
图1-31.3速度分析以速度比例尺:(0.01m/s)/mm和加速度比例尺:(0.01m /s2)/mm用相对运动的图解法作该两个位置的速度多边形和加速度多边形如下图1-4,1-5,并将其结果列入表格(1-2)表格1-1位置未知量方程4 位置点V A4V A4= V A3+ V A4A3方向⊥AO4⊥AO2∥AO4大小? w2L AO2 ?V C V c= V B+ V C B方向 //x ⊥BO4⊥CB大小? w4L BO4 ?a A4a A4= a n A4O4+ a t A4O4= a A3+a k A4A3+ a r A4A3方向 A→O4⊥AO4 A→O2⊥BO4∥BO4大小 w24 L AO4 ? w22L AO2 2w A3V A4A3?a c a c= a B+ a CB n+ a CB t方向∥x √C→B ⊥BC大小?√ w25L BC ?图1-4图1-5位置未知量方程位置10 点V A4V A4= V A3+ V A4A3方向⊥AO4⊥AO2∥AO4大小? w2L AO2 ?V C V c= V B+ V C B方向 //x ⊥BO4⊥CB大小? w4L BO4 ?a A4a A4= a n A4O4+ a t A4O4= a A3+a k A4A3+ a r A4A3方向 A→O4⊥AO4 A→O2⊥BO4∥BO4大小 w24 L AO4 ? w22L AO2 2A3V A4A3?a c a c= a B+ a CB n+ a CB t方向∥x √C→B ⊥BC大小?√ w25L BC ?表格(1-2)位置要求图解法结果解析法结果绝对误差相对误差位置4点v c(m/s)0.a c(m/s2)位v c置10点(m/s )a c(m/ s2)各点的速度,加速度分别列入表1-3,1-4中表1-3项目位置ω2ω4V A4V B V c位置4点位置10点单位1/s 1/s m/s表1-4项目位置位置4点位置10点单位2 机构的动态静力分析2.1.设计数据已知 各构件的质量G(曲柄2、滑块3和连杆5的质量都可以忽略不计),导杆4绕重心的转动惯量J s 4 及切削力P 的变化规律(图1-1,b )。
牛头刨床机械原理课程设计报告3点和6点
![牛头刨床机械原理课程设计报告3点和6点](https://img.taocdn.com/s3/m/85c639a8700abb68a882fb1c.png)
牛头刨床中导杆机构的运动分析及动态静力分析第一章机械原理课程设计的目的和任务1课程设计的目的:机械原理课程设计是高等工业学校机械类学生第一次全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要教学环节。
起目的在于进一步加深学生所学的理论知识,培养学生的独立解决有关课程实际问题的能力,使学生对于机械运动学和动力学的分析和设计有一个比较完整的概念,具备计算,和使用科技资料的能力。
在次基础上,初步掌握电算程序的编制,并能使用电子计算机来解决工程技术问题。
2课程设计的任务:机械原理课程设计的任务是对机器的主题机构进行运动分析。
动态静力分析,并根据给定的机器的工作要求,在次基础上设计;或对各个机构进行运动设计。
要求根据设计任务,绘制必要的图纸,编制计算程序和编写说明书等。
第二章、机械原理课程设计的方法机械原理课程设计的方法大致可分为图解法和解析法两种。
图解法几何概念比较清晰、直观;解析法精度较高。
第三章、机械原理课程设计的基本要求1.作机构的运动简图,再作机构两个位置的速度,加速度图,列矢量运动方程;2.作机构两位置之一的动态静力分析,列力矢量方程,再作力的矢量图;3.用描点法作机构的位移,速度,加速度与时间的曲线。
第四章机械原理课程设计的已知条件1、机构简介图1表1 设计数据牛头刨床是一种用于平面切削加工的机床,如图1所示。
电动机经过皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀不切削,称为空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回运动的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图1中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作过程中,受到很大的切削阻力(在切削的前后各有一段0.05H的空刀距离,简图1,b),而空回行程中则没有切削阻力。
平面连杆机构的定义和运用
![平面连杆机构的定义和运用](https://img.taocdn.com/s3/m/0e40d57b964bcf84b9d57b75.png)
1.1连杆机构的定义及特点
• 连杆机构又称低副机构,是机械的组成部分中的一类,指由若干(两个以上) 有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。其特点 是:能够实现多种运动形式的转换和得到各种复杂的运动轨迹;连杆机构是 低副机构,各构件之间的相对运动部分均为面接触,故单位面积上的压力较 小。所以摩擦磨损较小,构件的使用寿命较长。适于传递较大的动力;各构 件之间的接触面为圆柱面或平面,几何形状简单,便于加工制造,能得到较 高精度;当构件数目比较多或制造精度较低时,机构的运动累积误差较大, 会影响运动准确性;连杆机构中,由于有的构件的运动速度在变化,产生惯 性动负荷,因此常会引起冲击或振动。当机构运动速度较高时,这种冲击或 振动更为严重。
1.2平面四杆机构
• 许多机械设备中的结构都可以看作是由若干个四杆机构组成的,因此,了解 四杆机构是了解连杆机构的第一步,四杆机构中固定的构件称为机架,直接 与机架相联接的构件称为连架杆,在连架杆中能绕固定轴线作整周回转的称 为曲柄,只能在某一角度内摆动的称为摇杆,联接连架杆的构件称为连杆 (它作平面运动),而根据选取不同的机构作为原动件和从动件时,四杆机 构又可以分为双曲柄机构、曲柄摇杆机构和双摇杆机构。这些四杆机构的共 同特点是将由原动件所提供的扭矩,即平面圆周运动转化为平面曲线往复运 动,倘若用滑块来代替四杆机构中的摇杆,还能获得平面直线往复运动,这 种机构被称之为曲柄滑块机构(如图1.2)所示。
谢谢观看!
• 四杆机构类型的判别:
• 1、若最短杆为连架杆,该机构是曲柄摇杆机构; • 2、若最短杆为机架,该机构是双曲柄机构; • 3、若最短杆为连杆,该机构是双摇杆机构;
平面四杆机构运动的急回特性
空回行程速度V2大于工作行程速度V1,称为急 回特性。如图所示,曲柄摇杆机构所处的这两 个位置,称为极限位置(简称极位)。从动件的 两个极限位置所对应的主动件的两个位置所夹 角的锐角θ,称为极限位置夹角。K 构在矿山机械设备的应用分析
机械原理课程设计 牛头刨床连杆机构
![机械原理课程设计 牛头刨床连杆机构](https://img.taocdn.com/s3/m/576fbfb9534de518964bcf84b9d528ea80c72f40.png)
机械原理课程设计编程说明书设计题目: 牛头刨床的设计及运动分析(1)指导老师: 席本强, 郝志勇设计者: 迟宇学号: **********班级: 液压09-1班2011年6月30号辽宁工程技术大学机械原理课程设计任务书五、要求:1)作机构的运动简图(A4或A3图纸)。
2)用C语言编写主程序调用子程序, 对机构进行运动分析, 并打印出程序及计算结果。
3)画出导轨4的角位移, 角速度, 角加速度的曲线。
4)编写设计计算说明书。
指导教师:开始日期: 2010年6月26日完成日期: 2010年6月30日目录1.设计要求及参数 (1)2.数学模型 (2)3.程序框图 (4)4.程序清单及运行结果 (5)5.设计总结 (14)6.参考文献 (14)一、设计要求及参数已知: 曲柄每分钟转数n2, 各构件尺寸及重心位置, 且刨头导路X-X位于导杆端点B所作圆弧的平分线上, 数据见下表要求:(1)作机构的运动简图(2)用C语言编写主程序调用子程序, 对机构进行运动分析, 动态显示, 并打印程序及运算结果。
(3)画出导轨4的角位移Ψ, 角速度Ψ’, 角加速度Ψ”。
(4)编写设计计算说明书二、数学模型如图四个向量组成封闭四边形, 于是有0321=+-Z Z Z按复数式可以写成a (cos α+isin α)-b(cos β+isin β)+d(cos θ3+isin θ3)=0(1)由于θ3=90º, 上式可化简为a (cos α+isin α)-b(cos β+isin β)+id=0(2)根据(2)式中实部、虚部分别相等得acos α-bcos β=0(3)asin α-bsin β+d=0(4)(3)(4)联立解得 β=arctan acosaasinad + (5)b=2adsina d2a 2++ (6)将(2)对时间求一阶导数得ω2=β’=baω1cos(α-β)(7)υc =b ’=-a ω1sin(α-β)(8)将(2)对时间求二阶导数得ε3=β”=b1[a ε1cos(α-β)- a ω21sin(α-β)-2υc ω2] (9)a c =b ”=-a ε1sin(α-β)-a ω21cos(α-β)+b ω22(10)ac 即滑块沿杆方向的加速度, 通常曲柄可近似看作均角速转动, 则ε1=0。
机械原理课程设计牛头刨床
![机械原理课程设计牛头刨床](https://img.taocdn.com/s3/m/6d3f0c30915f804d2a16c113.png)
设计题目:牛头刨床附图1:导杆机构的运动分析与动态静力分析附图2:齿轮机构的设计目录一.设计题目…………………………….……………………. .4二. 牛头刨床机构简介……………………………….………. .4三.机构简介与设计数据……………………………………. .. .5四. 设计内容…………….………………………….…………. .6五. 体会心得 (14)一、设计题目:牛头刨床1.)为了提高工作效率,在空回程时刨刀快速退回,即要有急回运动,行程速比系数在1.4左右。
2.)为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。
3.)曲柄转速在64r/min,刨刀的行程H在300mm左右为好,切削阻力约为9000N,其变化规律如图所示。
二、牛头刨床机构简介牛头刨床是一种用于平面切削加工的机床,如图4-1。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约5H的空刀距离,见图4-1,b),而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
三、机构简介与设计数据3.1机构简介牛头刨床是一种用于平面切削加工的机床。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
毕业设计(论文)-牛头刨床六杆机构运动分析
![毕业设计(论文)-牛头刨床六杆机构运动分析](https://img.taocdn.com/s3/m/ac5820da76c66137ef061985.png)
毕业设计(论文)-牛头刨床六杆机构运动分析河南理工大学本科毕业设计,论文,摘要在工程技术领域,经常会遇到一些需要反复操作,重复性很高的工作,如果能有一个供反复操作且操作简单的专用工具,图形用户界面就是最好的选择。
如在本设计中对于牛头刨床平面六杆机构来说,为了保证结构参数与运动参数不同的牛头刨床的运动特性,即刨刀在切削过程中接近于等速运动从而保证加工质量和延长刀具寿命,以及刀具的急回性能从而提高生产率,这样的问题如果能够通过设计一个模型平台,之后只需改变参量就可以解决预期的问题,这将大大的提高设计效率。
设计本设计中正是通过建立牛头刨床六杆机构的数学模型,然后用MATLAB程序出一个友好的人机交互的图形界面,并将数学模型参数化,使用户只需改变牛头刨床的参数就可以方便的实现运动分析和运动仿真,用户可以形象直观地观察到牛头刨床的运动轨迹、速度变化及加速度变化规律。
关键词:牛头刨床六杆机构 MATLAB 运动仿真程序开发1河南理工大学本科毕业设计,论文,AbstractIn the engineering area, often repeatedly encountered some operational needs, repetitive highly, and if the operation can be repeated for a simple operation and dedicated tool graphical user interface is the best choice. As in the planer graphic design for six pole bodies, and campaigns to ensure the structural parameters of different parameters planer movement characteristics, planning tool inthe process of cutting close to equal campaign to ensure processing quality and extended life cutlery and cutlery rush back to the performance enhancing productivity, If such issues can be adopted to design a model platform parameter can be changed only after the expected settlement, which will greatly enhance the efficiency of the design. It is through the establishment of this design planer six pole bodies mathematical model, and then use MATLAB to devise procedures of a friendly aircraft in the world graphics interface, and mathematical models of the parameters, so that users only need to change the parameters planer can facilitate the realization of movement analysis and sports simulation, Users can visual image observed in planer movement trajectories, speed changes and acceleration changes.Keywords:Planer 6 pole bodies MATLAB Campaign simulation Procedure development.2河南理工大学本科毕业设计,论文,目录1 绪论 (4)2牛头刨床六杆机构运动分析程序设计2.1 MATLAB介绍 (5)2.2 MATLAB的特点 (6)2.3 用MATLAB处理工程问题优缺点................................7 3牛头刨床运动分析的模型3.1 基本概念与原理 (9)3.2 牛头刨床六杆机构的数学模型 .................................9 4图形用户界面GUI4.1界面设计的原则 (13)4.2 功能要求 (16)4.3界面结构设计 (17)4.4 程序框图的设计 .............................................19 5运动仿真程序界面设计与编程实现5.1 句柄图形体系 (21)5.1.1 图形对象、对象句柄和句柄图形树结构 (22)5.1.2 对象属性 (23)5.1.3 对象句柄的获取方法 (23)5.1.4 对象句柄的获取和设置 (25)5.2 主界面参数含义 (27)5.3 界面制作步骤 (27)6总结 (49)7致谢 (50)8参考书目 (51)9附录程序源代码 (52)3河南理工大学本科毕业设计,论文,1 绪论1.1本课题的意义机构运动分析是不考虑引起机构运动的外力的影响,而仅从几何角度出发,根据已知的原动件的运动规律(通常假设为匀速运动),确定机构其它构件上各点的位移、速度、加速度,或构件的角位移、角速度、角加速度等运动参数。
牛头刨床的综合与分析(课程设计说明书)
![牛头刨床的综合与分析(课程设计说明书)](https://img.taocdn.com/s3/m/08ab81c34afe04a1b171de12.png)
牛头刨床的综合与分析(课程设计说明书) 牛头刨床的综合与分析(课程设计说明书) 目录一、设计题目与原始数据一、设计题目与原始数据- - 1 1 - - 二、牛头刨床示意图二、牛头刨床示意图- - 2 2 - - 三、导杆机构设计三、导杆机构设计- - 2 2 - - 四、机构的运动分析四、机构的运动分析- - 4 4 - - 五、机构动态静力分析五、机构动态静力分析- - 9 9 - - 六、飞轮设计六、飞轮设计- - 1313 - - 七、设计凸轮轮廓曲线七、设计凸轮轮廓曲线- - 1515 - - 八、齿轮设计及绘制啮合图八、齿轮设计及绘制啮合图- - 1515 - - 九、解析法九、解析法- - 1616 - - 1.导杆机构设计.- 16 - 2.机构运动分析.- 17 - 3.凸轮轮廓曲线设计.- 19 - 4. 齿轮机构设计.- 22 - 十、本设计的思想体会十、本设计的思想体会- - 2222 - - 参考文献参考文献- - 2222 - - 附附录录- - 2323 - - 辽宁工业大学课程设计说明书(论文)- 1 - 一、设计题目与原始数据1.题目:牛头刨床的综合与分析2.原始数据:刨头的行程H=550mm 行程速比系数K=1.6 机架长LO2O3=400mm 质心与导杆的比值LO3S4/LO3B=0.5 连杆与导杆的比值LBF/LO3B=0.3 刨头重心至 F 点距离XS6=160mm 导杆的质量m4=15 刨头的质量m6=58 导杆的转动惯量JS4=0.7 切割阻力FC=1300N 切割阻力至O2的距离YP=175mm 构件 2 的转速n2=80 许用速度不均匀系数[δ]=1/40 齿轮Z1、Z2的模数m12=15 小齿轮齿数Z1=18 大齿轮齿数Z2=46 凸轮机构的最大摆角φmax=16º 凸轮的摆杆长LO4C=140mm 凸轮的推程运动角δ0=60º 凸轮的远休止角δ01=10º 凸轮的回程运动角δ0 =60º 凸轮机构的机架长Lo2o4=150mm 凸轮的基圆半径ro=55mm 凸轮的滚子半径rr=15mm 辽宁工业大学课程设计说明书(论文)- 2 - 二、牛头刨床示意图如图1 所示图 1 三、导杆机构设计1、已知:行程速比系数K=1.6 刨头的行程H=550mm 机架长度LO2O3=400mm 连杆与导杆的比LBF/LO3B=0.3 2、各杆尺寸设计如下A、求导杆的摆角:辽宁工业大学课程设计说明书(论文)- 3 - ψmax =180°×(K-1)/(K+1)=180°×(1.6-1)/(1.6+1)=42°B、求导杆长:LO3B1=H/[2sin(ψmax/2)]=550/[2sin(42°/2)]=776mm C、求曲柄长:LO2A =LO2O3×sin(ψmax/2)=400×sin21°=142mm D、求连杆长:LBF=LO3B×LBF/LO3B=776×0.3=233mm E、求导路中心到O3的距离:LO3M =LO3B-LDE/2=LO3B{1-[1-cos(ψmax/2)]/2}=750mm F、取比例尺:μL=0.005m/mm 在1#图纸中央画机构位置图,机构位置图见1#图纸。
牛头刨床机构运动分析
![牛头刨床机构运动分析](https://img.taocdn.com/s3/m/a89c08711ed9ad51f01df2c7.png)
目录一、概述1.1、课程设计的目的——————————————— 21.2、工作原理—————————————————— 21.3、设计要求—————————————————— 31.4、设计数据—————————————————— 41.5、创新设计内容及工作量———————————— 4二、牛头刨床主传动机构的结构设计与分析2.1、方案分析—————————————————— 52.2、主传动机构尺寸的综合与确定————————— 52.2、杆组拆分—————————————————— 62.4、绘制刀头位移曲线图————————————— 7三、牛头刨床主传动机构的运动分析及程序3.1、解析法进行运动分析————————————— 83.2、程序编写过程(计算机C语言程序)—————— 103.3、计算数据结果——————————————— 123.4、位移、速度和加速度运动曲线图与分析————— 13四、小结心得体会——————————————————— 18五、参考文献参考文献——————————————————— 19一、概述1.1、课程设计的目的目的:机械课程创新设计是培养学生机械系统方案设计能力的技术基础课程,他是机制专业课程学习过程中的一个重要实践环节。
其目的是以机制专业课程的学习为基础,进一步巩固和加深所学的基本理论、基本概念和基本知识,培养学生分析和解决与本专业课程有关的具体机械所涉及的实际问题的能力,使学生熟悉机械系统设计的步骤及方法,其中包括选型、运动方案的确定、运动学和动力学的分析和整体设计等,并进一步提高计算、分析、计算机辅助设计、绘图以及查阅和使用文献的综合能力。
1.2、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。
图1为其参考示意图。
电动机经过减速传动装置(皮带和齿轮传动)带动执行机构(导杆机构和凸轮机构)完成刨刀的往复运动和间歇移动。
牛头刨床主传动机构运动方案分析
![牛头刨床主传动机构运动方案分析](https://img.taocdn.com/s3/m/4fab0982d4d8d15abe234ea9.png)
三、机构选型、方案分析及方案的确定方案一的运动分析及评价(1)运动是否具有确定的运动该机构中构件n=5。
在各个构件构成的的运动副中Pl=6,Ph=1.凸轮和转子、2杆组成运动副中有一个局部自由度,即F'=1。
机构中不存在虚约束。
.由以上条件可知:机构的自由度 F=3n-(2Pl+Ph-p')-F'=1机构的原动件是凸轮机构,原动件的个数等于机构的自由度,所以机构具有确定的运动。
(2)机构传动功能的实现在原动件凸轮1带动杆2会在一定的角度范围内摇动。
通过连杆3推动滑块4运动,从而实现滑块(刨刀)的往复运动。
(3)主传动机构的工作性能凸轮1的角速度恒定,推动2杆摇摆,在凸轮1随着角速度转动时,连杆3也随着杆2的摇动不断的改变角度,使滑块4的速度变化减缓,即滑块4的速度变化在切削时不是很快,速度趋于匀速;在凸轮的回程时,只有惯性力和摩擦力,两者的作用都比较小,因此,机构在传动时可以实现刨头的工作行程速度较低,而返程的速度较高的急回运动。
传动过程中会出现最小传动角的位置,设计过程中应注意增大基圆半径,以增大最小传动角。
机构中存在高副的传动,降低了传动的稳定性。
(4)机构的传力性能要实现机构的往返运动,必须在凸轮1和转子间增加一个力,使其在回转时能够顺利的返回,方法可以是几何封闭或者是力封闭。
几何封闭为在凸轮和转子设计成齿轮形状,如共扼齿轮,这样就可以实现其自由的返回。
机构在连杆的作用下可以有效的将凸轮1的作用力作用于滑块4。
但是在切削过程中连杆3和杆2也受到滑块4的作用反力。
杆2回受到弯力,因此对于杆2的弯曲强度有较高的要求。
同时,转子与凸轮1的运动副为高副,受到的压强较大。
所以该机构不适于承受较大的载荷,只使用于切削一些硬度不高的高的小型工件。
该机构在设计上不存在影响机构运转的死角,机构在运转过程中不会因为机构本身的问题而突然停下。
(5)机构的动力性能分析。
由于凸轮的不平衡,在运转过程中,会引起整个机构的震动,会影响整个机构的寿命。
机械原理课程设计牛头刨床
![机械原理课程设计牛头刨床](https://img.taocdn.com/s3/m/88345c772f60ddccda38a0bc.png)
《机械原理》课程设计计算说明书设计题目:牛头刨床学院:机械工程学院专业班级:机自1421班学生姓名:郭文超学号: 03320142108指导教师:赵楠2016年07月04日——2016年07月07日目录工作原理 (3)一.设计任务 (4)二.设计数据 (4)三.设计要求 (5)1、运动方案设计 (5)2、确定执行机构的运动尺寸 (5)3、进行导杆机构的运动分析四.设计方案选定五.1.32.381111 (12)13工作原理.牛头刨床是一种用于平面切削加工的机床,如图a)所示。
电动机经过皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头左行时,刨刀不切削,称为空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回运动的导杆10-11各有一段0.05H(a)(b)图d表2求出刨头3的速度、加速度,将过程详细地写在说明书中。
四.设计方案选定如图所示,牛头刨床的主传动机构采用导杆机构、连杆滑块机构组成的5杆机构。
采用导杆机构,滑块与导杆之间的传动角r始终为90o,且适当确定构件尺寸,可以保证机构工作行程速度较低并且均匀,而空回行程速度较高,满足急回特性要求。
适当确定刨头的导路位置,可以使压力角 尽量小。
五.机构的运动分析1.3点速度分析当曲柄位于3点时如上图已知:ω04=2πn/60=7.536rad/sV A4 = V A3A4 + V A3方向:⊥杆4 ∥杆4 ⊥杆2大小:??√已知:V A3=ω04×L2 =7.536×110=828.96mm/s 作图得:V A4=670.05MM/Sω04=V A4/L AO4=670.05/513.91=1.306rad/s V B=ω04×L4=1.306 ×810=1057.86mm/sVc= V B + V CB方向:∥X-X √⊥杆BC大小:?√?由作图法得::V C2和3在A点处的转其大小等于ω22lO2A,方向由A指向O2。
牛头刨床横向进给运动分析.
![牛头刨床横向进给运动分析.](https://img.taocdn.com/s3/m/8c74e75fbe1e650e52ea9993.png)
横向进给机构及进给量的调整
1、2—齿轮 3—连杆 4—棘爪 5—棘轮 6—丝杆 7—棘轮护盖
B6065牛头刨床横向进给运动及调整 由变速机构将运动传递给齿轮2,齿轮2带动齿轮1(曲柄)转动, 通过连杆3驱使棘爪4(摇杆)往复摆动。正向进给时,棘爪4拨动 棘轮5使丝杆6转一个角度,实现横向进给。反向时,由于棘爪后面 是斜的,爪内弹簧被压缩,棘爪从棘轮顶滑过。因此工作台横向自 动进给是间歇的。
进给量分析例题:
已知牛头刨床工作台横向进给单线螺纹的螺距 P为6mm,最小进给量Lmin为0.2mm,最大横向 进给量Lmax为2.4mm,求该棘轮齿数为Z多少? 当进给量为1mm时,棘轮应转过多少个齿?进给 量最大时转过多少齿,转过多少度?
解: 由棘轮和单线螺纹的相关知识可知:
P=Lmin×Z
牛头刨床横向进给量分析
牛头刨床横向进给量分析
导入
通过学习牛头刨床的知识 我们知道牛头刨床的切削运动, 普通牛头刨床由滑枕带着刨刀 作水平直线往复运动,刀架可 在垂直面内回转一个角度,并 可手动进给,工作台带着工件 作间歇的横向或者垂直运动, 常用于加工平面、沟槽和燕尾 面等。
牛头刨床的进给运动为: 电动机——变速机构——齿轮 进给机构——工作台横向进给 机构(棘轮机构和螺旋机构)
则Z=P/Lmin=6÷0.2=30
当进给量为1mm时其转过的齿当最大进给量时转过的齿数为 Lmax÷Lmin=2.4÷0.2=12;
当最大进给量时转过的角度为 360°×12/30=144°
横向进给机构及进给量的调整
棘轮机构:将棘爪的往复摆动转化为棘轮的间歇转动 螺旋机构:将棘轮(丝杆)的间歇转动转化为工作台(螺母) 的间歇直线移动 结论:工作台的每次进给量取决于棘轮每次转过的角度,即棘 爪每次拔动棘轮转过的齿数。
牛头刨床机构的运动特点
![牛头刨床机构的运动特点](https://img.taocdn.com/s3/m/622fb0d54bfe04a1b0717fd5360cba1aa8118ccc.png)
牛头刨床机构的运动特点
牛头刨床机构的运动特点是指它在工作时产生的机构运动特征。
牛头刨床机构是一种将直线运动转化为往复运动的机械结构,其主要特点包括:
1. 往复运动:牛头刨床机构通过曲轴和连杆组成,使得工作台面能够以往复运动的方式进行刨削操作。
这种往复运动是机构的基本特点,能够有效地实现工作过程中的刨削加工。
2. 快速往复:牛头刨床机构的刨床行程通常较长,且具有快速往复的特点。
它能够在短时间内完成一次完整的刨削过程,提高生产效率。
3. 平稳可靠:牛头刨床机构的运动稳定性较好,能够在工作过程中保持平稳的运动状态,避免产生过大的振动和冲击力,保证加工质量和切削工具的寿命。
4. 节能高效:牛头刨床机构在运动时能够利用较少的能量来完成工作,实现能耗的节约。
同时,其运动速度较快,能够提高生产效率,减少加工时间。
5. 方向可逆:牛头刨床机构的运动方向是可逆的,可以根据需要进行前后或上下刮削,具有较好的灵活性和适应性。
总的来说,牛头刨床机构的运动特点是往复、快速、平稳可靠、节能高效和方向可逆。
这些特点使得牛头刨床机构成为一种常用的刨削设备,广泛应用于金属加工和木工加工等领域。
牛头刨床的典型机构及其调整
![牛头刨床的典型机构及其调整](https://img.taocdn.com/s3/m/72ef83b226fff705cd170a35.png)
牛头刨床的典型机构及其调整图1 B6065牛头刨床的主传动系统1、2—滑动齿轮组 3、4—齿轮 5—偏心滑块 6—摆杆 7—下支点 8—滑枕9—丝杠 10—丝杠螺母 11—手柄 12—轴 13、14—锥齿轮B6065牛头刨床的传动系统如图1所示,其典型机构及其调整概述如下。
(1)变速机构如图1的变速机构由1、2两组滑动齿轮组成,轴Ⅲ有3×2=6种转速,使滑枕变速。
(2)摆杆机构摆杆机构中齿轮3带动齿轮4转动,滑块5在摆杆6的槽内滑动并带动摆杆6绕下支点7转动,于是带动滑枕8作往复直线运动。
(3)行程位置调整机构松开手柄11,转动轴12,通过13、14锥齿轮转动丝杠9,由于固定在摆杆6上的丝杠螺母10 不动,丝杠9带动滑枕8改变起始位置。
(4)滑枕行程长度调整机构滑枕行程长度调整机构见图2。
调整时,转动轴1,通过锥齿轮5、6,带动小丝杠2转动使偏心滑块7移动,曲柄销3带动偏心滑块7改变偏心位置,从而改变滑枕的行程长度。
图2 滑枕行程长度的调整1—轴(带方榫) 2—小丝杠 3—曲柄销 4—曲柄齿轮 5、6—锥齿轮 7—偏心滑块图3 滑枕往复运动速度的变化(5)滑枕往复直线运动速度的变化滑枕往复运动速度在各点上都不一样,见图3。
其工作行程转角为α,空行程为β,α>β,因此回程时间较工作行程短,即慢进快回。
(6)横向进给机构及进给量的调整横向进给机构及进给量的调整如图4所示。
齿轮2与图1中的齿轮4是一体的,齿轮2带动齿轮1转动,连杆3摆动棘爪4,拨动棘轮5使丝杆6转一个角度,实现横向进给。
反向时,由于棘爪后面是斜的,爪内弹簧被压缩,棘爪从棘轮顶滑过,因此工作台横向自动进给是间歇的。
图4 B6065牛头刨床运动及调整1、2—齿轮 3—连杆 4—棘爪 5—棘轮 6—丝杆 7—棘轮护盖工作台横向进给量的大小取决于滑枕每往复一次时棘爪所能拨动的棘轮齿数。
因此调整横向进给量,实际是调整棘轮护盖7的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛头刨床的连杆机构运动分析
0 前言
机构运动分析的任务是对于结构型式及尺寸参数已定的具体机构,按主动件的位置、速度和加速度来确定从动件或从动件上指定点的位置、速度和加速度。
许多机械的运动学特性和运动参数直接关系到机械工艺动作的质量,运动参数又是机械动力学分析的依据,所以机构的运动分析是机械设计过程中必不可少的重要环节。
以计算机为手段的解析方法,由于解算速度快,精确度高,程序有一定的通用性,已成为机构运动分析的主要方法。
连杆机构作为在机械制造特别是在加工机械制造中主要用作传动的机构型式,同其他型式机构特别是凸轮机构相比具有很多优点。
连杆机构采用低副连接,结构简单,易于加工、安装并能保证精度要求。
连杆机构可以将主动件的运动通过连杆传递到与执行机构或辅助机构直接或间接相连的从动件,实现间歇运动,满足给定的运动要求,完成机器的工艺操作。
牛头刨床是一种利用工作台的横向运动和纵向往复运动来去除材料的一种切削加工机床。
工作台的纵向往复运动是机床的主运动,实现工件的切削。
工作台的横向运动即是进给运动,实现对切削精度的控制。
本文中只分析纵向运动的运动特性。
牛头刨床有很多机构组成,其中实现刨头切削运动的六连杆机构是一个关键机构。
刨床工作时,通过六杆机构驱动刨刀作往复移动。
刨刀右行时,当刨刀处于工作行程时;要求刨刀的速度较低且平稳,以减小原动机的容量和提高切削质量。
当刨刀处于返回行程时,刨刀不工作,称为空行程,此时要求刨刀的速度较高以提高生产率。
由此可见,牛头刨床的纵向运动特性对机床的性能有决定性的影响。
1 牛头刨床的六连杆机构
牛头刨床有很多机构组成,其中实现刨头切削运动的六杆机构是一个关键机构。
图1所示的为一牛头刨床的六连杆机构。
杆1为原动件,刨刀装在C点上。
假设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s沿着逆时针方向回转,要求分析各从动件的角位移、角速度和角加速度以及刨刀C点的位移、速度和加速度的变化情况。
图1 牛头刨床的六连杆机构简图
表1 六连杆机构的尺寸参数(单位:mm)
l1 l3l4h h1 h2
180 960 160 900 460 110
2 六连杆机构的运动分析方程
杆件1为主动件,六杆机构的运动随杆件1的位置变化而发生周期性变化。
在一个变化周期中,可以把杆件1的角位置分成36等分(θ1取362 πn ,其中n 取整数0~35,对应时间s 362πn t =),分别研究θ1在不同取值下杆件机构的位置参数和运动参数的变化。
3s 的长度与刨刀的运动行程成正比,因此可以用5S 表征刨刀的行程,用5S 关于时间的一阶导
数5s
来表征刨刀的运动速度,用5S 关于时间的二阶导数5s 来表征刨刀的加速度。
1)位置方程
由图可知2θ=3θ,故未知量有3θ、4θ(x 轴与4l
所成的的角度)、3S (直线BD 的长
度)、5S (直线GC 的长度)。
利用两个封闭图形ABDEA 和EDCGE ,建立两个封闭矢量方程,由此可得:
⎭
⎬⎫+=++=+' s l l s l l l l
56431
643 (1) 把(1)式分别向x 轴、y 轴投影得:
⎪⎪⎭⎪
⎪
⎬
⎫=+=++=++=+ h l l s l l l h s l l h s l 334
45
334411133441
12334
4sin sin cos cos sin sin sin cos cos cos θθθθθθθθθθ
(2) 在(2)式中包含3s 、5s 、3θ、4θ四个未知数,消去其中三个可得到只含4θ一个未知数的方程:
[]
[]{}[
]
[]0
sin sin sin 2sin cos cos sin sin 2
441112
3
442
4
2242
441122
4
4
1
1
1
=-+--+-++-+ θθθθθθθθl l h l hl h l l l h l l h (3)
当1θ取不同值时,用牛顿迭代法解(3)式,可以求出每个4θ的值,再根据方程组(2)可以求出其他杆件的位置参数3s 、5s 、3θ的值:
⎪
⎪⎭
⎪
⎪⎬⎫-+=+=-= 3
4
41113334453
4
43sin sin sin cos cos )sin arcsin(θθθθθθθl l h s l l s l l h (4)
2)速度方程
对(2)式对时间求一次导数并把结果写成矩阵的形式得:
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢
⎢⎢⎢
⎣
⎡-----00cos sin 0
cos cos 01sin sin 00cos cos sin 0sin sin cos 11111434
43344334
43334
4333θθωωωθθθθθθθθθθl l v v l l l l l s l s C e B (5) 其中C v 为刨刀的水平速度,v e
B 为滑块2相对于杆3的速度。
由于每个1θ对应的3s 、
3θ、4θ已求出,方程组式(5)的系数矩阵均为常数,采用按列选主元的高斯消去法可求解(式
Ⅳ)可解得角速度ω3、ω4、e
B v 、
C v 。
3)加速度方程
把式Ⅳ对时间求导得矩阵式:
⎥
⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣
⎡----------=⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢
⎢⎢⎢
⎣
⎡-----00sin cos 0sin sin 00cos cos 00sin sin cos cos 0cos cos sin sin 0
cos cos 01sin sin 00cos cos sin 0
sin sin cos 11
1111143444333444333444333333
444333333434
4334
43344333
4
4333θωθωωωωθωθωθωθωθωθωθθωθωθωθθωααl l v v l l l l l s v l s v a a θl θl θl θl θl θs θθl θs θC e
B
e B e
B
C e B
(6)
同样采用按列选主元的高斯消去法可求解(6)可得角加速度3α、4α、e
B a 、
C a 。