第四章:扭转

合集下载

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学4.

材料力学4.
1. 剪应力互等定理 由 MZ 0
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G

E
21


低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max

M nmax Wn


Wn

D3
16

M nmax

解得: D 66mm
(三)由刚度条件设计 D 。
max

M nmax GI p
180



D4
32

Ip

M nmax
G
180

解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max

Mn
hb2


4

9
单位长度的扭转角为:


Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图

第四章:扭转

第四章:扭转

T Ip
——切应力公式
扭转
4、圆轴扭转时横截面上的最大切应力
max 发生在横截面周边上各点处
max
T max TR T Ip Ip Ip R


max
取 I p /R = Wt —抗扭截面系数 最大切应力: max
max
O
T
T Wt
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
R γ l

剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:

G ——剪变模量
对各向同性材料,E, , G 之间关系: G
E 2(1 )
扭转
四、圆轴扭转时的应力 1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴 线相对转动了一个角度。
横截面上的最大切应力
max
T 1000 6 Pa 41.7 10 Pa 41.7 MPa 6 Wt 24 10
扭转
例4-4 如图所示,圆轴 AB的 AC 段为空心,CB段为实 心。已知 D 3cm、 d 2cm ;圆轴传递的功率 P 7.5kW,转速 n 360 r/ min。试求 AC及CB段的 Me Me 最大与最小切应力。 解:(1)计算扭矩
许用切应力

u
n
max
u s u b
T
max
塑性材料 脆性材料
对等截面圆轴
Wt

圆轴强度计算可解决工程中的三类问题:
(1)强度校核;(2)截面设计;(3)确定许用载荷。
扭转
例4-5 如图阶梯轴, d1 80mm、d 2 50mm;外力偶矩 M 2 3.2 kN m 、M 3 1.8kN m; M 1 5 kN m 、 材料的许用切应力[ ] 60 MPa 。试校核该轴强度。

第四章 扭转

第四章 扭转
T3 MD
T2 7.64KN m M B
M C T2
M D T3 0 T3 M D 5.09KN m
Chapter 4
③SkIenttcehrntha单al ttoer击xqpure此esdsiea处sgtrha编emlaw辑扭o矩f母c图ha版nge标of 题the 样torque
are unk• n第o三wn级, however, the powers transmitted by
shaft are u–s第u»四al第级ly五k级nown.
input power :P
The relation between
the transmission
Me
n
power, revolution and
Me
7.1•2第1 三P 级(kN –n第四级
m)
Where: P - horsepower (HP) n - r/min or(rpm)
» 第五B级
C
A
D
A: input power
n
B ,C , D:
output power
MB
MC
Chapter 4
MA
MD
2. Internal torque and its diagram 扭矩与扭矩图
§4–2 Eto单xrteqr击uneaa此lntod处rtqour编equo辑fe adit母argarn版asmm标issi题on样shaft 外力偶矩的计算 式扭矩和扭矩图
1.•E单xte击rn此al t处or编que辑o母f a版tra文ns本mi样ssi式on shaft
So传m–动et第i轴m二的es级,外th力e偶tw矩isting couples applied on shaft

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

04.圆轴的扭转

04.圆轴的扭转
当在轴的右端作用一力偶 矩m时,圆轴各相邻截面之 间也都发生了绕各自截面轴 心的相对转(错)动。假设 圆轴不长,扭转变形又不是 很大,则纵向线在变形后仍 可近似地看成是一条直线, 只是倾斜了一个角度γ。
一、圆周扭转时的变形分析(续1)
2. 变形分析: 假想沿n-n和m-m两个相距dx的横截面将轴切取一薄
四指沿扭矩的方向屈起, 拇指的方向离开截面,扭 矩为正,反之为负。
三、横截面的内力矩——扭矩(续2)
3.扭矩正负号的规定:
(1)右手螺旋法则:
四个手指沿扭矩转动的方向,大拇指即为扭矩的方向。
(2)扭矩正负号:
离开截面为正,指向截面为负。 (3)外力偶矩正负号的规定:
指向截面
与坐标轴同向为正,反向为负
' 量显然可以用弧线 :c c 表示,其值为:
(书P54)
cc' Rd
n-n截面在b点处的 角应变:
g=cc' R d (5-5)
dx dx
一、圆周扭转时的变形分析(续3)
观察截面n-n上距圆心为ρ处的bρ 点, 如左图,bρ点处的角应变:
g

c c' dx
d
dx
(5-6)
d 表示扭转角沿轴线x的变化率,为两个截面相隔单
g
Mn
B
x
j
B'
1.受力特点:构件两端受到两个在垂直于轴线平面内的 力偶作用,两力偶大小等,转向相反。
2.变形特点:各横截面绕轴线发生相对转动。 3.扭转角:任意两截面间有相对的角位移,这种角位移
称为扭转角。
轴的概念
工程上,将以扭转变形为主要变形的构件通 称为轴。(对比:以弯曲为主要变形的构件在工 程上通称为梁)同时,多数轴是等截面直轴。

材料力学第4章扭转变形

材料力学第4章扭转变形

1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)

理论力学第四章扭转

理论力学第四章扭转
由 M x 0, T Me 0 得T=M e
内力T称为截面n-n上的扭矩。
Me
Me
x T
Me
扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为 负值。
+
T
-
扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
4
32 7640180 80109 π 2 1
86.4 103 m 86.4mm
d1 86.4mm
4.直径d2的选取
按强度条件
A M e1 d1
B d2 C
M e2
M e3
3 16T 3 16 4580
②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
结论:
0, 0
横截面上
0 0
根据对称性可知切应力沿圆周均匀分布;
t D, 可认为切应力沿壁厚均匀分布, 且方向垂直于其半径方向。
t
D
微小矩形单元体如图所示:
①无正应力
②横截面上各点处,只产生垂 直于半径的均匀分布的剪应力
强度计算三方面:
① ②
校核强度:
max
Tm a x WP
设计截面尺寸:
WP
Tmax
[ ]
[ ]
Wt
实:D3 16 空:1D6(3 1 4)
③ 计算许可载荷: Tmax WP[ ]
例4.2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。 材料的许用切应力[t ] = 80MPa ,试校核该轴 的强度。

《材料力学》第四章 扭转

《材料力学》第四章 扭转

第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。

2、汽车方向盘的转动轴工作时受扭。

3、机器中的传动轴工作时受扭。

4、钻井中的钻杆工作时受扭。

二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。

变形特点:杆任意两截面绕轴线发生相对转动。

轴:主要发生扭转变形的杆。

§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。

外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。

外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。

(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。

)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。

4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。

作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。

1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。

纵向线——倾斜了同一个角度,小方格变成了平行四边形。

3、切应变(角应变、剪应变):直角角度的改变量。

4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。

⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。

材料力学:第四章 扭转

材料力学:第四章 扭转

回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

扭转变形

扭转变形

T 图(kN·m) 在CA段内
§4-3 圆轴扭转时的应力·强度条件
一、扭转试验与假设: 表面变形特点:
1、相邻圆周线绕杆的轴线相对转动,但圆周的大小 、形状、间距都未变;
2、纵向线倾斜了同一个角度γ ,表面上所有矩形均
变成平行四边形。 平面假设:圆轴受扭转时其横截面如同刚性平面 一样绕杆的轴线转动。
Gπ 2[ϕ ]
=4
32× 7024×180 = 84.6mm
80×109 ×π 2×1
32
d1 = 84.6mm 选择d1 = 85mm
BC段:同理,由扭转强度条件得 d2 ≥ 67mm
由扭转刚度条件得 d2 ≥ 74.5mm
选择d2 = 75mm
§4-6 扭转静不定问题
扭转静不定问题的解法,同样是综合考虑静力、
7024
P n
(N
⋅ m)
(P —马力)
Ⅱ、扭矩及扭矩图 利用截面法来确定. 圆轴受扭时其横截面上的内力偶矩称为扭矩,
用符号T表示。
1
T = Me
1
扭矩的符号规定
按右手螺旋法则确定:
扭矩矢量离开截面为正,指向截面为负。
仿照轴力图的做法,可作扭矩图,表明沿杆 轴线各横截面上扭矩的变化情况。
Me A
§4-2 传动轴的外力偶矩 · 扭矩及扭矩图
Ⅰ、传动轴的外力偶矩 Me
A
Me B
已知:
传动轴的转速 n ;所传递的 功率P (kW)
求: 作用在该轮上的外力偶矩Me。
传动轮的转速n 、功率P 及其上的外力偶矩Me之
间的关系:
P = Mω
Me
=
9549
P(kW ) n(r / min)

材料力学课件 第四章 扭 转

材料力学课件 第四章  扭  转

3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a

b

dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转



T ( 2 A 0t)


( L ) R

剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4

圆截面轴的扭转应力与变形

圆截面轴的扭转应力与变形

对应拉压问题 与轴力图
q
F 3ql
l
l/2 l/2
FN ql
x
2ql
Page 7
第四章 扭转
3. 轴的动力传递
已知传动构件的转速与所传递的 功率,计算轴所承受的扭力矩。
电机
联轴器
A
B
P M
角速度 2 n
60
n : 转速 (r min) 功率:KW 力偶矩:N.m
P 103 M 2 n
60
T1 ( x)
ml
2ml
在AB、BC和CD段分别由三截面 x 切开,考察左(或右)段平衡
D
AB段: T1 x mx
BC段: T2 ml
CD段: T3 2ml
画扭矩图
x
•试与轴力图比较,
考察对应关系。
Page 6
2.扭矩图对应的轴力图
M 3ml
m
A
B
C
D
l
l/2 l/2
T ml
x
2ml
第四章 扭转
R1
R2
O
T
空心轴
O
T
IP
空心圆能用?
思考:同样横截面积S的实心圆与空心圆,哪个强度性能好
实心圆 S D02
4
D 4S
空心圆
D2(12 )
S
4
4S D
12
Page23
实心圆 空心圆
D0
4S
D
4S
1 2
实心圆
Wp
D03
16
S
空心圆 Wp
4 D0
Wp S (1 2 )D
4
第四章 扭转
三、圆轴合理截面与减缓应力集中

第四章:扭转

第四章:扭转

2 2
64.22
45.02
0.611
A1
d12
58.62
小 结 在最大切应力相同的情况下,空心轴所用的材料是实心轴的
61.1%,自重也减轻了 38.9%。其原因是:圆轴扭转时,横截面上应力
呈线性分布,越接近截面中心,应力越小,此处的材料就没有充分发挥 作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到 了充分利用,而且也减轻了构件的自重。但空心轴的制造要困难些,故 应综合考虑。
解:1)用截面法求各段扭矩 AB 段:
1
2
T1 MA 900 N m
BC 段:
T
T2 M c 600 N m
600Nm
画出扭矩图如图所示
900Nm
第五节:圆轴扭转时的变形
AB 截面 极惯性矩
I P1
πd14 32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
πd
4 2
32
第一节:扭转的概念
扭转:是杆的又一种基本变形形式。其受力特点是:构件两 端受到两个作用面与杆的轴线垂直的、大小相等的、转向相 反的力偶矩作用,使杆件的横截面绕轴线发生相对转动。
扭转角:任意两横截面间的相对角位移。如图所示的 φ 角。
轴:工程中以扭转为主要变形的构件。如钻探机的钻杆,电 动机的主轴及机器的传动轴等。
叠加原理
CA CB BA
AB 段:
BA =
T1l1 GI P1
×
1800
=-0.8110
BC 段:
CB =
T2l2 GI P2
×
1800
=0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0

材料力学课件-第四章 扭转-薄壁杆件的扭转

材料力学课件-第四章  扭转-薄壁杆件的扭转
部分加厚由于最小壁厚不变,最大应力不变。部分加厚后甚至由于应力集中更危险。
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T2 M eC 0 T2 114.6 N m (3)画扭矩图
T/N m
114.6
x 76.4
扭转
例4-2 所示,钻探机的输入功率 P 12 kW,转速 n 180 r min,钻杆钻入土层的深度 l 50 m。如土壤
对钻杆的阻力是均匀分布的力偶,试作钻杆的扭矩图。
解:(1)计算外力偶矩
dx
d
dx
式中,d —— 相对扭转角
d
dx
——
相对扭转角沿杆长的变化率,对于给 定的横截面为常量。
物理关系
根据剪切胡克定律: G
G
G
d
dx
横截面上任意一点处的切应力
与 成正比,方向垂直于半径。
T
切应力沿半径线性分布
max
扭转
max
扭转
静力学方面 A dA T
即 G2 ddA G d 2dA T
扭转
T
扭转
二、切应力互等定理 取单元体如图
由于微体处于平衡状态,则
dydx dxdy
切应力互等定理——在单元体两个互相垂直的平面上, 切应力必然成对出现,其大小相等;方向垂直于两平 面的交线,共同指向或背离此交线。
纯剪切——单元体上只有切应力,而无正应力。
扭转
三、切应变与剪切胡克定律
切应变 —— 直角的改变量又称角应变
M
e
个角度,小方格变成了
平行四边形。
Me
2、平面假设:圆轴扭转变形时,横截面仍保持为 平面,形状、大小与间距均不变。
据此假设,横截面上无正应力,只有切应力且圆 周上各点处切应力的数值相等,方向与圆周相切。
扭转
3、横截面上切应力计算公式 变形几何关系
取微段楔形体 距圆心为 处
tan
dd ad
d
M9549
P n
636.6 N m
T (x)
me
l
(2)计算分布力偶矩集度
me
x
T /Nm
me
Me l
636.6 50
Nm
m 12.7 N m
m
(3)作扭矩图
T x mex 扭矩 T 与 x 为线性关系
扭转
§4-3 扭转圆轴横截面上的应力
一、薄壁圆筒的扭转切应力
薄壁圆筒——通常指 R 的1 1空0 心圆轴
Dt
1、变形现象观察:
D / t 20
(1)圆周线的形状、大小不变; 两相邻圆周线的距离不变,只是 发生相对转动。
(2)各纵向线仍都倾斜了相同
角度 ;由纵向线和周向线构成
的矩形变成了平行四边形。
扭转
2、变形现象分析推断: (1)由两相邻圆周线的距离不变,说明横截面上
无正应力,只有切应力。
(2)各纵向线仍互相平行,但都倾斜了相同角度 ,
Me
Me
实际构件工作时除发生扭转变形外,还常伴随有弯 曲、拉压等其他变形。以扭转变形为主的杆件称为 轴
扭转
§4-2 外力偶矩的计算·扭矩与扭矩图
一、传动轴的外力偶矩的计算
已知:传动轴的转速n ,所传递的功率P (kW) ;则
P
dW dt
M e d
dt
Me
电机每秒输入功:W P 103
外力偶每秒作功:W
γ R
l
剪切胡克定律:
当切应力不超过材料的剪切比例极 限,切应力与切应变成正比,即:
G γ G ——剪变模量
对各向同性材料,E, , G 之间关系: G E 2(1 )
扭转
四、圆轴扭转时的应力
1、实验现象:
圆周线——形状、大小、
间距不变,各圆周线绕轴
线相对转动了一个角度。
纵向线——倾斜了同一
Me
2
n 60
外力偶矩为:
Me Nm 9549
PkW n
r min
扭转
Me2
Me1
n
Me3
从动轮
主动轮 从动轮
主动轮上的外力偶矩转向与传动轴的转向相同, 从动轮上的外力偶矩转向与传动轴的转向相反。
扭转
二、扭矩与扭矩图
圆轴受扭时其横截面上的内力偶矩称为扭矩,用符
号T表示。
Me
Me
求法:截面法
扭转
第四章:扭 转
余辉 yuh@
扭转
§4-1 引 言
工程实际中,有很多承受扭转的构件,例如:
扭转变形: 以横截面绕轴线作相对转动为主要特征的变形。
扭转
扭转变形的特点:
◆ 受力特点: 圆杆受到一对大小相等、转向相反、 作用面垂直于杆的轴线的外力偶作用
◆ 变形特点: 圆杆各横截面绕杆的轴线作相对转动
取左端,由于矩平衡
Me
Mx 0 T Me 0
Me
得:T M e
符号:用右手螺旋法则用矢量表示扭矩,若矢量方向与横 截面外法线方向一致时扭矩为正,反之扭矩为负。
扭矩图——横截面上扭矩沿杆轴线变化规律情况的图线
扭转
例4-1 图示传动轴,转速 n 500r / min,主动轮A输
入功率 PA 10 kW,从动轮B 与C ,输出功率分别为
d
d A 2π d
Wt
Ip d /2
πd 3
16
扭转
空心圆截面:
D
Ip
2d A
2 d

3
d
A
2
π D4 d 4 πD4 1 4
32
32
其中 d
D
Wt
IP D2
πD3 16
(1 4 )
D d
O
d A 2π d
注意:对于空心圆截面
Wt
A
dx
dx A
G
d
dx
令:
Ip
2dA A
—横截面的极惯性矩
得: d T
d x GIp
G
d
dx
T I
p
——切应力公式
4、圆轴扭转时横截面上的最大切应力
ma发x 生在横截面周边上各点处
max
T max
Ip
TR Ip
T Ip R
max
取 Ip/R = Wt —抗扭截面系数
最大切应力:
max
说明沿圆周上各点的切应力相同;
(3)因壁很薄,近似认为筒内与筒表面的变形相同, 即切应力沿壁厚方向均匀分布。
3、薄壁圆筒横截面上切应力的计算公式:
Mx 0 Me T
由静力学条件: τdA R = T A
因薄壁圆环,横截面上各点处的切应力相等
T AR A 2πR
得:
T
2πR2
Me
2πR2
R
T Wt
扭转
max
O T
注意: 以上公式只适合于扭转圆轴, 且材料服从胡克定律。
扭转
5. Ip, Wt值的计算
极惯性矩Ip和抗扭截面系数Wt都是截面图形的 几何性质,它们取决于截面的形状与大小。
实心圆截面:
d
Ip
2 d A
A
2 2 (2π d )
0
O
2π(
4
4
d
)
0
/2
πd 4 32
PB
6 kW、PC
4 kW。试作轴的扭矩图。 M eA
解:(1)计算外力偶矩
M eB
M eC
M eA
9549
PA n
191.0 N m
B
M eB
A
M eA
C M eC
M eB 76.4 N m MeC 114.6 N m
(2)分段计算扭矩
M eB T1
T2
M eC
T1 M eB 0 T1 76.4 N m
相关文档
最新文档