大学理论力学全套课件9

合集下载

理论力学 ppt课件

理论力学  ppt课件

相对运动:动点相对于动系的运动。
相对速度用
vr

牵连运动:动系相对于静系的运动。
牵连速度用
ve

二、牵连速度的概念:牵连点的速度; 牵连点: 1、瞬时量;
2、在动系上;
三、点的速度合成定理:
3、与动点相重合的那一点;
四、用速度合成定理解题的步骤:
A、选取动点和动系:注意动点必须与动系有相对运动,
FN
FN'
rW 且知F '
fsR
max
rW R
代入上式
F1min
1 a
(FN'
b
Fmax c)
F1min
Wr ( aR
b fs
c)
ppt课件
FOy FOx
F’N
F1 F’max
19
[练2] 结构如图,AB=BC=L,重均为P,A,B处为铰链,
C处靠在粗糙的铅垂面上。平衡时两杆与水平面的夹角均为α,
方向:
R
aa
ae
ωαB
避开 ar ,向垂直于 ar 的方向投影得
aRen
M
ar
aa cos aan sin aC ae
求:C处的摩擦系数fS=?
FAx
A
P
解:1)分析整体
M
A
0,
FNC
2L sin
2P
L 2
cos
0
2)分析BC
FAy
α α
B
FNC
C
Fmax
P
FBy FBx
M
B
0,
FNC
L
sin

Fmax
L
cos

《理论力学课件》PPT课件

《理论力学课件》PPT课件
1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。
2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、力系的平衡条件:建立各种力系的平衡条件,并应用这 些条件解决一些工程实际问题 。
.
14
在各种工程中,都有大量的静力学问题。 起重机
8
上课时主动思考,跟上教学进度。尽量不缺课。
按时独立做好布置的作业,作业中的图要画清楚,算式 要写清楚。
要做大量的习题和思考题。
.
9
2 在学习中遇到困难怎么办?
阅读相关教材和习题解答 找老师答疑 答疑时间: 答疑地点:
发送电子邮件 Email: cyliu@
访问扬州大学理论力学教学网 /course2/lllx
.
7
理论力学的学习方法
1 如何学好理论力学
学习理论力学必须深刻地反复地理解它的基本概念和公 理或定律
要透彻理解由基本概念、公理或定律导出的定理和结论, 以及由这些定理和结论引出的基本方法,它们是理论力 学的主要内容。
掌握抽象化的方法,理论联系实际,要逐步培养把具体 实际问题抽象成为力学模型的能力
.
但是这种变形,往往非常小,在研究平衡问题以及研究力与运 动变化关系的问题时,可以完全忽略。因此在理论力学中,通 常我们假设所处理的对象均为刚体。
.
21
§0-3 结构的构件与分类
工程结构:由工程材料制成的构件,按合理方式组成为能支承 荷载,传递力,起骨架作用的整体或某一部分。 构件按几何特征可分为三类:杆、板壳、块体
理论力学课件
扬州大学水利科学与工程学院
.
1
绪论
*理论力学的研究对象和内容 *学习目的和学习方法 *教学参考书

ppt版本-哈工大版理论力学课件(全套)

ppt版本-哈工大版理论力学课件(全套)

理论力学课程的内容包括质点和刚体的运动、弹性力学、 流体力学、振动和波等,其体系由静力学、运动学和动力 学三个部分组成。
理论力学课程的内容非常广泛,主要包括质点和刚体的运 动、弹性力学、流体力学、振动和波等方面的知识。这些 内容在理论力学体系中占据着重要的地位,为后续的工程 技术和科学研究提供了重要的理论基础和应用方法。同时 ,理论力学体系由静力学、运动学和动力学三个部分组成 ,这三个部分相互联系、相互渗透,构成了完整的理论力 学体系。
详细描述
理论力学作为经典力学的一个重要分支,主要研究物体运动规律、力的作用机制以及它们之间的相互作用。通过 对质点和刚体的运动规律、力的合成与分解、动量守恒和能量守恒等基本原理的研究,理论力学为各种工程技术 和科学研究提供了重要的理论基础和应用方法。
理论力学课程的内容和体系
要点一
总结词
要点二
详细描述
置和速度。
刚体的转动
02
描述刚体绕固定点或轴线的旋转运动,通过角速度矢量和角加
速度矢量表示刚体的转动状态。
刚体的复合运动
03
描述刚体同时存在的平动和转动,通过平动和转动运动的合成
来描述。
刚体的动力学方程
牛顿第二定律
表述了物体运动与力的关系,即物体受到的合外力等 于其质量与加速度的乘积。
动量定理
表述了物体动量的变化率等于作用在物体上的力与时 间的乘积。
由于非惯性参考系中物体受到的力不是真实的外力,而是由于参考 系加速或旋转产生的惯性力。
非惯性参考系的应用
在研究地球上的物体运动时,常常需要用到非惯性参考系,例如研 究地球的自转和公转对物体运动的影响。
05
刚体的运动
01
描述刚体在空间中的位置和运动,通过平动矢量表示刚体的位

西南交通大学理论力学9PPT课件

西南交通大学理论力学9PPT课件
均质圆板
d O
dm m R 2d A m R 22 d 2 R m 2d
R
JC z
m iri20 R2 R m 2 d
21m2R 2
4. 转动惯量平行移轴定理
z
z1
r
r1 m
JzC m ir 1 2 m i(x 1 2 y 1 2)
Jz mir2 mi(x2y2) mi[x12(y1d)2]
例题5
均质圆轮半径为R、质量为m,圆轮对转轴的转动
惯量为JO。圆轮在重物P带动下绕固定轴O转动,
已知重物重量为W。
FOy
求:重物下落的加速度
JO1 3m 1l2m 2(8 3d2l2ld )
例题5
均质圆盘,质量 m,求圆盘绕 O轴的动量矩。
JC
1 mr2 2
JO JCm2e 1mr2 me2 2
1m(r2 2e2 ) 2

r C
e
O
LO
JO
1m(r2 2
2e2
)
§9.3 质点系动量矩定理
1. 质点系的动量矩定理 d dM tO (m ivi)M O (F i(e))M O (F i(i))
对于其质量为连续分布的刚体,
则上式成为定积分
Jz r2dm
M
若设想刚体的质量集中于
离z轴距离为 z 处,令
Jz=M
2 z
,则称之为对z轴的
回转半径。
z
Jz M
例题2
计算均质细长杆对通过质心
轴的转动惯量Jz
z
z
dm m dx l
JCz miri2
A
C
B
x
l x dx
l 2 mdx x2 1 ml2

理论力学说课PPT课件

理论力学说课PPT课件

机械运动实例
总结词
机械运动是理论力学的传统应用领域,涉及 各种实际机械系统的运动规律。
详细描述
机械运动是理论力学中最为常见的应用领域 之一。各种实际机械系统,如汽车、飞机、 机器和机器人等的运动规律,都需要通过理 论力学进行分析和描述。通过研究机械运动, 可以深入理解力矩、动量、动能等力学概念, 以及它们在机械系统中的具体应用。
自我评价
通过本课程的学习,我掌握了理论力 学的基本知识和分析方法,对物理学
的理解更加深入
我认为自己的逻辑思维、抽象思维和 创新能力得到了提高,解决问题的能 力也有所增强
建议
建议增加一些与实际应用相关的案例 和实验,以更好地理解理论力学的应 用价值
对于一些较难理解的概念和公式,希 望能够有更多的解释和练习题
详细描述
力的分析方法包括矢量表示法、直角坐标表示法和极坐标表 示法等。通过力的合成与分解,可以确定物体运动状态的变 化。力矩的计算则涉及到转动惯量、角速度和动量矩等概念 。
运动分析方法
总结词
运动分析方法主要研究物体运动轨迹、速度和加速度等参数。
详细描述
运动分析方法包括对质点和刚体的运动学分析,通过求解运动微 分方程或积分方程,可以确定物体的运动轨迹、速度和加速度等 参数。这些参数对于理解力学系统的运动规律和相互作用至关重 要。
本课程总结
提高了学生解决实际问题的能力 改进方向
针对不同专业需求,调整教学内容和深度,更好地满足学生需求
本课程总结
01
加强实验和实践环节,提高学生 的动手能力和实践经验
02
引入更多现代技术和方法,更新 教材和教学方法,保持课程的前 沿性
力学发展历程与展望
力学发展史

理论力学课件

理论力学课件
理论力学课件
汇报人:可编辑 2023-12-24
目录
CONTENTS
• 绪论 • 牛顿运动定律 • 动量定理和动量守恒定律 • 动能定理和机械能守恒定律 • 角动量定理和角动量守恒定律
目录
CONTENTS
• 万有引力定律和天体运动 • 弹性力学基础 • 流体力学基础 • 非线性力学基础
01
绪论
详细描述
03
04
05
车辆动力学:在车辆行 驶过程中,通过分析车 辆的受力情况和运动状 态,可以利用动能定理 计算车辆的加速度和速 度变化,以及优化车辆 的动力性能。
航天工程:在航天工程 中,机械能守恒定律被 广泛应用于卫星和火箭 的运动分析。通过研究 卫星和火箭的运动轨迹 和速度变化,可以预测 其轨道和发射参数。
VS
详细描述
万有引力定律由艾萨克·牛顿提出,他发 现任何两个物体都存在相互吸引的力,这 个力的大小与两个物体的质量成正比,与 它们之间的距离的平方成反比。这个定律 适用于任何两个物体,无论它们是否接触 ,只要它们之间的距离足够小。
03
动量定理和动量守恒定律
动量定理的定义
总结词
动量定理是描述物体动量变化的定理。
详细描述
动量定理是指物体受到力的作用时,其动量会发生变化,变化量等于力与时间的 乘积。即Ft=mv2-mv1,其中F表示作用在物体上的力,t表示力的作用时间,m 表示物体的质量,v1和v2分别表示物体初速度和末速度。
理论力学的重要性
总结词
理论力学是物理学和工程学的重要基础,对于理解物 质运动规律、预测和控制物体运动、以及解决实际问 题具有重要意义。
详细描述
理论力学作为物理学的一个重要分支,是理解和描述 物质运动规律的基础。无论是天体运动、机械运动还 是微观粒子的运动,都需要借助理论力学的知识来进 行描述和预测。同时,理论力学也是工程学的重要基 础,为各种实际问题的解决提供了理论基础和方法。 通过理论力学的应用,我们可以更好地控制和优化物 体的运动状态,提高工程系统的性能和稳定性。

理论力学9ppt课件

理论力学9ppt课件
本章将在两个不同的参考空间中讨论同一物体的运动,并给出物体在这两个 参考空间中的运动量之间的数学关系式。 物体相对于甲空间的运动可视为其相对于乙空间的运动和乙空间相对于甲空 间运动的复合运动。
本章介绍复合运动的基本知识。
学习本章的意义:
复合运动是研究刚体复杂运动的重要基础。
.
2
第3章 复合运动
§3.1 绝对运动 相对运动 牵连运动
这种利用动系和定系来分析运动的方法(或运动的合成与分解),不仅在 工程技术上有广泛应用,而且还是在非惯性参考系中研究动力学问题的基 础。
.
5
§3.2 变矢量的绝对导数与相对导数
目的:
为了给出绝对与相对速度、加速度的关系,需要在两个相对运动着的参考 空间中考察同一个变矢量的变化率。
为此,本节引入矢量的绝对导数和相对导数的概念,并研究它们之间的关
第3章 复合运动 9学时
3.1 绝对运动、相对运动、牵连运动
3.2 变矢量的绝对导数与相对导数
3.3 点的复合运动的分析解法(不要求)
3.3.1 动点的运动方程
3.3.2 动点的速度和加速度合成的解析表达式
3.4 点的复合运动的矢量解法
3.4.1 速度合成定理
3.4.2 加速度合成定理
3.5 刚体的复合运动(不作为重点内容,简单介绍)
系。
变矢量
A
其变化依赖于所选取的参考空间。
定义其中一个空间为定系,另一个空间为动系。
规定:
~A
绝对增量A:
变矢量 A相对定系的增量。
相对增量~A:
定 系
动 系
t 时刻
At
t A tt时刻 t
At At
A Ae
变矢量 A相对动系的增量。

理论力学课件-动力学精选全文完整版

理论力学课件-动力学精选全文完整版
第一类问题-----已知质点的运动,求作用在质点上的力; 第二类问题-----已知作用在质点上的力,求质点的运动规律。
26
总结 4.求解质点动力学问题的步骤:
(1)根据题意确定研究对象,选择恰当的坐标系; (2)分析研究对象的受力情况,作受力图; (3)分析研究对象的运动情况; (4)列出质点的动力学基本方程,然后求解;如是第二类问题,
(相对地面静止或作匀速直线平动的参考系)
(3)矢量性和瞬时性
二. 质点运动微分方程
F
ma
m
dv dt
m
d2r dt 2
6
利用合矢量投影定理 ,可以在直角坐标系, 自然坐标系及其他坐标系中建立投影方程.
1.质点运动微分方程在直角坐标系上的投影
d2x m dt 2 XFx
m
d2y dt 2
YFy
m
还需根据初始条件确定积分常数。
27
作业
• 9-2 • 9-12
28
例题:电梯以加速度a上升,在电梯地板上,放
有质量为m的重物。求重物对地板的压力。 解:取重物为研究对象
进行受力分析与运动分析。
Fy= m ay
N - mg=m a
mg
N=mg+ma=N'
(静约束力;附加动约束力)
a
讨论:若加速度方向向下 N
b
l
FT
n
r
v
τ
z
mg
m
dv dt
F
t
0
m
v2 r
F
n
FT sin 600
0 F b mg FT cos 600
FT
mg cos 600
19.6N

理论力学完整ppt课件

理论力学完整ppt课件
理论力学
主讲 王卫东
可编辑课件PPT
1
可编辑课件PPT
2


一、理论力学的研究对象和内容 二、理论力学发展简史 三、学习理论力学的目的 四、理论力学的研究方法
可编辑课件PPT
3
可编辑课件PPT
真汽 车 碰 撞 仿
4
可编辑课件PPT
5
可编辑课件PPT
6
一、理论力学的研究对象和内容
理论力学——研究物体机械运动规律的科学。
可编辑课件PPT
15
都江堰
岷江上的大型引水枢纽工程,也是现有世界上历史最长的无坝 引水工程。始建于公元前256~前251年。
可编辑课件PPT
16
赵州桥(安济桥)
591~599年,跨度37.4米,采用拱高只有7米的浅拱-敞肩拱,
敞肩拱的运用为世界桥梁史上的首创,并有“世界桥梁鼻祖”
的美誉。
可编辑课件PPT
3 随着科学技术的发展,交叉学科的地位也越来越 重要。力学与其它学科的渗透形成了生物力学、爆 炸力学、物理力学等边缘学科,这就需要我们有坚 实的理论力学基础。
4 培养分析问题、解决问题的方法。
可编辑课件PPT
24
四、理论力学的研究方法
是从实践出发,经过抽象化、综合、归纳、建立 公理,再应用数学演绎和逻辑推理而得到定理和结论, 形成理论体系,然后再通过实践来验证理论的正确性。
17
张衡与地动仪
东汉时期,中国发生地震的次数是比较多的,为了测定地
震方位,及时地挽救人民的生命财产,公元126年,张衡在第二
ቤተ መጻሕፍቲ ባይዱ
次担任太史令之后, 就注意掌握收集地震的情报和记录,经过
多年的潜心研究,终于在公元132年(东汉顺帝阳嘉元年),发明

《理论力学(Ⅰ)》PPT 第9章

《理论力学(Ⅰ)》PPT 第9章

t2
t1
ri Fi dt
t2 t1
M O dt
力系对O点的冲量矩等于力系对O点的主矩
在同一时间内的冲量矩。
9.5 对固定点O的动量矩定理
1. 质点对固定点O的的动量矩定理
ma m dv r dmv r F d r mv v mv r dmv r dmv
dt
dt
dt
dt
dt
dr
OO
3mg AA
mg N
a
B xx
初始静止,则质心的x坐标不变。
3m a m 2b
xC1
33 4m
xC 2
3m
x
a 3
m
x
4m
a
b 3
xC1 xC 2
解得: x b a
4
解2:取系统为 y
研究对象
x
三棱柱A的水 平绝对位移 x O A
B x
三棱柱A的水平绝对位移 x a b
mixi 0 3mx mx a b 0
a ≠ 0即加速上升时
a
ma T mg
T mg ma
mg
总约 静约 动约 束力 束力 束力
解:在t时刻, vA
取截面A、B 间的流体为
PA
Aa
FN1静约束力
W重力
FN
动约束力
2
研究对象 经过dt时间间隔,流 B 质量 m Qγdt 体流到a、b截面之间
b vB
dt时间间隔内动量的变化量
PB
W1
W g
W1
r ω2 2
cos φ Wrω2 W1 W
cos φ
FAx
Q
FAx
Q
W1 2W 2g

《理论力学》课件 第九章

《理论力学》课件 第九章

第九章刚体的平面运动刚体的平面运动是工程机械中较为常见的一种刚体运动,它可以看作为平移与转动的合成,也可以看作为绕不断运动的轴的转动。

在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离。

平面运动刚体上的各点都在平行于某一固定平面的平面内运动。

注意与平移区别()Oϕ'--基点,转角,Oxy--定系用一个平面图形代表作平面运动的刚体;用平面内的任意线段的位置来确定平面图形的位置;用线段上任意点0′的坐标和一个夹角来确定该线段的位置。

平面图形的运动方程对于任意的平面运动,可在平面图形上任取一点O′,称为基点。

在这一点假想地安上一个平移参考系O’x’y’,平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy,平面的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。

平移坐标系-'''y x O平移-----牵连运动转动-----相对运动四、重要结论:平面运动可取任意基点而分解为平移和转动。

其中平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关.任何平面图形的运动可分解为两个运动(1)牵连运动,即随同基点O′的平移;(2)相对运动,即绕基点O′的转动。

平面图形内任一点M的运动也是两个运动的合成,因此可用速度合成定理来求它的速度,这种方法称为基点法。

注意:此处动点、动系、基点在同一个刚体上。

但属于刚体上的不同点。

点M 的牵连速度v v点M的相对速度v vω'M O v v v v 'ωv v AB v v ω结论:平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。

平面图形内任意两点A 和B 的速度确定基点A ,一般应使V A 为已知条件。

O’M 上速度分布图角速度与相对速度有关AABAABBAvlABvωϕ=v v v应使V B位于平行四边形的对角线上V BA=AB·ω,此处ω是尺AB的角速度3、角速度分析例9-2图所示平面机构中,AB=BD=DE=l=300mm。

(PPT幻灯片版)理论力学课件

(PPT幻灯片版)理论力学课件

F1
刚体
大小相等 | F1 | = | F2 | 方 向相反 F1 =-F2 (矢量) 且 在同一直线上。
F2
说明:①对刚体来说,上面的条件是充要的; ②对变形体来说,上面的条件只是必要条件。
绳子
F2
平衡
F1
F2 不平衡
F1
F2
绳子
不平衡
F1
对多刚体不成立
理论力学
中南大学土木建筑学院
11
③二力构件:只在两个力作用下平衡的刚体叫二力构件。
中南大学土木建筑学院
57
[例] 画出下列各构件的受力图
D
F2
B
F1
A
FAy FBy FBx B
E
FAx
FCx
C
FCy F2
E
FB
FE
FD F3
G
F3 FC
G FCx
FBy
B
F1 二力构件
F1 二力杆
F2
F2
注意:二力构件是不计自重的。
公理3 加减平衡力系原理
在已知的任意力系上加上或减去任意一个平衡力系, 并不改变原力系对刚体的作用。
理论力学
中南大学土木建筑学院
12
推论1:力的可传性 作用于刚体上的力可沿其作用线移到同一刚体内的任一
点,而不改变该力对刚体的作用效应。
A F B 等效 A F F B F 等效 A F F B F
理论力学
中南大学土木建筑学院
46
理论力学
中南大学土木建筑学院
47
(3)止推轴承(圆锥轴承)
约束特点:止推轴承比径向轴承多一个轴向的位移限制。 约束力:比径向轴承多一个轴向的约束力,亦有三个正

理论力学 动力学基本方程(共25张PPT)

理论力学 动力学基本方程(共25张PPT)

t
0
,x
xo,v
v
,试求质点的运动规律。
o
④选择并列出适当形式的质点运动微分方程。
舰载飞机在解发动:机和此弹射题器推力力 求运动,属于动力学第二类问题,且力为时间的函
假设推力和跑道可能长度,那么需要多大的初速度和一定的时间隔后才能到达飞离甲板时的速度。
数。质点运动微分方程为 (2) 力是改变质点运动状态的原因
惯性参考在系工程实际问题中,可近似地选取与地球相固连的坐标系
为惯性参考系。
河南理工大学力学系
理论力学
第九章 动力学基本方程
§9-2 质点的动力学根本方程
将动力学基本方程 (ma F) 表示为微分形式的方程,
称为质点的运动微分方程。
1.矢量形式 2.直角坐标形式
d 2r m dt2 F
d 2 x
d 2y
综合问题: 局部力,局部运动求另一局部力、局部运动。
河南理工大学力学系
理论力学
第九章 动力学基本方程
工程实际中的动力学问题
舰载飞机在发动机和弹射器推力 作用下从甲板上起飞
河南理工大学力学系
理论力学
第九章 动力学基本方程
假设推力和跑道可能长度, 那么需要多大的初速度和 一定的时间隔后才能到达 飞离甲板时的速度。
载人飞船的交会与对接
该式建立了质量、力和加速度三者之间的
(4) 质量与重量之间的区别与联系。
动的初始条件,求出质点的运动。
该式建立了质量、力和加速度三者之间的
(4) 质量与重量之间的区别与联系。
§9-1 动力学根本定律
(3) 质量是物体惯性大小的度量。 ②受力分析,画出受力图 曲柄OA以匀角速度 转动,OA=r,AB=l,当
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

& & dF1 = [∑ ( pα qα − Pα Qα ) − ( H − H )]dt LL (1)
α =1
s dF1 & & = ∑ ( pα qα − Pα Qα ) − ( H − H ) 或 dt α =1
s
如果通过这类正则变换使得新的哈密尔顿函数恒为零,即:
H (Qα , qα , t ) ≡ 0
再将(12)式的第一式代入,得
s = s (Qα , qα , t )
∂s ∂s + H (qα , , t ) = 0 (α = 1,2,3, L s )LL (14) ∂t ∂qα
由于H是广义速度的二次齐次函数,广义动量和广义速度是线性关 系,所以这个方程是母函数s的一阶二次偏微分方程,其独立变量 是 ( qα , t ) ,共有s个。它是Jacobian和Hamilton用不同的方法提出来 的,所以所来的人称为是H-J方程。
石河子大学物理系殷保祥
关于H-J方程的求解:
由微分方程理论知,就s个自由度的力学体系而言,H-J方程的积 分中应含有s+1个积分常数,因为此方程中并不含有母函数s本身, 只是包含s的偏微商。所以s+1个常数中必有一个是相加常数。也 就是说,H-J方程的解的形式是
s = s (t ; q1 , q2 , L qs ; a1 , a2 , L, as ) + c
∂s ,并写出H-J方程: ∂ qα
∂s ∂s , t ) + = 0 (α = 1,2,3, L s ) H (qα , ∂qα ∂t s (3)、求解偏微分方程,得到它的解: = s (Qα , qα , t ) + c
∂s ∂s = pα ,− = bα 得到 qα , pα 和联立方程组,从而 (4)、利用 ∂qα ∂t 解出力学体系的运动积分
代回H-J方程可以得到w满足的一阶偏微分方程。
∂w ∂w ∂w , ,L, )=h H = H (q1 , q2 , L , qs ; ∂qs αq1 ∂w2
此方程称为简化的H-J方程。由它可以求出特性函数w。求出的 形式为
w = w(q1 , q3 , L qs ; a1 , a2 , L as −1 , h) + as
石河子大学物理系殷保祥
用H-J方程求解稳定系统的正则方程时,需要求解H-J方程它 不一定简单容易,但带来一种好处:在求出运动规律的同时,还 求出了轨道和动量,所以正则方程的这种解法也有一定用处。
§5.8.4 H-J方程应用举例
利用H-J方程求解力学体系的运动,可按下述步骤进行: (1)、写出力学体系的Hamilton函数 H (qα , pα , t ); (2)、将H中的 pα 换为
α =1
s = s (qα , t ) LL (5)
s ds ∂s ∂s & LL (6) =∑ qα + 有 dt α =1 ∂ qα ∂t
另外,根据作用量的定义 s
=

t2
t1
Ldt LL (7)
石河子大学物理系殷保祥
ds 并注意这时的上限是活动的,可得: = LLL (8) dt S & 再利用Hamilton函数的定义 H = − L + ∑ pα qα
其中 a1 , a2 , L , as 是任意常数,它们可以是新的广义坐标。c是任 意的可加常数。 一旦H-J方程的解求出,根据第一种正则变换,先求得
∂s ∂s = pα ,− = bα (α = 1,2, L , s ) ∂qα ∂aα 然后将已知的s代入上式,可得到 pα 和 qα 的联立方程组。继而
qα = qα (aα , bα , t ), pα = pα (aα , bα , t )
石河子大学物理系殷保祥
得 L = −H +
& ∑ pα qα LL (9) α
=1
S
α =1
S ds & ∴ = − H +0)式可改写为 ds (6)(10)比较,得
= − Hdt + ∑ pα dqαLL (11)
α =1
S
∂s ∂s = pα , = − H , (α = 1,2, L s )LL (12) ∂t ∂qα q 在上面的各式中,α , pα 是广义坐标和广义动量在活动终点上的
石河子大学物理系殷保祥
则H-J方程的解为 s = − ht + w( q1 L qs ; a1 L as −1 , h) + as 由此还能得到原来的正则方程的解
∂s ∂w = = bα (α = 1L s ), ∂qα ∂aα ∂w ∂s = = pα (α = 1L s ) & & ∂qα ∂qα ∂w = t − t0 ∂h
石河子大学物理系殷保祥
则变换后的正则方程组将是:
& = ∂ H ≡ 0, P = ∂ H ≡ 0, (α = 1,2,3, L s ) LL (2) & Qα α ∂Qα ∂Pα
Q 对它直接求积分,得: α
S
= aα , Pα = bα LL (3)
aα , bα都是常量。由(2)(1)式,得:
dF1 = ∑ pα dqα − HdtLL (4)
§5.8 Hamilton -Jacobian方程 §5.8.1一种特殊的母函数
一个正则变换的成效如何,全看它的母函数选得是否优良。 一个正则变换的成效如何,全看它的母函数选得是否优良 因为母函数一旦选定,就可以由它确定正则变换式新变量下的 Hamilton函数 H 。知道了 H ,就知道了有多少个循环坐标。我们 可以提出这样一个问题:如果所选的母函数使得新的Hamilton函 数恒等于零,将会导出什么样的结果呢?下面逐步分析这个母函 数恒等于零,将会导出什么样的结果呢? 数的特殊性、求法以及怎样用它求出力学系的运动。 第一类正则变换的母函数 H ,应满足方程
因为这时的独立变量t不公开包含在方程中,所以由一阶偏微分方 程理论知,方程独立变量的数目可以减少一个,而且上方程解的 形式为
s = − ht + w(qα )
∂s ∂s ∂w = − h, = ∂t ∂ qα ∂ qα
其中h是任意常数,w 是广义坐标和一个函数,称为特性函数。 由(上)知
石河子大学物理系殷保祥
石河子大学物理系殷保祥
§5.8.3稳定力学体系处理
力学体系的H不显含时间的情况是常见的。我们曾经讨论过这 是的H是力学体系的一个守恒量。在力学体系受稳定约束时,它就 是力学体系的机械能。下面研究这种情况下H-J方程的解。设
H = H (qα , pα )
∂s ∂s + H ( qα , )=0 H-J方程的形式为 ∂t ∂ pα
在上面的第一组方程中有s-1个积分,称为几何积分,它们不包 含时间是位形空间中的一条曲线,就是力学系的位轨线;第三组 方程是一个包含时间的积分,叫运动积分。 第三和第一组方程联合可能求得 qα = qα (t ) ,是给出的系统的代 表点沿位轨线的运动规律,正如象三维空间中的运动方程。第二 组方程叫作中间积分,用来确定系统的广义动量。
值。将(11)和(4)比较,可以得到一个重要结果:
石河子大学物理系殷保祥
真实运动的作用量s就是要找的特殊母函数F1。(11)(12)是该母函数 应满足的关系,它表达了这个特殊函数的性质。
§5.8.2 雅可比方程
从上面的(12)式中的第二式知,特殊的正则变换母函数
∂s + H (qα , pα , t ) = 0 LL (13) 只要满足 ∂t
可以求出
石河子大学物理系殷保祥
{
qα = qα (aα , bα , t ) pα = pα (aα , bα , t )
(α = 1,2, L s )
这是原来方程的解。2s个积分常数由初始条件决定。 在求解H-J方程中,在求解H-J方程的同时,也伴随着解出了原 来的正则方程。所以正则方程的求解已经归结为如何从H-J方 程求解特殊母函数s的问题了。这就是H-J方程的实质。 对于各种不同的具体力学问题,求解s的难易程度是不同的。
相关文档
最新文档