《物理学基本教程》课后答案 第九章 静电场中的导体和电介质
大学物理下 第九章 静电场中的导体和电介质5
2
ε0S C= d
四,静电场的能量 (1)电容器的能量 )
1 Q2 W = CU 2 = 2 2C
(2)静电场的能量 有电场的地方就有能量 )
1 ωe = D E 2
W = ∫ ωe dV
(3)静电场的能量与功的关系 )
A 静 = W
已知 ε r1 : ε r 2 = 1 : 2 ,问 W1 : W2 = ?
λ o d a
λ λ U = ∫ + dr 2πε0r 2πε0 (d r ) a -λ λ λ d a λ d = Ln ≈ Ln πε0 a πε0 a
λ λ πε 0 ∴ C0 = = = d d λ U Ln Ln a a πε 0
r
d a
P79 99 讨论
1)通电后维持电压不变插入电介质 ) 2)通电后断开再插入电介质 ) 讨论插入前后的 E,D,U,Q. , , , 令插入前为E , , , (令插入前为 0,D0,U0,Q0) 2) Q = Q 0
4a
UBA = UB∞
场具有球对称性
a
3a
解(1)a < r < 3a
∫∫ D dS = ∫∫ DdS = D4πr = QA
2 S S
Q
4a
a
QA D= 2 4πr
D QA E= = 2 ε0εr 4πε0εr r
3a
r > 4a ∫∫ D dS = D 4 πr = Q + Q A
2 S
Q + QA D= 2 4 πr
∫∫ D dS = Q0
S
E = E0 + E'
9-6,8 ,
E0
讨论 p79
ch7-静电场中的导体和电介质-习题及答案
ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
静电场中的导体与介质
《静电场中的导体和电介质》习题参考答案一、选择题:1.D 2.B 3.B 4. AE 5.C 6.B 7.B 8.D 9.B 二、填空题1.导体的表面; 导体表面法线; 0。
2.S Qd 02ε S Qd 0ε;3. 01=D ; 2224r Q D π=;03=D ; 2444r Q D π=01=E ; 22024r QE πε=; 23034r Q E r επε=; 24044r QE πε= ⎪⎪⎭⎫ ⎝⎛+-+-=221100111114R R R R R Q U r r εεπε4.总量为q 1+q 2,均匀分布; F 1=0 ; F 2=0 ; rq q q F 0214)(πε+=5. 06/εq ;6/q ; 6. E 线 , D 线 ; 7. R 04πε;R Q W 028πε=;2.29×10-4J/m 3 8.提高耐压,增大电容; 9.25.3pF ;300ev10.b b a r εεσεσ00)(+-;()b b a Sr r +-εεε0;)(202rb b a S εεσ+-三. 问答题: 1.答:机理:静电感应是导体中的自由电子在电场力的作用下的宏观移动,使导体上的电荷整体重新分布;而电介质的极化则是分子在电场力的作用下产生位移极化或取向极化,介质中的分子并未出现宏观的移动。
电荷分布:导体达到静电平衡后电荷只分布在导体的表面,体内电荷密度为零;对于均匀各向同性电介质,介质极化后,极化电荷亦只分布在介质的表面,介质内部的电荷密度为零。
电场分布:导体达到静电平衡后其内部电场强度处处为零,导体表面附近的电场强度方向处处垂直于导体表面,大小与表面处的电荷密度成正比;电介质极化后,极化电荷在内部产生反向电场,使介质中电场减小,但不为零。
四、计算与证明1.解:①因为A 、B 接地,因此两板均仅内侧带电,设A 板内(右)侧感应电荷电量为Q A , B 板内(左)侧感应电荷电量为Q B , C 板左侧电量为Q 1,右侧电量为Q 2;则Q 1+Q 2=Q , (1) 由高斯定理易有: Q A =-Q 1, Q B =-Q 2因此AC 板间区域电场大小为:SQ E B A CA 010020102222εεσεσεσεσ=---=, BC 板间区域电场大小为:SQ E B A CB 020020102222εεσεσεσεσ=-++=, A ,B 接地 U CA =U CB (2) 故: E CA d/3=E CB d (3) 联立求解得:Q A =-3Q /4; Q B =-Q /4; SQdU c 04ε=②CB 间充满介质时同理有:Q ′1+Q ′2=Q (1)′SQ E CA01ε'=', S Q E r CB εε02'=' (2)′ ;E ′CA d/3=E ′CB d (3)′联立求解: r A Q Q ε+-='33,rr B Q Q εε+-='3, S QdU r C )3(0εε+='③带入题设数据有:636V C='U. A B C2.解:等价于圆柱形电容器:故)/ln(2120R R LC r επε=内膜处最先达到击穿场强,故令 k r E LR Q R E ==1012)(επε ,k r E LR Q 10max 2επε=, 对应电场能: 1221202max max ln 2R RE LR C Q W k r επε==3. 解:由高斯定理可得:3014Rer E πε=,当 (r<R); 2024r e E πε=,当 (r>R);能量密度:2300210111)4(212121R er E E D w πεεε===; 2200220222)4(212121re E E D w πεεε===总能量:⎰⎰∞+=R Re dV w dV w W 201=Re 02203πε=m e c 2 可得:电子半径上限:202203c m e R e πε=五.附加题1. 解:①金属球为等势体,只求其球心处电势(简单)因为感应的正负电荷在球心处产生的电势之和等于零,球心处的电势等于电荷q在此处激发的电势,即:bq U 004πε=②金属球接地后,电势为零,同时金属球上的正电荷向地球迁移(静电平衡),负电荷由于正电荷的吸引留在金属球上。
《物理学基本教程》课后答案 第九章 静电场中的导体和电介质
第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q dq V V V V 000+-=++=πεπεπε111(421R R d q+-=0πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R QR R d qV V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C /m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 S q E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C .BA 间电势差BA V ⎰⋅=ABd 2R R r E ⎰00=-=AB A B 11ln 22R R R R r dr πελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V/m 1036max ⨯=E而 2m a xm a x 4RQE 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε 或 V 103V 14103.3464max max⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和)-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d ar rd r d )11(2πελa a d -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C(2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV/cm 48.4)(r111=-+=εd d d UE30kV/cm kV/cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV/cm 100kV/cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4 当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'RE,即2R R ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=018025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由dU E 00=,d UE =,得相对电容率为3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V/m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1)介质外任一点电势为⎰∞==r rQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。
大学物理A静电场中的导体和电介质习题答案及解法201064
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==•+•=•=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。
普通物理学第五版第9章导体和电介质中的静电场章答案
解: (1)由于静电感应,外球内表面电量为 -q,外表面电量为+q q 外球的电势为: U2 = 4pe0 r2 (2)外球内表面电量仍为-q,外表面电量为零 外球的电势为: ´ U2 = 0
(3)设内球电量为q1,内球电势为零 q1 q r1 U1 = q1 = r q 4pe0 r1 + 4pe0 r2 =0 2 q1 q U外 = 4pe0 r2
q1 q2 U1 = 4pe0 R1 + R2 q2 q1 = R1 4pe0 U1 R2
1
2700 -2 = 5.0×10 9.0×109 = 1.0×10-8(C) 8.0×10-9 8.0×10-2
结束 目录
两球接触后,内球电荷q1全部移至外球 壳,两球为等势体。
q1 + q2 U= = 2.03×103(V) 4pe0R2 ΔU内 = 2.7×103 2.03×103 = 6.7×102(V)
d +q
结束 目录
9-6 半径为r1 、 r2 (r1 < r2 )的两个同心导 体球壳互相绝缘,现把+q 的电荷量给予内 球,求: (1)外球的电荷量及电势; (2)把外球接地后再重新绝缘,外球的 电荷量及电势; (3)然后把内球接地,内球的电荷量及 外球的电势的改变(设内球离地球很远)。
结束 目录
结束 目录
9-11 三平行金属板A、B 、C面积均为 200cm2,A、B 间相距4.0mm, A、C 间 相距2.0mm,B 和C 两板都接地。如果使A 板带正电3.0×10-7C ,求: (1)B 、C 板上感应电荷; (2)A 板的电势。 2mm 4mm C A B
目录
解:设A板带电为q =q1+q2,B、C两板的感 应电荷分别为- q1及- q2 。 EAB dAB = EAC dAC UA UB = UA UC q2 q1 EAC = EAB = e0S 2mm 4mm e0 S q1 EAB dAC 1 C A B = E =d = 2 q2 AC AB q1 q2 q1= 1.0×10-7(C) -q1 -q2 q2= 2.0×10-7(C) qB= -q1= -1.0×10-7(C) qC= -q2= -2.0×10-7(C)
大学物理第9章静电场习题参考答案
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。
习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。
静电场中的导体和电介质
静电场中的导体和电介质1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( )A .B A E E > B. B A E E <C .B A E E = D. 0=>B A E E 答案:B解:σ==B A D D ,r A E εεσ0=εσ=B E 所以B A E E <2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加 答案:(3)球壳内,外部场强都为204rQ E πε=移去球壳对A 、B 电场强度大小无影响。
有球壳时,A 点电势为⎰⎰∞+=21R R rEdr Edr U无球壳时⎰∞=rEdr U 显然,移去球壳A 点电势增大B3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( )(1) 高斯定理成立,且可用它求出闭合面上各点的场强。
(2) 高斯定理成立,但不能用它求出闭合面上各点的场强。
(3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立答案:B ,高斯定理成立,但由于,高斯面上分布不对称,所以,无法求出场强。
4.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时='AB U 。
解:当B 板不接地B 板感应电荷如上图均匀分布AB电势差d E U AB ⋅=,由电势叠加原理知0022εεσS Q E ==,所以d S QU AB ⋅=02ε当B 板接地,B 板感应电荷如图均匀分布AB 电势差d E U AB⋅=',由电势叠加原理知00εεσS QE ==,所以d S QU AB ⋅='0ε+ +B++Bd5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况: (1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小 答案(4)解:充介质前的C 1,C 2等效电容dSC 200ε=,充介质后的C 1,C 2等效电容dSC r r 01εεε+=,所以电容增大。
第九章静电场中的导体与电介质题解
V1=Vq1
2 ;4n£.0X10-2= q24n£-2; q2=2q1
0X10>2.0X0
q1+q2= 2.0X10-8(C);q1=6.67X10-9(C), q2=1.33X10-8(C)
⑵V=6.67X10-9
4nX8.85X10-12= 6.0X103 (V)
13-10.接地电势为0. Qq
4n£0R+4冗&=0-RQ=
0rrq
静电场中的电介质习题解
14-1. B.视为并联电容.
14-2. C.
14-3. B.
板间电压不变,距离增大,场强减小;电荷面密度减小,电荷减少;电场能量减小.;
C1/C2=4n£R1/4n相连后可看成并
联电容.1:1.
14-5.两极板间电压不变,Q=CU三r COU=£r Q0 . E=U/d=EO .&;We= CU2/2=£r
C0U2/2=£rWeO .
We=/V
14-7.UO/2 .
14-8.;并联电容电压相等.电压减小,电容不变.14-9.4n£OR=7.144<(F0
外力作功△W=We'-We=&0&rS(£r-1)U2=2.25X10-6 (J) 2d
14-11.(1).因为电场分布轴对称,在两筒间作高斯面
rrQDQD? dS=DdS=D2t rL=Q, D, E===SS2nrL&0&r2n两筒)间电势差/b
arrE? dl=2n&0&rL/aQbdrQbIn =r2n&0&rLa
普通物理学第五版第9章导体和电介质中的静电场章答案
结束 目录
在静电平衡时,内侧的合场强(导体内 部)应为零。 E内 = E1 + EΔ S = E1 EΔ S =0 ´
1E E1 = EΔ S = 2
F =σ Δ S E1 = σ Δ S eFra bibliotek202
结束 目录
9-4 一质量为 m、面积为S 的均质薄金 属盘 ,放置在一无限大导体平板上,平板 水平放置,最初盘和平板都不带电,然后逐 渐使它们带电。问电荷面密度增加到何值 时,金属盘将离开平板。
2
结束 目录
证:在导体表面取面元 Δ S 面元上电荷面密度为: σ
ΔS
σ 面元外侧场强为:E = e 0
E 内 =0 内侧场强: 面元外侧场强可视为面元Δ S在外侧所产 生的场强和导体其余部分电荷所产生的场 强E1之和,即: E = E1 + EΔ S
σ
面元Δ S还将在内侧所产生场强 EΔ S ´ 且
结束 目录
解:(1)内球电势为 1 q1 q1 q1+Q U1 = 4pe0 R1 R2 + R2
1×10-10 1×10-10 12×10-10 = 9.0×109 1×10-2 3×10-2 + 4×10-2 =3.3×102(V)
外球电势
q1 +Q 12×10-10 U2 = = 9.0×109× 4×10-2 4pe0 R3 =2.7×102(V)
q
q
d +q
结束 目录
q E+ =E = 4pe0 r2 E表面 = 2E+ cosq 2q cosq = 2 4pe0 r
E 表面
E+ E q r
q
σ E .dS = E表面 S cos1800 s E表面 Sσ =e 0 e0 E表面 = e0 q 2 cosq σ = 2pe0 r q d =r cosq = cos3q 2pd2
静电场中的导体和电介质答案ppt课件
(A) 0
+
-+
O
d +q
-
+
-
-+
+
q (B)
40d
q (C)
4 0 R
(D)
q
40
1 d
1 R
9
选择题8:三块相互平行的导体板,相互之间的距离
d1 和 d2 比板的线度小得多,外面两板用导线连接起 来。若中间板上带电,并假设其左、右两面上电荷
的内表面带电量为
-q
;外表面带电量
为
-q
。
+q -q
+q -2q
11
填空题2:两个点电荷在真空中相距为r1时相互作 用力等于它们在某一“无限大”各向同性均匀电
介质中相距为r2时的相互作用力,则该电介质的
相对介电常数r =
。
q1q2
4 0 r12
q1q2
4 0 2 r22
r
r12 r22
面密度分别为σ1 和σ2 ,如图所示。则比值σ1/σ2为:
-σ1 σ1 σ2 -σ2
+σ1
+σ2
d1
d2
(A) d1 d2
(C) 1
(B) d2 d1
(D)
d
2 2
d12
1 0
d1
2 0
d2
10
填空题1:如图所示,两同心导体球壳,内球壳带
电量+q,外球壳带电量 -2q . 静电平衡时,外球壳
We
1 2
《静电场中的导体和电解质》答案
第13章 静电场中的导体和电解质 参考答案一、选择题1(D),2(D),3(B),4(A),5(C),6(B),7(C),8(B),9(C),10(B)二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 减小, 减小; (10). 增大,增大.三、计算题1. 一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为λ,试求垂足O 点处的感生电荷面密度.解:如图取座标,对导体板内O 点左边的邻近一点,半无限长带电直线产生的场强为:()⎰∞-=dx i dx E 2004/ελπ ()d i 04/ελπ -= 导体板上的感应电荷产生的场强为:()0002/εσi E-='由场强叠加原理和静电平衡条件,该点合场强为零,即()[]()02/4/000=--εσελd π ∴ ()d π2/0λσ-=2.半径为R 1的导体球,带电荷q ,在它外面同心地罩一金属球壳,其内、外半径分别为R 2 = 2 R 1,R 3 = 3 R 1,今在距球心d = 4 R 1处放一电荷为Q 的点电荷,并将球壳接地(如图所示),试求球壳上感生的总电荷.解:应用高斯定理可得导体球与球壳间的场强为 ()304/r r q E επ= (R 1<r <R 2)设大地电势为零,则导体球心O 点电势为: ⎰⎰π==2121200d 4d R R R R r r q r E U ε⎪⎪⎭⎫⎝⎛-π=21114R R qε根据导体静电平衡条件和应用高斯定理可知,球壳内表面上感生电荷应为-q . 设球壳外表面上感生电荷为Q'.以无穷远处为电势零点,根据电势叠加原理,导体球心O 处电势应为: ⎪⎪⎭⎫ ⎝⎛+-'+π=1230041R q R q R Q d Q U ε假设大地与无穷远处等电势,则上述二种方式所得的O 点电势应相等,由此可得Q '=-3Q / 4 , 故导体壳上感生的总电荷应是-[( 3Q / 4) +q ].3. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr r r r E U d 2d ελ 0ln 2r Rελπ=电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有 002E r ελπ=,000ln r RE r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.4. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε5. 两根平行“无限长”均匀带电直导线,相距为d ,导线半径都是R (R << d ).导线上电荷线密度分别为+λ和-λ.试求该导体组单位长度的电容.解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为⎰--+π=R d R x xd x U d )11(20ελ )ln (ln 20R d R R R d ---π=ελRRd -π=ln 0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RR d -π=lnε6.圆柱形电容器是由半径为a 的圆柱形导体和与它同轴的内半径为b (b >a )的导体圆筒构成,其间充满了相对介电常量为εr 的各向同性的均匀电介质.设圆柱导体单位长度带电荷为λ,圆筒上为-λ,忽略边缘效应.求电介质中的电极化强度P 的大小及介质内、外表面上的束缚电荷面密度σˊ.解:由D的高斯定理求出介质内的电位移大小为D = λ / (2πr ) (a <r <b ) 介质内的场强大小为E = D / (ε0εr ) = λ / (2πε0εr r ) (a ≤r ≤b ) 电极化强度 P = ε0χe E ()rr r ελεπ-=21 (a ≤r ≤b )内外表面上束缚电荷面密度a aP ='σcos180°=()ar r ελεπ--21b bP ='σcos 0°=()br r ελεπ-217. 一个圆柱形电容器,内圆柱半径为R 1,外圆柱半径为R 2,长为L (L >>R 2-R 1),两圆筒间充有两层相对介电常量分别为εr 1和εr 2的各向同性均匀电介质,其界面半径为R ,如图所示.设内、外圆筒单位长度上带电荷(即电荷线密度)分别为λ和-λ,求: (1) 电容器的电容. (2) 电容器储存的能量.解:(1) 根据有介质时的高斯定理可得两筒之间的电位移的大小为D = λ / (2πr ) 介质中的场强大小分别为E 1 = D / (ε0εr 1) = λ / (2πε0εr 1r ) E 2 = D / (ε0εr 2) = λ / (2πε0εr 2r )1r 2两筒间电势差⎰⎰⋅+⋅=21221d d R RR R r E r E UR R R R r r 220110ln π2ln π2εελεελ+=()()[]21021122/ln /ln r r r r R R R R εεεεελπ+=电容 ()()R R R R L U QC r r r r /ln /ln 22112210εεεεε+π== (2) 电场能量 2102112224ln ln 2r r r r R R R R L C Q W εεεεελπ⎪⎪⎭⎫ ⎝⎛+==8. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε= ,d SC 222ε=串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A四 研讨题1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
静电场中的导体和电介质习题详解精品文档5页
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得2.半径为R的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r rεε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D Q E r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
此后,若把电介质抽去 ,则该质点[ ](A )保持不动; (B )向上运动;(C )向下运动; (D )是否运动不能确定。
同济大学习题答案 静电场中的导体和电介质(1)
1
2
2
2
视为两个带电平面
E 2 0 2 0 0
静电平衡后的电荷分布见图.
Q q
R2
q
R1
Or
q
U0
q
4 π 0r
q
4π 0R1
Q q
4π 0R2
U Ed d
D
D1
1U
d
,
E1
U d
D2
2U
d
,
E2
dr
q
q
q
4π1r 4π1R 4π2R
W0
1q q
2 4π0r
1q q
2 4π0r
q2
4 π 0r
q1 q2
4π 0r1 4π 0r2
q1 q2 q
q1
1q 5
q2
4q 5
W
1 2
q1
q2
4 π 0r
1 2
q2
q1
4 π 0r
q1q2
4π 0r
0 rS
d AB
2.14 107 5 8.85 1012
4.0 103 200 104
V
9.7 102
V
解:(1)设点电荷+q在O点产生的场强为E1,
+ -
球面上感应电荷在O点产生的场强为E2, O点的总场强为E,有
+
-
+
E E1 E2 0
静电场中的导体与电介质版答案
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[B ]2、(基训5)两个同心的薄金属球壳,半径为R 1,R 2(R 1<R 2),若分别带上电量q 1和q 2的电荷,则两者的电势分别为V 1和V 2(选择无限远处为电势零点)。
现用细导线将两球壳连接起来,则它们的电势为:(A)V 1 (B) V 2 (C)V 1+V 2 (D) (V 1+V 2)/2 【解析】原来两球壳未连起来之前,内、外球的电势分别为2021011π4π4R q R q V εε+=2022012π4π4R q R q V εε+=用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为R 2的均匀带电球面,因此其电势为22021π4V R q q V =+=ε[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ AB+σ12OR dqR qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为:(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==--[A ]5、(自测6)一平行板电容器充满相对介电常数为r ε的各向同性均匀电介质,已知介质表面极化电荷面密度为σ'±。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。