九年级《三角函数》知识点、经典例题解析
九年级数学三角函数全章知识点整理
九年级数学三角函数全章知识点整理初中三角函数整理复一、三角函数定义在直角三角形中,对于一个锐角A,定义如下三个比值:siaA=A的对边/斜边,cosA=A的邻边/斜边,tanA=A的对边XXX的邻边二、特殊角的三角函数根据特殊角的三角函数值,可以得出以下归纳结果:siaA:30°=1/2,45°=√2/2,60°=√3/2cosA:30°=√3/2,45°=√2/2,60°=1/2XXX:30°=1/√3,45°=1,60°=√3练:1) 求sia 30°+cos30°的值为12) 求2sia 45°-cos30°的值为23) 求cos30°+tan60°-tan30°的值为sia45°三、解直角三角形的依据解直角三角形的主要依据有:1) 勾股定理:a²+b²=c²2) 锐角之间的关系:∠A+∠B=90°3) 边角之间的关系:sinA=cosB,XXX∠A的对边/∠A的邻边例题评析:1) 在△ABC中,∠C为直角,且b=2,a=6,求解这个三角形。
2) 在△ABC中,∠C为直角,b=20,∠B=35°,求解这个三角形(精确到0.1)。
3) 在Rt△ABC中,a=104.0,b=20.49,求解这个三角形。
4) 在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,求解此直角三角形。
四、仰角和俯角在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角。
例题:1) 如图(6-16),某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到控制点B距离(精确到1米)。
2) 如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′。
最新初三锐角三角函数知识点总结、典型例题、练习(精选)
三角函数专项复习锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式取值范围关 系正弦 斜边的对边A A ∠=sin c aA =sin 1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A (∠A 为锐角) 正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A (∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan33 1 3-5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法) )90cos(sin A A -︒=)90sin(cos A A -︒=BA cos sin =BA sin cos =A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边斜边 ACBba c8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
三角函数知识点及典型例题
三角函数知识点及典型例题三角函数知识点及典型例题§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角α终边相同的角的集合:{}|360,S k k Z ββα==+?∈.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α.3、弧长公式: R4、扇形面积公式: S=21 lr=21αr 2.§1.2.1、任意角的三角函数1、设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin . 2、设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)_______sin r y =α,________cos rx=α,_____tan x y =α.3、αsin ,αcos ,αtan 在四个象限的符号一正二正弦三切四余和三角函数线的画法. 4、诱导公式一:()()()_tan _2tan _cos _2cos _sin _2sin απααπααπα=+=+=+kk k (Z k ∈)5、特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值. §1.2.2、同角三角函数的基本关系式1、平方关系:22sin cos 1αα+=.2、商数关系:sin tan cos ααα=. §1.3、三角函数的诱导公式1、诱导公式二:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ=+-=+-=+2、诱导公式三:()()()._tan _tan _____,cos _cos _,sin _sin αααααα-=-=--=-3、诱导公式四:()()()._tan _tan _,cos _cos _,sin _sin ααπααπααπ-=--=-=-4、诱导公式五:._sin _2cos _,cos _2sin ααπααπ=??-=-5、诱导公式六:._sin _2cos _,cos _2sin ααπααπ-=??+=+ §1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()?ω+=x A y sin 的图象1、能够讲出函数x y sin =的图象和函数()b x A y ++=?ωsin 的图象之间的平移伸缩变换关系.2、对于函数:()()0,0sin >>++=ω?ωA b x A y 有:振幅A ,周期ωπ2=T ,初相?,相位?ω+x ,频率πω21==f .第三章、三角恒等变换两角和与差的正弦、余弦、正切公式cos()cos cos sin sin αβαβαβ-=+cos()cos cos sin sin αβαβαβ+=-sin()αβ+=sin cos cos sin αβαβ+sin()sin cos cos sin αβαβαβ-=-tan()αβ-tan tan 1tan tan αβαβ-=+ . tan()αβ+tan tan 1tan tan αβαβ+=-二倍角的正弦、余弦、正切公式1、_cos sin 2_2sin ααα=,变形:cos α=ααsin 22sin .2、22cos2cossin ααα=-22cos 1α=-212sin α=-变形1:21cos 2cos 2αα+=,变形2:21cos 2sin 2αα-=. 3、22tan tan 21tan ααα=- 1、注意正切化弦、平方降次. 解三角形 1、正弦定理R CcB b A a 2sin sin sin === 2、余弦定理a A bc c b cos 222-+=变形 cosA=bca cb 2222-+b B ac c a cos 2222-+=变形 cosB=acb c a 2222-+c C ab b a cos 2222-+=变形cosC=abc b a 2222-+3、三角形面积公式: S =21absinC=21bcsinA=21acsinB 课本题(必修4)1.(P 11 习题13)若扇形的周长为定值l ,则该扇形的圆心角为多大时,扇形的面积最大?22.(P 23 练习4)已知sin (4π-x )=-51,且0<x<="">623.( P 24 习题9(2))设tan α=-21,计算αααα22cos 2cos sin sin 1--。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题(含答案)
锐角三角函数我们知道,在Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则有:sin cos a A B c ==,cos sin b A B c ==,tan aA b=,这就是锐角三角函数的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系. 一、余角关系由上面的定义我们已得到sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A +∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在Rt△ABC 中,∠C =90°,CD ⊥AB 于D ,已知1sin 2A =,BD =2,求BC 的长.解:由于∠A +∠B =90°,所以1cos sin(90)sin 2B B A =-==.在Rt△BCD 中,cos BD B BC =,所以212BC =.所以BC =4. 二、平方关系 由定义知sin a A c =,cos b A c=, 所以222222222sin cos a b a b A A c c c++=+=(sin 2A 、cos 2A 分别表示sin A 、cos A 的平方).又由勾股定理,知a 2+b 2=c 2,所以sin 2A +cos 2A =22c c=1.应用此关系式我们可以进行有关锐角三角函数平方的计算. 例2 计算:sin256°+sin245°+sin234°.解:由余角关系知sin56°=cos(90°-56°)=cos34°. 所以原式=sin245°+(sin234°+cos234°)223122⎛⎫=+= ⎪ ⎪⎝⎭. 三、相除关系 由定义中sin a A c =,cos bA c=, 得sin tan cos aA a c ac A b A c b bc==⨯==.利用这个关系式可以使一些化简求值运算过程变得简单. 例3 已知α为锐角,tan α=2,求3sin cos 4cos 5sin αααα+-的值.解:因为sin tan 2cos ααα==,所以sin α=2cos α, 所以原式6cos cos 6174cos 10cos 4106αααα++===---.求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例4 如图1, 在△ABC 中,∠C =90°,如果t a n A =125,那么sin B 等于( ) (A)135 (B) 1312 (C) 125 (D)512 分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为tan A =125=b a ,所以可设a =5k ,b =12k (k >0),根据勾股定理得c =13k , 所以sin B =1312=c b .应选(B).五、等线段代换法例5 如图2,小明将一张矩形的纸片ABC D 沿C E 折叠,B 点恰好落在A D 边上,设此点为F ,若BA :BC =4:5,则c os∠DCF 的值是______.分析:根据折叠的性质可知△E BC ≌△EF C ,所以C F=CB , 又C D=AB ,AB :BC =4:5, 所以C D :C F=4:5,图1 图2在Rt△D C F 中,c os∠D C F=54=CF DC . 六、等角代换法例6 如图3,C D 是平面镜,光线从A 点出发经C D 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC ⊥C D ,B D⊥C D ,垂足分别为C 、D ,且AC =3,B D =6,C D =11,则tan α的值为( ) (A )311 (B )113 (C )119 (D )911分析:根据已知条件可得∠α=∠CA E ,所以只需求出tan∠CA E .根据条件可知△AC E∽△B DE,所以ED CE BD AC =,即CECE-=1163, 所以C E=311,在Rt△A E C 中,tan∠CA E=9113311==AC CE .所以tan α=911.七、等比代换法例7 如图4, 在Rt△ABC 中,ACB =90,C D⊥AB 于点D ,BC =3,AC =4,设BC D=α,tan α的值为( )(A)43 (B)34 (C)53 (D)54分析:由三角形函数的定义知tan α=DCDB, 由Rt△C D B ∽Rt△ACB , 所以43==AC BC DC DB ,所以tan α=43,选(A). ABCDEα 图3图4锐角三角函数测试1.比较大小:sin41°________sin42°.2.比较大小:cot30°_________cot22°.3.比较大小:sin25°___________cos25°.4.比较大小:tan52°___________cot52°.5.比较大小:tan48°____________cot41°.6.比较大小:sin36°____________cos55°.7、下列命题①sinα表示角α与符号sin的乘积;②在△ABC中,若∠C=90°,则c=αsinA成立;③任何锐角的正弦和余弦值都是介于0和1之间实数.其正确的为()A、②③ B.①②③ C.② D. ③8、若Rt△ABC的各边都扩大4倍得到Rt△A′B′C′,那么锐角A和锐角A′正切值的关系为( )A.tanA′=4tanA B.4tanA′=tanA C.tanA′=tanA D.不确定.9(新疆中考题)(1)如图(1)、(2),锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小。
九年级数学下册基础知识专项讲练(北师大版)专题 三角函数的应用
专题1.8 三角函数的应用(知识讲解)【学习目标】会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、锐角三角函数之间的关系如图所示,在Rt△ABC 中,△C =90°.(1)互余关系:sin cos A B =,0c sin(9)s n os i A A B ︒=-∠=;(2)平方关系:22sin cos 1A A +=;(3)倒数关系:tan(90)1tan A A ︒⋅-∠=或1t n an a t A B=;(4)商数关系:i t n an s cos A A A=. 要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、利用同角三角函数关系求值1.计算:(1)2tan452sin30cos 30-+; (2)22tan1tan89sin 1sin 89⋅++.举一反三:【变式1】2.已知△A 为锐角且sinA=12,则4sin 2A -4sinAcosA +cos 2A 的值是多少。
【变式2】3.如图,在ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且90AEB CFD ∠=∠=︒.(1)求证:四边形AECF 是平行四边形.(2)当5AB =,3tan 4ABE ∠=,CBE EAF ∠=∠时,求BD 的长.【变式3】4.求值:(1)260453456cos sin tan tan +-⋅; ()2已知2tanA =,求245sinA cosA sinA cosA-+的值. 类型二、求证同角三角函数关系式5.已知:1sin15cos15sin302⋅=,1sin20cos20sin402⋅=,1sin30cos30sin602⋅=,请你根据上式写出你发现的规律________.举一反三:【变式1】6.已知:实常数a b c d 、、、同时满足下列两个等式:△sin cos 0a b c θθ+-=;△cos sin 0a b d θθ-+=(其中θ为任意锐角),则a b c d 、、、之间的关系式是:___________【变式2】7.△sin 2A+cos 2A=________,△tanA•cotA=________.类型三、互余两角的三角函数的关系8.在Rt△ABC 中,已知△C =90°,sin A =35,求cos A 、tan A 以及△B 的三个三角函数值. 举一反三:【变式1】9.在Rt △ABC 中,△C =90°,sin B =35,求cos A 的值.10.在Rt△ABC中,△C=90°,sinA=34,求cosA,sinB,cosB,tanA,tanB的值.【变式3】11.在Rt△ABC中,△C=90°,cosB=35,求tanA的值.类型四、三角函数综合12.如图,在△ABC中,△ACB=90°,sin A=45,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos △ABE的值.举一反三:【变式1】13.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile 到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.14.如图,已知四边形ABCD 中,△ABC=90°,△ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E .(1)若△A=60°,求BC 的长;(2)若sinA=45,求AD 的长. (注意:本题中的计算过程和结果均保留根号)【变式3】15.如图,在Rt ABC 中,90,30,B A AC ∠=︒∠=︒=(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE 的周长为a ,先化简()()211T a a a =+--,再求T 的值.参考答案:1.(1)34;(2)2. 【分析】(1)根据特殊角的三角函数值计算即可;(2)根据直角三角形中tanA=1tanB,sin 2A+cos 2A=1,sinA=cosB 计算.【详解】()1原式21331211244=-⨯+=-+=; ()2原式()221tan1sin 1cos 1tan1=⨯++ 11=+2=.故答案为(1)34;(2)2. 【点睛】本题考查了三角函数值的计算.2.74【分析】先求出A ∠的度数,再求出cos A 的值,最后代入计算即可.【详解】A ∠为锐角,且1sin 2A = 30A ∴∠=︒cos cos30A ∴=︒=22224117 44()4224sin A sinAcos A A cos ∴-+⨯-⨯== 【点睛】本题考查了锐角三角函数值,熟记特殊角的三角函数值是解题关键.3.(1)见解析;(2)【分析】(1)由平行四边形的性质得到AB =CD ,ABE CDF ∠=∠,和已知条件一起,用于证明三角形全等,再根据一组对边平行且相等的四边形是平行四边形判定定理得出结论; (2)根据平行四边形的性质得到一组对角相等,通过等量代换,得到CBE ECF ∠=∠,则相等的角正切值也相等,根据比值算出结果.【详解】(1)证明=90AEB CFD , △//AE CF ,在ABCD 中,//AB CD ,=AB CD ,△ABE CDF ∠=∠,△ABE ≌CDF ()AAS ,△AE CF =,△四边形AECF 是平行四边形.(2)解:△ABE ≌CDF ,△BE =DF ,△四边形AECF 是平行四边形,△EAF FCE ,在Rt ABE 中5AB =,3tan 4ABE ∠=,△AE =3,BE =4.△BE =DF ,AE =CF ,△BE =DF =4,AE =CF =3,EAF FCE ,CBE EAF ∠=∠,△CBE ECF ∠=∠,△tan△CBF =34CF BE EF EF =++,tan△ECF =3EF EF CF =,△343EF EF =+,得到EF 2,或EF =2(舍去),△BD 2=6,即BD =6.【点睛】本题考查了平行四边形的性质与判定以及相等的角的正切值也相等.解决本题的关键在于等量代换出角相等,应用相等的角的正切值也相等来解题.4.(1)0;(2)313. 【分析】(1)根据特殊角的三角函数值及互余两角三角函数值相互间的关系计算.(2)根据同角三角函数值相互间的关系计算.【详解】(1)原式12=+)2﹣11122=+-1=0; (2)△tan A =2,△sin cos A A =2,△sin A =2cos A ,△原式=22cos 42cos 5A cosA A cosA ⨯-⨯+=3cos 13cos A A =313. 【点睛】本题考查了特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.5.1sin cos sin22ααα⋅= 【分析】从角度的倍数关系方面考虑并总结写出结论.【详解】根据题意发现:同一个角正弦与余弦的积等于这个角的2倍的正弦的一半, 规律为:1sin cos sin22ααα⋅=. 故答案为1sin cos sin22ααα⋅=. 【点睛】本题考点:同角三角函数的关系.6.a 2+b 2=c 2+d 2【分析】把两个式子移项后,两边平方,再相加,利用sin 2θ+cos 2θ=1,即可找到这四个数的关系.【详解】由△得asinθ+bcosθ=c ,两边平方,a 2sin 2θ+b 2cos 2θ+2absinθcosθ=c 2△,由△得acosθ-bsinθ=-d ,两边平方,a 2cos 2θ+b 2sin 2θ-2absinθcosθ=d 2△,△+△得a 2(sin 2θ+cos 2θ)+b 2(sin 2θ+cos 2θ)=c 2+d 2,△a 2+b 2=c 2+d 2.【点睛】本题主要考查了同角三角函数基本关系式的应用,sin 2θ+bcos 2θ=1的应用是解题的关键,属于基础题.7. 1 1【详解】如图,设Rt△ABC 中,△C=90°,△A 、△B 、△C 所对的边分别为a b c 、、,则sinA=a c,cosA=b c ,tanA=a b ,cotA=b a ,222+=a b c , △(1)sin 2A+cos 2A=2222222()()1a b a b c c c c c++===; (2)tanA•cotA=1a b b a ⋅=.点睛:解答本题的要点是:画出符合要求的图形,结合锐角三角形函数的定义和勾股定理进行推理计算即可得到答案.8.见解析.【分析】根据已知角A 的正弦设()30BC k k =>,得出5AB k =,由勾股定理求出4AC k =,根据锐角三角函数的定义求出即可.【详解】△sin A =35=BC AB , △设()30BC k k =>,5AB k =,由勾股定理得:4AC k =,则cos A =4554AC k AB k ==, tan A =3344BC k AC k ==, sin B =45AC AB =, cos B =35BC AB =, tan B =43AC BC =.【点睛】本题考查了锐角三角函数的定义的应用,熟练掌握定义是关键.9.cos A =35. 【分析】先根据三角形内角和定理得出△A+△B=90°,再根据互余两角的三角函数的关系求解.【详解】解:在△ABC 中,△△C =90°,△△A +△B =90°,△cos A =sin B =35. 故答案为:35. 【点睛】本题考查直角三角形中互为余角的两角的三角函数的关系及三角形内角和定理.解题关键是一个角的正弦值等于它的余角的余弦值,一个角的余弦值等于它的余角的正弦值;三角形内角和是180°.1034【分析】已知直角三角形中一个锐角的某个三角函数值,求这个锐角的其他三角函数值和它的余角的各三角函数值,可以先画出直角三角形,结合图形和已知条件,利用设“k”法,将直角三角形的各边长用含“k”的代数式表示出来,其中k >0,然后根据锐角三角函数的定义,求得锐角的各三角函数值.【详解】解:如图因为Rt △ABC 中,△C=90°,3sin 4A =, 所以34BC AB =, 设BC =3k(k >0),则AB =4k .在Rt△ABC 中,由勾股定理得AC .所以cos AC A AB ===,sin AC B AB== 33cos 44BC k B AB k ===,tanBC A AC ==,tan AC B BC === 11.34【分析】在Rt △ABC 中,△C =90°,根据,cosB =BC AB =35,设BC =3x ,AB =5x ,再根据勾股定理,可得AC 的长 再根据正切等于对边比邻边,可得答案.【详解】解 由在Rt △ABC 中,△C =90°,cosB =35,得 cosB =BC AB =35, 设BC =3x ,AB =5x ,勾股定理得AC 4x ,由正切等于对边比邻边,得tanA =BC AB =3x 4x =34. 【点睛】本题考查了余弦函数的定义,勾股定理,正切函数的定义.熟练掌握相关知识是解题的关键.12.(1)5;(2)2425. 【详解】试题分析:(1)利用正弦定义很容易求得AB =10,然后由已知D 为斜边AB 上的中点,直角三角形斜边上的中线等于斜边的一半求解.(2)cos△ABE =BE BD,则求余弦值即求BE ,BD 的长,易求得BD =5.再利用等面积法求BE 的长.试题解析:(1)在△ABC 中,△△ACB =90°,sin A =45BC AB =,而BC =8,△AB =10.△D 是AB 的中点,△CD =12AB =5.(2)在Rt△ABC 中,△AB =10,BC =8,△AC =6.△D 是AB 中点,△BD =5,S △BDC =S △ADC ,△S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,△BE =6824255⨯=⨯. 在Rt△BDE 中,cos△DBE =BE BD = 2455=2425,即cos△ABE 的值为2425. 点睛:在直角三角形中求长度,一般可通过勾股定理或全等三角形来求;若已知角度则可用锐角三角函数来求;若这些方法均不可行,又是求高或已知高的长度则可利用等面积法来求.13.渔船此时与C 岛之间的距离为50海里.【分析】过点C 作CD△AB 于点D ,由题意得:△BCD=30°,设BC=x ,解直角三角形即可得到结论.【详解】过点C 作CD△AB 于点D ,由题意得:△BCD=30°,设BC=x ,则:在Rt △BCD 中,BD=BC•sin30°=12x ,;△AD=30+12 x,△AD2+CD2=AC2,即:(30+12x)2+)2=702,解得:x=50(负值舍去),【点睛】注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.14.(1)8;(2)143.【分析】(1)根据锐角三角函数求得BE和CE的长,根据BC=BE﹣CE即可求得BC的长;(2)根据题意求得AE和DE的长,由AD=AE﹣DE即可求得AD的长.【详解】(1)△△A=60°,△ABE=90°,AB=6,tanA=,△△E=30°,BE=tan60°•6=6,又△△CDE=90°,CD=4,sinE=,△E=30°,△CE==8,△BC=BE﹣8;(2))△△ABE=90°,AB=6,sinA==,△设BE=4x,则AE=5x,得AB=3x,△3x=6,得x=2,△BE=8,AE=10,△tanE====,解得,DE=,△AD=AE﹣DE=10﹣=,即AD的长是.考点:解直角三角形.15.(1)作图见解析;(2)10.【分析】(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度.【详解】解:(1)如图所示:(2)2(1)(1)31T a a a a =+--=+,△1122AE AC ==⨯△2cos cos30AE AE AD A ====︒, △1sin sin 30=212DE AD A AD ==︒⨯=,△123a =+=3110T a ∴=+=.。
三角函数定义知识点及例题[练习与答案]超强推荐
三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。
(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。
但既有联系,又有区别。
定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。
专题01 锐角三角形函数和特殊角的三角函数值(解析版)(重点突围)
专题01锐角三角形函数和特殊角的三角函数值考点一正弦、余弦、正切的概念辨析考点二求角的正弦值、余弦值、正切值考点三已知正弦值、余弦值、正切值求边长考点四求特殊角的三角函数值考点一正弦、余弦、正切的概念辨析A.sinBCAAB=B.【变式训练】A.CDACB.BDCB【答案】C【分析】根据已知可得∠B=∠ACD 【详解】A.∵CD⊥AB,考点二求角的正弦值、余弦值、正切值【变式训练】【答案】5 5【分析】连接AC,根据格点特点得出答案.(1)求证:四边形OCEB是矩形;AB=,(2)连接DE,当5【答案】(1)见解析Q 四边形ABCD 是菱形,OA OC \=,OB OD =在Rt AOB △中,5AB =考点三 已知正弦值、余弦值、正切值求边长Q ∠C =90°,AB =sin 8BC BC A AB \===解得:6BC =,故选:A .【变式训练】【答案】5【分析】根据5sin 13A =,可设【详解】解:∵5sin A =,sin【点睛】本题考查锐角三角函数和勾股定理,熟练掌握锐角三角函数的定义和勾股定理的计算是解答本题的关键.3.(2022·安徽宿州【答案】46【分析】首先根据考点四求特殊角的三角函数值【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【变式训练】化简.A.43B【答案】B【分析】依据折叠的性质以及矩形的性质,易得股定理易得BF的长.根据三角函数的定义,易得A.55【答案】D【分析】先根据圆周角定理可得【答案】1【分析】连接AB ,由勾股定理求得【详解】解:连接AB 由勾股定理得:AB =∴AB =AO ,22OA AB +∴△ABO 是以OB 为斜边的等腰直角三角形,∴tan tan 45AOB а==【答案】53【分析】根据直角三角形的边角关系可求出MC NC MN 、、,再根据角平分线的定义以及等腰三角形的判定得出【详解】解:在ABC V 中,=90C Ð∴10BCAB ==,2AC AB BC =-【点睛】本题考查直角三角形的边角关系,角平分线的定义,相似三角形的判定和性质以及平行四边形的判定和性质,掌握直角三角形的边角关系以及相似三角形的判定和性质是解决问题的前提,用含有数式表示MC、NC、MN是正确解答的关键.三、解答题11.(2022·吉林·长春市第五十二中学九年级阶段练习)计算:【答案】4sin 5B =(1)求证:AE=AC;(2)若cos∠E=35,CE=12,求矩形【答案】(1)见解析(2)矩形ABCD的面积为48(1)求证:△ABE∽△DEC(2)当AD=25时,且AE<DE时,求(3)当BP=9时,求BE·EF的值.【答案】(1)见详解1∥,BF=PG=BP=9,AB=12∵BE PG∴四边形BPGF是菱形,∥,GF=BP=9,∴BP GF∴∠GFE=∠ABE,(1)求证:AM FM=;(2)如图2,若点B¢恰好落在对角线AC上,求tan F的值;(3)当2BE CE=时,求线段AM的长.【答案】(1)见解析;(2)1 tan2F=;(3)线段AM的长为14518或736.由AB CF ∥,,ABE FCE BAE \Ð=ÐÐΔΔABE FCE \∽,\2AB BE CF CE ==,即6CF=由AB CF ∥:,ABE FCE BAE CFE\Ð=ÐÐ=ÐΔABE FCE \D ∽,\2AB BE CF CE ==,即62CF=,3CF \=,则633DF =-=,解题时注意分类思想与方程思想的运用.。
第二十八章 锐角三角函数(单元总结)-2021学年九年级数学下册(人教版)(解析版)
第二十八章 锐角三角函数单元总结【知识要点】 知识点一 锐角三角形锐角三角函数:如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)【正弦和余弦注意事项】1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA 、cosA 是一个比值(数值,无单位)。
3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,对边邻边C知识点二 解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形. 直角三角形五元素之间的关系: 1. 勾股定理()2. ∠A+∠B=90°3. sin A==4. cos A= =5.tan A= =【考查题型】考查题型一 正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为( )A .43B .34C .35D .45【答案】D 【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,∴AC =222234=+=+AC AD CD =5. ∴4sin 5CD BAC AC ∠==. 故选D . 【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .43【答案】A 【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得. 详解:在Rt △ABC 中,∵AB=10、AC=8, ∴2222=108=6AB AC --,∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt△ABC中,∠C=90°,sin A=45,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm 【答案】C【详解】已知sinA=45BCAB=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A 5B25C5D.23【答案】B【详解】由格点可得∠ABC所在的直角三角形的两条直角边为2,4,222425+=∴cos∠25525=.故选B .变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠=,AB 6=,1cosA 3=,则AC 等于( ) A .18 B .2C .12D .118【答案】B 【分析】根据三角函数的定义,在直角三角形ABC 中,cosA =ACAB,即可求得AC 的长. 【详解】解:∵在△ABC 中,∠C =90°,∴cosA =ACAB , ∵cosA =13,AB =6,∴AC =123AB =,故答案选:B . 【点睛】本题考查了解直角三角形中三角函数的应用,解题的关键是要熟练掌握直角三角形中边角之间的关系.变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M (5,2),那么cosα的值是( )A 5B .23C 25D 5【答案】D 【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(5,2),∴OH=5,MH=2,∴OM=22(5)2+=3,∴cosα=5 OHOM=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C3D3【答案】B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【详解】 如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2, ∴△ABC 为等腰直角三角形, ∴∠BAC=45°, 则tan ∠BAC=1, 故选B .【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2B .3C .2D .1【答案】A 【解析】分析:本题考查等腰直角三角形的性质及解直角三角形.解题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解. 解析:如图,作DE ⊥AB 于E .∵tan ∠DBA==,∴BE=5DE .∵△ABC 为等腰直角三角形,∴∠A=45°,∴AE=DE .∴BE=5AE ,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=,AE=2.故选A.变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若2tan5BAC∠=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m 【答案】A【分析】根据BC的长度和tan BAC∠的值计算出AC的长度即可解答.【详解】解:因为2tan5BCBACAC=∠=,又BC=30,所以,3025AC=,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin60°,cos60°)关于x轴对称的点的坐标是( )A.(32,12) B.(-32,-12)C.(312) D.(-123【答案】B 【详解】∵点(-sin60°,cos60°)即为点(312),∴点(-sin60°,cos60°)关于y 3,12).变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【答案】D【详解】试题分析:选项A,sin40°=sin(90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C,sin225°+cos225°=1正确;选项D,sin60°=3,sin30°=12,则sin60°=2sin30°错误.故答案选D.变式4-2.(2018·河北唐山市·九年级期末)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【答案】C【解析】因为sin A=cos B 2,所以∠A=∠B=45°,所以△ABC是等腰直角三角形. 故选C.考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt△ABC中,∠C =90°,sinA=45,则cosB的值等于( )A.35B.45C.34D5【答案】B 【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cos B=sin A=45.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA= 12,那么sinA 的值是( )A .2B .2C .3D .12【答案】B 【分析】利用同角三角函数间的基本关系求出sinA 的值即可. 【详解】:∵Rt △ABC 中,cosA=12 ,∴ =2, 故选B . 【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠=,如果4cosA 5=,那么tanA 的值是( ) A .35B .53C .34D .43【答案】C 【分析】本题可以利用锐角三角函数的定义求解. 【详解】解:∵在Rt △ABC 中,∠C=90°,∴cosA=b c ,tanA=ab ,a 2+b 2=c 2. ∵cosA=45,设b=4x ,则c=5x ,a=3x .∴tanA=a b =3344x x =. 故选C.【点睛】利用锐角三角函数的定义,通过设参数的方法求三角函数值.考查题型六 解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】 本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A .10B .15C .6D .10 【答案】D【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,2215AD AD CD ∴=-=;在Rt ABD ∆中,315BD CB CD AD =﹣=,=,22BD AD 26AB ∴=+=,AD 10sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,2≈1.4)【答案】云梯需要继续上升的高度BC 约为9米.【分析】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,在Rt ABD ∆中,求得AD 的长;在Rt ACD ∆中,求得CD 的长,根据BC=CD-BD 即可求得BC 的长.【详解】过点A 作AM EF ⊥于点M ,AD BC ⊥于点D ,∵CN EF ⊥ ,∴90AMN MND ADN ∠=∠=∠=︒,∴四边形AMND 为矩形.∴ 2.5DN AM ==米.∴10.5 2.58BD BN DN =-=-=(米),由题意可知,45BAD ∠=︒,65CAD ∠=︒,∵AD BC ⊥,∴90ADB ∠=︒,在Rt ABD ∆中,tan BD BAD AD ∠=, ∴88tan tan45BD AD BAD ===∠︒(米). 在Rt ACD ∆中,tan CD CAD AD∠=, ∴tan 8tan658 2.116.8CD AD CAD =⋅∠=︒≈⨯=(米).∴16.888.89BC CD BD =-≈-=≈(米).答:云梯需要继续上升的高度BC 约为9米.【点睛】本题考查解直角三角形﹣仰角俯角问题,添加辅助线,构造直角三角形,建立直角三角形模型是解决问题的关键.变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC 的高度,从距离楼底C 处603米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i=1:3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).【答案】153+【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M ,先在RT △BDN 中求出线段BN ,在RT △ABM 中求出AM ,再证明四边形CMBN 是矩形,得CM=BN 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在RT △BDN 中,BD=30,BN :ND=13,∴BN=15,DN=153,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=603153453-=,在RT△ABM中,tan∠ABM=43 AMBM=,∴AM=603,∴AC=AM+CM=15603+.【点睛】构造适当的直角三角形,并应用锐角的三角函数,正确理解坡比的概念.变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【答案】高、低杠间的水平距离CH 的长为151cm .【解析】分析:利用锐角三角函数,在Rt △ACE 和Rt △DBF 中,分别求出AE 、BF 的长.计算出EF .通过矩形CEFH 得到CH 的长.详解:在Rt △ACE 中,∵tan ∠CAE=CE AE, ∴AE=()15515521tan tan82.47.5CE cm CAE =≈≈∠︒ 在Rt △DBF 中,∵tan ∠DBF=DF BF, ∴BF=()23423440tan tan80.3 5.85DF cm DBF =≈=∠︒. ∵EF=EA+AB+BF≈21+90+40=151(cm )∵CE ⊥EF ,CH ⊥DF ,DF ⊥EF∴四边形CEFH 是矩形,∴CH=EF=151(cm ).答:高、低杠间的水平距离CH 的长为151cm .点睛:本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.。
(完整版)九年级《三角函数》知识点、例题、中考真题,推荐文档
斜边 c ba九年级《三角函数》知识点、例题、中考真题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
a 2 + b 2 = c 22、如下图,在R t △A BC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义 表达式取值范围 关 系正弦 sin A =∠A 的对边斜边 sin A = ac 0 < sin A < 1(∠A 为锐角)sin A = cos B cos A = sin Bsin 2 A + cos 2 A = 1余弦 cos A =∠A 的邻边斜边 cos A = bc 0 < cos A < 1(∠A 为锐角)正切tan A =∠A 的对边∠A 的邻边 tan A = abtan A > 0(∠A 为锐角)tan A = cot B cot A = tan Btan A = 1(倒数)cot Atan A ⋅ cot A = 1余切cot A =∠A 的邻边∠A 的对边cot A = bacot A > 0(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
B由∠A + ∠B = 90︒得∠B = 90︒ - ∠AAC邻边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
由∠A + ∠B = 90︒ 得∠B = 90︒ - ∠A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° sin0 1 22 23 21 cos 1 32 2 21 20 tan 0 3 31 3 - cot-313 36当 0°≤≤90°时,sin 随的增大而增大,cos 随的增大而减小。
初中三角函数知识点总结及典型习题含答案)
初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。
余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。
正切函数tanA=对边a/邻边b,取值范围为R(实数集)。
3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。
4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。
7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。
8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。
依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。
9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。
方位角:从某点的指北方向按顺时针转到目标方向的水平角。
方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。
例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。
江西九年级数学下册第二十八章《锐角三角函数》综合知识点总结(答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .332.已知如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=23,AB=4,连接AC ,若∠CAD=30°,则CD 为( )A .223+B .27C .1033D .123+3.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 4.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 5.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B .55C .2D .2556.在Rt △ABC 中,∠ACB =90°,AB =5,tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C .5 D .257.如图,在矩形ABCD 中,AB =6,BC =62,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .32D .62﹣6 8.某兴趣小组想测量一座大楼 AB 的高度.如图,大楼前有一段斜坡BC ,已知 BC 的长为 12 米它的坡度1:3i = .在离 C 点 40 米的 D 处,用测量仪测得大楼顶端 A 的仰角为 37度,测角仪DE 的高度为 1.5米,求大楼AB 的高度约为( )米(sin 370.60,cos370.80,tan 370.75,3 1.73︒=︒=︒==)A .39.3B .37.8C .33.3D .25.79.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23-B .23+C .36D .3210.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 11.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4212.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°13.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B 26C 26D 13 14.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48二、填空题15.计算:02cos 45|13|(3)π︒+---=_____.16.如图,在ABC 中,6AB BC ==,点O 为BC 中点,点P 是射线AO 上的一个动点,且 60AOC ∠=︒.要使得BCP 为直角三角形,CP 的长为 ________ .17.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm .18.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______.19.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.20.将一副三角板如图摆放,使得一块三角板的直角边AC 和另一块三角板的斜边ME 重叠,点A 与点M 重合,已知AB=AC=8,则重叠的面积是__________.21.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.22.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则AD BC的值为__________.23.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.24.在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =__°,∠B =___°.25.在△ABC 中,若()21cos 1tan 02A B -+-=,则∠C=____________. 26.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.三、解答题27.(1)计算:|﹣1|﹣(3﹣π)016(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.28.(1)计算:102272cos305)π-︒++;(2)解方程:3x 2﹣5x +2=0.29.已知:如图所示,ABC 在直角坐标平面内,三个顶点的坐标分别()0,3A ,()3,4B ,()2,2C ,(正方形网格中每个小正方形的边长是一个单位长度).()1画出ABC 关于x 轴对称的111A B C △,点1C 的坐标是____;tan _____.BAC ∠=()2以点B 为位似中心,在网格内画出222A B C △,使222A B C △与ABC 位似,且位似比为2:1,点2C的坐标是_____;()3A B C的周长为_______ .22230.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.参考答案【参考答案】一、选择题1.C2.B3.D4.C5.D6.B7.D8.C9.A10.D11.B12.D13.B14.C二、填空题15.﹣1【分析】原式利用特殊角的三角函数值绝对值的代数意义以及零指数幂法则计算即可得到结果【详解】解:原式==故答案为:﹣1【点睛】此题考查了实数的运算特殊角的三角函数值以及零指数幂熟练掌握运算法则是解16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜17.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴18.【分析】连接OBOC由题意易得AE⊥BC则有BE=EC∠BOD=∠BAC设OB=3rOE=2r然后根据勾股定理可求解【详解】解:连接OBOC如图所示:∵内接于AD过圆心O∴AE⊥BC∴BE=EC∴∠19.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC是由△ACD翻折20.【分析】过Q作QH⊥AC于H在△QHC中由于∠QCH=45°则CH=QH设CH=则QH=x在Rt△QHA中由于∠QAH=60°求得AH=然后利用CH+AH=AC求得的值再根据三角形面积公式计算得到结21.8【分析】作AH⊥BC于H则四边形AFCH是矩形AF=CHAH=CF在Rt△ABH中解直角三角形即可解决问题【详解】解:作AH⊥BC于H则四边形AFCH是矩形AF=CH在Rt△ABE 中∠BAE=9022.【分析】沿AB作垂线与C的延长线相交于M点可得到等边直角三角形和锐角为30°的直角三角形根据三角函数求解即可【详解】解:如图连接AC并过B点作BM⊥CM设BM=k∵AD=CD∠D=60°∴△ACD是23.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点24.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A=90°﹣∠B=90°﹣325.75°【分析】根据非负数性质得根据三角函数定义求出∠A=60°∠B=45°根据三角形内角和定理可得【详解】因为所以所以所以∠A=60°∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:7526.【分析】过点F作FI⊥BC于点I延长线IF交AD于J根据含30°直角三角形的性质可求出FIFJ和JH的长度从而求出HD的长度【详解】解:过点F作FI⊥BC于点BC延长线AD 交AD于J由题意可知:CF三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】如图,设CP 交⊙O 于点D ,连接OA 、AD .由切线的性质易证△AOP 是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD 中得到AD=OA=2;最后通过解直角△ACD 来求AC 的长度.【详解】解:如图,设CP 交⊙O 于点D ,连接OA 、AD .设⊙O 的半径为r .∵PA 、PB 是⊙O 的切线,∠APB=60°,∴OA ⊥AP ,∠APO=12∠APB=30°. ∴OP=2OA ,∠AOP=60°,∴PC=2OA+OC=3r=6,则r=2,易证△AOD 是等边三角形,则AD=OA=2,又∵CD 是直径,∴∠CAD=90°,∴∠ACD=30°,∴AC=tan 30?AD 3故选:C .【点睛】 本题考查了切线的性质,圆周角定理.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.2.B解析:B【分析】过C 点作CH ⊥AD 延长线于H 点,由CH=AB=4求出AH 的长,再减去AD 即得到DH 的长,再在Rt △DCH 中使用勾股定理即可求出CD .【详解】解:如图所示,过C 点作CH ⊥AD 延长线于H 点,∵AD ∥BC ,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH 为矩形,∴AB=CH=4,在Rt △ACH 中,3343AHCH AB , ∴DH=AH-AD=23∴在Rt △CDH 中,22121627CDDH CH ,故选:B .【点睛】本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3::是解决本题的关键. 3.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】 解:由题意可得:2222345c a b =++=,∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.4.C解析:C 【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.5.D 解析:D【分析】 过B 点作BD ⊥AC ,得AB 的长,AD 的长,利用锐角三角函数得结果. 【详解】解:过B 点作BD ⊥AC ,如图,由勾股定理得,221310+=222222+=cosA=2225510AD AB == 故选D .【点睛】本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.6.B解析:B【分析】根据正切的定义得到BC=12AC ,根据勾股定理列式计算即可.【详解】在Rt △ABC 中,∠ACB=90°,tan ∠B=2, ∴AC BC=2, ∴BC=12AC ,由勾股定理得,AB 2=AC 2+BC 22=AC 2+(12AC )2, 解得,AC=2,故选B .【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.7.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得2AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:6,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又2AB AD '= AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=6,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 8.C解析:C【分析】延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H ,在Rt △BCF 中利用坡度的定义求得CF 的长,则DF 即可求得,然后在直角△AEH 中利用三角函数求得AF 的长,进而求得AB 的长.【详解】解:延长AB 交直线DC 于点F ,过点E 作EH ⊥AF ,垂足为点H .∵在Rt △BCF 中,BF CF =1:3i =, ∴设BF=k ,则CF=3k ,BC=2k .又∵BC=12,∴k=6,∴BF=6,CF=63,∵DF=DC+CF ,∴DF=40+63,∵在Rt △AEH 中,tan ∠AEH=AH EH, ∴AH=tan37°×(40+63)≈37.785(米),∵BH=BF-FH ,∴BH=6-1.5=4.5.∵AB=AH-HB ,∴AB=37.785-4.5≈33.3.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.9.A解析:A【分析】设BC=x ,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,可得,AB=2x ,3x ,由AD AB ==2x ,可得3x ,由AD AB =,可知,∠D=∠ABD=12∠BAC=15°,在Rt BDC ∆ 中,根据锐角正切三角函数的定义,即可求解.【详解】∵AD AB =,∴∠D=∠ABD ,∵∠BAC=∠D+∠ABD ,∴∠D=12∠BAC=15°, 设BC=x , ∵在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,∴AB=2x ,AC=22(2)3x x x -=,∴CD=2x+3x =(23)x +,在Rt BDC ∆中,tan 23(23)BC x D DC x∠===-+ , ∴°tan15=23-,故选A.【点睛】本题主要考查锐角正切三角函数的定义,根据图形,设BC=x ,用含x 的代数式表示相关线段的长,是解题的关键.10.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.11.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠B=∠BAE,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE垂直平分AB于点D,∴AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,∵AB=AC,∴∠AEC=2∠C,∵AE⊥AC,∴∠EAC=90°,∴∠C=30°,∴CE=643 cos3032AC==︒,故选:B.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.12.D解析:D【分析】作AE⊥BC于E,根据平行四边形的面积=矩形面积的一半,得出AE=12AB,再由三角函数即可求出∠ABC的度数,即可得到答案.【详解】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12 BC•AB,∴AE=12AB , ∴sinB=12AE AB =, ∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.13.B解析:B【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+=∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴22BD =, ∴2262sin 13BD BAC AB ∠=== 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.14.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形, 160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .二、填空题15.﹣1【分析】原式利用特殊角的三角函数值绝对值的代数意义以及零指数幂法则计算即可得到结果【详解】解:原式==故答案为:﹣1【点睛】此题考查了实数的运算特殊角的三角函数值以及零指数幂熟练掌握运算法则是解解析:3﹣1【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【详解】解:原式=22311 2⨯+--=31-故答案为:3﹣1【点睛】此题考查了实数的运算,特殊角的三角函数值,以及零指数幂,熟练掌握运算法则是解本题的关键.16.或3或【分析】利用分类讨论①当∠BPC=90°时情况一:如图1利用直角三角形斜边的中线等于斜边的一半得出PO=BO易得△BOP为等边三角形利用锐角三角函数可得CP的长;情况二:如图2利用直角三角形斜解析:33或3或37.【分析】利用分类讨论,①当∠BPC=90°时,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得CP的长;情况二:如图2,利用直角三角形斜边的中线等于斜边的一半可得结论.②当∠CBP=90°时,如图3,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得CP的长.【详解】解:①当∠CPB=90°时,情况一:(如图1),∵点O为BC中点,∴AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴CP=CB•sin60°=6×32=33;情况二:如图2,∵点O为BC中点,∴AO=BO,∵∠CPB=90°,∴PO=BO=CO,∵∠AOC=60°,∴△COP为等边三角形,∴CP=CO=3,②当∠CBP=90°时,如图3,∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=33 tan303OB==︒,在直角三角形CBP中,22226(33)37 BC BP+=+=故答案为:333或37【点睛】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.17.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴解析:64【分析】连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F,求出 CE , EF , DF 即可解決问题;【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB//EF,AE//BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE//PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.18.【分析】连接OBOC由题意易得AE⊥BC则有BE=EC∠BOD=∠BAC设OB=3rOE=2r然后根据勾股定理可求解【详解】解:连接OBOC如图所示:∵内接于AD过圆心O∴AE⊥BC∴BE=EC∴∠解析:5【分析】连接OB、OC,由题意易得AE⊥BC,则有BE=EC,∠BOD=∠BAC,设OB=3r,OE=2r,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC , ∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,225BE OB OE -=, ∴25BC = 故答案为5【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.19.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折 解析:32【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键.20.【分析】过Q 作QH ⊥AC 于H 在△QHC 中由于∠QCH=45°则CH=QH 设CH=则QH=x 在Rt △QHA 中由于∠QAH=60°求得AH=然后利用CH+AH=AC 求得的值再根据三角形面积公式计算得到结 解析:48163-【分析】过Q 作QH ⊥AC 于H ,在△QHC 中,由于∠QCH=45°,则CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,由于∠QAH=60°,求得AH=33x ,然后利用CH+AH=AC 求得x 的值,再根据三角形面积公式计算得到结果.【详解】过Q 作QH ⊥AC 于H ,如图,∠ACB=45°,∠DME=60°,AC=8,在△QHC 中,∠QCH=45°,∴CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,∠QAH=60°, ∴AH=QH tan 60︒3x , ∵CH+AH=AC , ∴383x x +=, 解得:(433x =,∴QAC 12S =QH•AC (14338481632=⨯⨯=- 故答案为:483-【点睛】本题主要考查了解直角三角形,作出辅助线构造直角三角形,利用条件求得AC 边上的高是解题的关键.21.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH中解直角三角形即可解决问题【详解】解:作AH⊥BC于H则四边形AFCH是矩形AF=CH在Rt△ABE中∠BAE=90解析:8【分析】作AH⊥BC于H,则四边形AFCH是矩形,AF=CH,AH=CF. 在Rt△ABH中,解直角三角形即可解决问题.【详解】解:作AH⊥BC于H,则四边形AFCH是矩形,AF=CH.在Rt△ABE中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt△ABH中,∠ABH=30°,3,BC=26∴BH=AB cos30°332=18∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题.22.【分析】沿AB作垂线与C的延长线相交于M点可得到等边直角三角形和锐角为30°的直角三角形根据三角函数求解即可【详解】解:如图连接AC并过B点作BM⊥CM设BM=k∵AD=CD∠D=60°∴△ACD是解析:6 2【分析】沿AB作垂线与C的延长线相交于M点,可得到等边直角三角形和锐角为30°的直角三角形,根据三角函数求解即可.【详解】解:如图连接AC 并过B 点作BM ⊥CM ,设BM=k ,∵AD =CD ,∠D=60°,∴△ACD 是等边三角形,AD=AC ,∵∠A =105°,∠B =120°,∠DAC=60°,∴∠MBC=60°,∠BCM=30°,∠BAC=45°,∵BM=k ,∴BC=2k ,MC=BM tan 30=3, ∵∠BAC=45°,∠MCA=45°, ∴AD=AC=MC 3k sin 4522=6k , ∴6k 6==AD BC . 【点睛】 本题考查了特殊角的三角函数值和公式的应用,正确应用公式和作出辅助线是解题的关键.3tan 303=,sin45=22. 23.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:3.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出22OA AC -3、BC=OB ﹣OC=23Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt△AOC中,OC=222221OA AC-=-=3,∴BC=OB﹣OC=2﹣3,∴在Rt△ABC中,tan∠ABO=123ACBC=-=2+3.故答案是:2+3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.24.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A =90°﹣∠B=90°﹣3解析:60 30【分析】在Rt△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°.【详解】解:如图,在Rt△ABC中,∵∠C=90°,AB=2AC,∴sin∠B=ACAB =12,∴∠B=30°,∴∠A=90°﹣∠B=90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.25.75°【分析】根据非负数性质得根据三角函数定义求出∠A=60°∠B=45°根据三角形内角和定理可得【详解】因为所以所以所以∠A=60°∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:75解析:75°【分析】根据非负数性质得1cos 0,1tan 02A B -=-=,根据三角函数定义求出∠A=60°,∠B=45°,根据三角形内角和定理可得.【详解】 因为()21cos 1tan 02A B -+-= 所以1cos 0,1tan 02A B -=-= 所以1cos ,tan 12A B == 所以∠A=60°,∠B=45°所以∠C=180°-∠A-∠B=75°故答案为:75°【点睛】考核知识点:特殊锐角三角函数.熟记特殊锐角三角函数值是关键.26.【分析】过点F 作FI ⊥BC 于点I 延长线IF 交AD 于J 根据含30°直角三角形的性质可求出FIFJ 和JH 的长度从而求出HD 的长度【详解】解:过点F 作FI ⊥BC 于点BC 延长线AD 交AD 于J 由题意可知:CF解析:23【分析】过点F 作FI ⊥BC 于点I ,延长线IF 交AD 于J ,根据含30°直角三角形的性质可求出FI 、FJ 和JH 的长度,从而求出HD 的长度.【详解】解:过点F 作FI ⊥BC 于点BC ,延长线AD 交AD 于J ,由题意可知:CF=BC=6,∠FCB=30°,∴FI=3,CI=33∵JI=CD=6,∴JF=JI-FI=6-3=3,∵∠HFC=90°,∴∠JFH+∠IFC=∠IFC+∠FCB=90°,∴∠JFH=∠FCB=30°,设JH=x ,则HF=2x ,∴由勾股定理可知:(2x )2=x 2+32,∴∴DH=DJ-JH==故答案为:【点睛】本题考查正方形的性质,涉及正方形的性质,勾股定理,旋转的性质,含30°的直角三角形的性质,本题属于中等题型.三、解答题27.(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 28.(1)322)12213x x ==,. 【分析】 (1)先计算负整数指数幂、化简二次根式,代入三角函数值、计算零指数幂,最后计算加减可得答案;(2)利用因式分解法求解即可.【详解】(1)1022cos30)π-︒++1212=+133312=+-+ 2232=+; (2)∵23520x x -+=,∴()()1320x x --=,则10x -=或320x -=,解得12213x x ==,. 【点睛】 本题主要考查了实数的混合运算,特殊角的三角函数值,解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.29.(1)画图见解析;1C 的坐标是(2,-2);tan BAC ∠=1;(2)画图见解析;2C 的坐标是(1,0);(3)45210+.【分析】(1)将△ABC 关于x 轴对称得到△A 1B 1C 1,如图所示,找出所求点坐标;证明ABC 是等腰直角三角形即可求出tan BAC ∠的值;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.(3)先求出△ABC 的周长,再根据222A B C 与ABC 的位似比为2:1,即可求出222A B C 的周长.【详解】解:(1)111A B C 如图所示,点C 1的坐标是(2,-2);∵222125AC =+=,222125BC =+=,2221310AB =+=,∴222=,AC BC AB+=,AC BC∴ABC是等腰直角三角形,∴45∠=,BAC∠=tan45=1;∴tan BAC故答案是:(2,-2);1;(2)△A2B2C2如图所示,2C的坐标是(1,0);故答案是:(1,0);A B C与ABC的位似比为(3)∵△ABC的周长551025102222:1,∴A B C的周长为2(2510)=4510222故答案为:510【点睛】此题考查了作图-位似变换与对称变换及三角函数值的求法,熟练掌握位似变换与对称变换的性质是解本题的关键.30.(1)90°;(2)证明见解析;(3)2.【分析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC2=AD•DE∵AC=25DE,∴设DE=x,则AC=25x,则AC2﹣AD2=AD•DE,期(25x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.。
大连市九年级数学下册第二十八章《锐角三角函数》知识点(含答案解析)
一、选择题1.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:32.下列说法中,正确的有( )个 ①a 为锐角,则1sina cosa +>; ②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔ ④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍.A .1B .2C .3D .43.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E . F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+3,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④4.如图,河坝横断面迎水坡AB 的坡比为1:3,坝高BC =3m ,则AB 的长度为( )A .6mB .3C .9mD .35.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B .3米C .2米D .1米6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠CAD=22;③DF=DC ;④△AEF ∽△CAB ;⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .2个B .3个C .4个D .5个7.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C 522D 5328.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .9.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x10.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A .322B .332C .32 D .33322- 11.如图,在△ABC 中,∠ACB =60°,∠CAB =45°,BC =4,点D 为AB 边上一个动点,连接CD ,以DA 、DC 为一组邻边作平行四边形ADCE ,则对角线DE 的最小值是( )A .2+6B .1+3C .4D .2+2312.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米13.在半径为1的O 中,弦AB 、AC 32,则BAC ∠为( )度.A .75B .15或30C .75或15D .15或4514.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A.201812⎛⎫⎪⎝⎭B.201912⎛⎫⎪⎝⎭C.201933⎛⎫⎪⎪⎝⎭D.201833⎛⎫⎪⎪⎝⎭15.如图,正方形ABCD的边长为1,点A与原点重合,B在y轴正半轴上,D在x轴负半轴上,将正方形ABCD绕着点A逆时针旋转30至AB C D''',CD与B C''相交于点E,则E坐标为()A.31,3⎛⎫- ⎪⎪⎝⎭B.11,2⎛⎫-⎪⎝⎭C.31,2⎛⎫-⎪⎪⎝⎭D.21,3⎛⎫- ⎪⎝⎭二、填空题16.已知在Rt△ABC中,∠C=90°,∠A=α,AB=m,那么边AB上的高为___.17.已知AD是△ABC的高,CD=1,AD=BD=3,则∠BAC=_______.18.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AH=__.19.如图,“人字梯”放在水平的地面上,AB AC=,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC的长为2m.周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A离地面的高度下降了___________m.20.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.21.将一副三角板如图摆放,使得一块三角板的直角边AC和另一块三角板的斜边ME重叠,点A与点M重合,已知AB=AC=8,则重叠的面积是__________.22.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).23.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB,BC长为6米,坡角β为45°,AD的坡角α为30°,则AD的长为 ________ 米(结果保留根号)24.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .25.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.26.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题27.如图,在等腰△ABC 中,AB =BC ,∠A =30°,O 为线段AC 上一点,以O 为圆心,线段OC 的长为半径画圆恰好经过点B ,与AC 的另一个交点为D . (1)求证:AB 是圆O 的切线;(2)若⊙O 的半径为1,求图中阴影部分的面积.28.(1)计算:2127-2cos 30132-⎛⎫+-- ⎪⎝⎭(2)解方程:2216124x x x --=+- 29.计算:(1)|-2|-2cos60°+(π-2020)0;(2)(13)-1+18+|-2|-4sin45° 30.已知:直线3y kx k =+,交x 轴于B ,交y 轴于A ,且3OA OB =.(1)如图1,求直线AB 的解析式;(2)如图2,点D 在AO 上且AD t =连接BD ,过BD 作DE BD ⊥于D ,过A 作AE y ⊥轴于A ,E 点的横坐标为m ,求m 与t 的函数关系式;(3)如图3,在(2)的条件下,点P 在BD 的延长线上,P 的横坐标为t ,点F 在EA 的延长线上,点N 在AD 上,连接FN ,连接PF 并延长交直线AB 于点M ,若E BPM ∠=,2ANF ADE ∠=∠,2AN DN =,求点M 的坐标.。
三角函数性质与应用例题和知识点总结
三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。
余弦:邻边与斜边的比值,即cosθ =邻边/斜边。
正切:对边与邻边的比值,即tanθ =对边/邻边。
二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。
2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。
3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。
4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。
余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。
正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。
三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。
解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。
设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。
解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。
人教版九年级数学下册:解直角三角形 三角函数值讲义 必考知识点
讲义主题:解直角三角形 三角函数值 一:课前纠错与课前回顾 1、作业检查与知识回顾 2、错题分析讲解 (1) (2) (3) ···二、课程内容讲解与课堂练习 【题模1】:三角函数值1、在△ABC 中,若三边BC 、CA 、AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B ( ) A .125 B .512 C .135 D .1312【讲透例题】 1、 答案:C解析:设,则,,则,所以△是直角三角形,且∠.所以在Rt △ABC 中,135135==x x AB BC .【讲透考点】一.锐角三角函数的定义 在Rt ABC V 中,90C ∠=︒,我们把A ∠的对边与斜边的比叫做A ∠的正弦,记作sin A ,即 sin =A a A c∠=的对边斜边;我们把A ∠的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即 cos =A b A c∠=的邻边斜边;我们把A∠的对边与邻边的比叫做A∠的正切,记作tan A,即tan=A aAb∠=的对边邻边.二.锐角三角函数的计算在直角三角形中利用三角函数的定义,结合勾股定理求解锐角三角函数值.三、特殊角的三角函数【相似题练习】一:正弦1如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.2把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A.不变B.缩小为原来的13C.扩大为原来的3倍D.不能确定锐角α三角函数30︒45︒60︒sinα122232cosα322212tanα33133如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12B .55C .1010D .255二:余弦1在等腰ABC ∆中,AB AC =,5sin 5C =,请问cos B 的值为多少? 2在△ABC 中,∠C=90°,BC=4,AB=5,则cosB 的值是( ) A .45B .35C .34D .43三:正切1如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=5,AC=6,则tanB 的值是( )A .45B .35C .34D .432如图,已知AD 是等腰△ABC 底边上的高,且sinB=.点E 在AC 上且AE :EC=2:3.则tan ∠ADE 等于( )A .B .C .D .如图,在Rt ABC ∆中,90ACB ∠=︒,D 是AB 边上的中点,BE CD ⊥,垂足为点E .已知15AC =,3cos 5A =.(1)求线段CD 的长;(2)求sin DBE ∠的值.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上.(1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE=,求tan ∠EBC 的值.计算:101()(32)3---+4cos45°﹣8. ﹣(﹣4)+|﹣5|+01(3)2- ﹣4tan45°【题模2】:特殊三角函数 计算201()122cos30( 3.14)2π-+-︒+-【讲透例题】 【答案】53+【解析】原式=23223214233153+-⨯+=+-+=+【讲透考点】一. 特殊角的三角函数【相似题练习】随练2.1在Rt ABC ∆中,902C AB BC ∠==o ,, 先给出下列结论中:①3sin 2A =;②1cos 2B =;③3tan 3A =;④tan 3B =,其中正确的结论是__________(只需填上正确结论的序号).随练2.2已知α是锐角,若tan(15)1α+=o ,则2cos 3tan 1sin ααα+-=__________.随练2.3课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30︒角时,测得旗杆AB 在地面上的影长BC 为24m ,那么旗杆AB 的高度约是( )A . 12mB . 83mC . 243mD . 24m随练2.4已知α是锐角,若tan(15)1α+︒=,则2cos 3tan 1sin ααα+-= .随练2.5在ABC ∆中,若21cos (1tan )02A B -+-=,则C ∠=_______.随练2.6在Rt ABC ∆中,902C AB BC ∠=︒=,, 先给出下列结论中:①3sin A =;②1cos 2B =;③3tan A =;④tan 3B =,其中正确的结论是______________(只需填上正确结论的序号).随练2.7计算下列各式:(1)2cos60tan 45sin 45sin30︒-︒+︒︒锐角α 三角函数30︒ 45︒ 60︒sin α1222 32 cos α32 22 12 tan α3313(2)2cos 45tan 453tan3023sin30︒-︒+︒-︒(30213tan602016812()3π-︒--+-()+(4)120160(cos60)(1)28(sin 451)21-︒÷-+︒-+随练2.8先化简再求值:22121(1)24x x x x ++-÷+- ,其中x=tan601︒-.随练2.9规定()sin sin cos sin cos αβαββα-=-,则sin15︒=________. 随练2.10先化简再求值:22121(1)24x x x x ++-÷+- ,其中x=tan601-o. 随练2.11在△ABC 中,若21cos 1tan 02A B -+-=(),则∠C 的度数是( ) A .45° B .60° C .75° D .105° 随练2.12规定()sin sin cos sin cos αβαββα-=-,则sin15=o __________.三、课后练习(写出各题的主要解答过程。
三角函数例题和知识点总结
三角函数例题和知识点总结三角函数是数学中一个重要的分支,在解决几何、物理等问题中有着广泛的应用。
下面我们将通过一些例题来深入理解三角函数的知识点。
一、三角函数的基本概念三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
在直角三角形中,正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。
例如,一个直角三角形的一个锐角为θ,对边为 a,邻边为 b,斜边为 c,则sinθ = a/c,cosθ = b/c,tanθ = a/b。
二、特殊角的三角函数值我们需要牢记一些特殊角(如 0°、30°、45°、60°、90°)的三角函数值。
|角度| 0°| 30°| 45°| 60°| 90°||||||||| sin | 0 | 1/2 |√2/2 |√3/2 | 1 || cos | 1 |√3/2 |√2/2 | 1/2 | 0 || tan | 0 |√3/3 | 1 |√3 |不存在|三、三角函数的诱导公式诱导公式用于将任意角的三角函数转化为锐角的三角函数。
例如,sin(180° α) =sinα,cos(180° α) =cosα 等。
四、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π 的波浪线,其值域为-1, 1,在0, 2π内,函数在 x =π/2 处取得最大值 1,在 x =3π/2 处取得最小值-1。
2、余弦函数 y = cos x 的图像也是一个周期为2π的波浪线,值域为-1, 1,在0, 2π内,函数在 x = 0 处取得最大值 1,在 x =π 处取得最小值-1。
五、例题解析例 1:已知sinα = 1/2,且α为锐角,求α的度数和cosα的值。
因为sinα = 1/2,且α为锐角,所以α = 30°。
北师大版九年级数学三角函数例题解析(精)
(1998•台州)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=()A.32 B.1 C.13 D.23考点:锐角三角函数的定义;三角形中位线定理.分析:若想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC的中位线,可分别得到所求的角的正切值相关的线段的比.解答:解:过B作BE∥AC交CD于E.∵AB=BD,∴E是CD中点,∴AC=2BE,∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵cot∠BCD=3,设BE=x,则BC=3x,AC=2x,∴tanA=BCAC=3x2x=32,故选A.点评:此题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.(2009•益阳)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.5cosαC.5sinαD.5sinα考点:解直角三角形的应用-坡度坡角问题.分析:利用所给的角的余弦值求解即可.解答:解:∵BC=5米,∠CBA=∠α.∴AB=BCcosα=5cosα.故选B.点评:此题主要考查学生对坡度、坡角的理解及运用.((2008•武汉)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A.250m B.2503m C.50033m D.2502m考点:解直角三角形的应用-方向角问题.分析:由已知可得,∠AOB=30°,OA=500m,根据三角函数定义即可求得AB的长.解答:解:由已知得,∠AOB=30°,OA=500m.则AB=12OA=250m.故选A.点评:本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.(2007•株洲)下列运算中,错误的是()A.π0=1 B.2-1=12 C.sin30°=12 D.8=32考点:特殊角的三角函数值;零指数幂;负整数指数幂;二次根式的性质与化简.分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:A、正确,符合零指数幂的运算法则;B、正确,符合负整数指数幂的运算法则;C、正确,符合特殊角的三角函数值;D、错误,8=22.故选D.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.(2004•广东)下列各式中,运算结果错误的是()A.(-1)3+(-3.14)0+2-1=12 B.sin30°=12C.(-4)2=-4 D.a2•a3=a5考点:特殊角的三角函数值;算术平方根;同底数幂的乘法;零指数幂.分析:根据乘方、0指数幂、负指数幂的运算法则逐一分析解答.解答:解:A、(-1)3+(-3.14)0+2-1=-1+1+12=12.正确;B、正确;C、(-4)2=4,不等于-4故错误;D、正确.故选C.点评:解答此题注意:一个数的算术平方根是非负数.(2001•泰州)下列实数π2,sin30°,0.1414,93中,无理数的个数是()A.1个B.2个C.3个D.4个考点:特殊角的三角函数值;无理数.分析:无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解答:解:∵π2是无限不循环小数,∴它是无理数,∵93是开方开不尽的数,∴它是无理数.其它的数都是有理数.因此有2个无理数.故选B.点评:本题容易出现的错误是把数π2看成分数,分数是AB的形式,其中A、B是整数.π2是无理数而不是分数.要注意灵活运用三角函数值.直线y=kx-4与y轴相交所成锐角的正切值为12,则k的值为()A.12 B.2 C.±2 D.±12考点:待定系数法求一次函数解析式;锐角三角函数的定义.分析:首先确定直线y=kx-4与y轴和x轴的交点,然后利用直线y=kx-4与y轴相交所成锐角的正切值为12这一条件求出k的值.解答:解:由直线的解析式可知直线与y轴的交点为(0,-4),即直线y=kx-4与y轴相交所成锐角的邻边为|-4|=4,与x轴的交点为y=0时,x=4k,∵直线y=kx-4与y轴相交所成锐角的正切值为12,即|4k|=4×12,k=±2.故选C.点评:此题比较复杂,涉及到锐角三角函数,在解题时要注意k的正负.一个直角三角形有两条边长为3和4,则较小锐角的正切值是()A.34 B.43 C.73 D.34或73考点:锐角三角函数的定义.分析:先根据勾股定理求出第三边,再根据正切函数的定义求出较小锐角的正切值.解答:解:当两条边长为3和4是直角边时,则较小锐角的正切值=34;当3是直角边,4是斜边时,另一条边=42-32=7,则较小锐角的正切值=73.故选D.点评:此题首先要求学生正确理解题意,然后会利用勾股定理和锐角三角函数的概念解题.本题注意第三边可能是直角边,也可能是斜边.下列说法正确的是()A.在Rt△ABC中,若tanA=34,则a=3,b=4B.在△ABC中,若a=3,b=4,则tanA=15C.在Rt△ABC中,∠C=90°,则sin2A+sin2B=1D.tan75°=tan(45°+30°)=tan45°+tan30°=1+33考点:锐角三角函数的定义.分析:根据三角函数的定义及相关角的三角函数之间的关系综合解答.解答:解:在Rt△ABC中,若tanA=34,则a=3x,b=4x,x≠0,故A错误,在△ABC中,若a=3,b=4,则tanA=15,没有说明三角形的形状,故B错误,在Rt△ABC中,∠C=90°,则sin2A+sin2B=1,sinB=cosA,故C正确,tan75°=tan(45°+30°)=1+331-33=3+232,故D错误,故选C.点评:本题主要考查锐角三角函数的定义,比较简单.将一副直角三角板中的两块按如图摆放,连AD,则tan∠DAC的值为()A.233 B.3+33 C.4+313 D.22+13考点:锐角三角函数的定义.分析:欲求∠DAC的正切值,需将此角构造到一个直角三角形中.过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的知,进而可在Rt△ACE中,求得∠DAC的正切值.解答:解:如图,过C作CE⊥AD于E.∵∠BDC=90°,∠DBC=∠DCB=45°,∴BD=DC,设CD=BD=1,在Rt△ABD中,∠BAD=30°,则AD=2.在Rt△EDC中,∠CDE=∠BAD=30°,CD=1,则CE=12,DE=32.∴tan∠DAC=CEAE=122-32=4+313.故选C.点评:本题主要考查的是解直角三角形,正确地构造出与所求相关的直角三角形,是解题的关键.已知α,β是△ABC的两个角,且sinα,tanβ是方程2x2-3x+1=0的两根,则△ABC是()A.锐角三角形B.直角三角形或钝角三角形C.钝角三角形D.等边三角形考点:锐角三角函数的定义;解一元二次方程-因式分解法.分析:先解出方程的两根,讨论sinα,tanβ的值.∵在三角形中,角的范围是(0,180°),∴sinα必大于0,此时只要考虑tanβ的值即可,若tanβ>0,则β为锐角;tanβ小于0,则β为钝角.再把x的两个值分别代入sinα,tanβ中,可求出α,β的值,从而判断△ABC的形状.解答:解:由2x2-3x+1=0得:(2x-1)(x-1)=0,∴x=12或x=1.∴sinα>0,tanβ>0若sinα=12,tanβ=1,则α=30°,β=45°,γ=180°-30°-45°=105°,∴△ABC为钝角三角形.若sinα=1,tanβ=12,则α=90°,β<90°,△ABC为直角三角形.故选B.点评:本题易在α,β上的取值出错,学生常常解出方程的两根后不知道如何判断,因此在解答时我们可对x的值分类讨论,从而判断出△ABC的形状.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.1010 B.21010 C.32 D.22考点:锐角三角函数的定义.专题:网格型.分析:要求cos∠AOB的值,连接AD,CD,根据勾股定理可以得到OD=AD,则OC是等腰三角形底边上的中线,根据三线合一定理,可以得到△ODC是直角三角形.根据三角函数的定义就可以求解.解答:解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=10,OC=AC=5,∠OCD=90°.则cos∠AOB=OCOD=510=22.故选D.在△ABC中,∠C=90°,给出下列式子,①a=ctanA;②b=cSinB;③b=cCosA;④a=btanA;⑤c=btanB,其中能成立的个数有()A.2个B.3个C.4个D.5个考点:锐角三角函数的定义.分析:本题可以利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,∠C=90°,∴tanA=ab,sinB=bc,cosA=bc,tanA=ab,tanB=ba.∴a=btanA,b=csin B,b=ccosA,a=btanA,b=atanB.∴②③④成立,故选B.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.等腰三角形,边长分别是6,8,则底角的余弦是()A.23 B.38 C.43 D.23或38考点:锐角三角函数的定义;勾股定理.专题:计算题.分析:本题可以利用锐角三角函数的定义求解.解答:解:有两种情况:①当等边三角形的底边为6,腰为8时,cosB=38;②当等边三角形的底边为8,腰为6时,cosB=46=23;故选D.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值.在三角形ABC中∠A,∠B是锐角,等式acosB+bcosA=c成立的条件是()A.∠C是锐角B.∠C是直角C.∠C是钝角D.上述三种情形都可以考点:锐角三角函数的定义.分析:本题可以利用锐角三角函数的定义求解.解答:解:过点C作CD⊥AB于点D,∴在Rt△ADC和在Rt△BDC中,∠ADC=∠BDC=90°,∴cosA=ADb,cosB=BDa,∴acosB+bcosA=AD+BD=c.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边△ABC中,∠C=90°,且c=3b,则cosA=()A.23 B.223 C.13 D.103考点:锐角三角函数的定义.分析:本题可以利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,∠C=90°,且c=3b,∴cosA=bc=b3b=13.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.12 B.22 C.32 D.33考点:锐角三角函数的定义;勾股定理的逆定理.专题:常规题型.分析:找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=邻边斜边计算即可得解.解答:解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO=22+42=25,AC=12+32=10,OC=12+32=10,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB=OCAO=1025=22.故选B.点评:本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.正比例函数y=kx的图象经过点(3,2),则它与x轴所夹锐角的正切值是()A.23 B.32 C.132 D.133考点:锐角三角函数的定义;正比例函数的性质.专题:推理填空题.分析:过A作AB⊥x轴于B,得出AB=2,OB=3,得出tan∠AOB=ABOB,代入求出即可.解答:解:过A作AB⊥x轴于B,∵A(3,2),∴AB=2,OB=3,∵正比例函数y=kx的图象经过点(3,2),∴它与x轴所夹锐角的正切值是:tan∠AOB=ABOB=23,故选A.点评:本题考查了锐角三角函数定义,正比例函数的应用,关键是确定AB和OB的值,题目比较好,但是一道比较容易出错的题目.已知β为锐角,cosβ≤12,则β的取值范围为()A.30°≤β<90°B.0°<β≤60°C.60°≤β<90°D.30°≤β<60°考点:锐角三角函数的增减性.分析:首先明确cos60°=12,再根据余弦函数随角增大而减小,进行分析.解答:解:∵cos60°=12,余弦函数随角增大而减小,又cosβ≤12,所以锐角β的取值范围为60°≤β<90°.故选C.点评:熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.百度文库 - 让每个人平等地提升自我1111已知∠β为锐角,且33≤cotB <3,则β的取值范围是( )A .30°≤β≤60°B .30°<β≤60° C .30°≤β<60° D .β<30° 考点:锐角三角函数的增减性.分析:首先明确cot60°=33,cot30°=3,再根据余切值随着角的增大而减小,进行分析. 解答:解:∵cot60°=33,cot30°=3.又余切值随着角的增大而减小,∴30°<β≤60°.故选B .点评:熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.。
必刷基础练【28.1 锐角三角函数】(解析版)
2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)基础第28章《锐角三角函数》28.1 锐角三角函数知识点01:锐角三角函数的定义1.(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tan A=2,BC=8,则AC等于( )A.6B.16C.12D.4解:∵∠C=90°,∴tan A==2,∴AC=BC=×8=4.故选:D.2.(2022秋•晋州市期中)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.3.(2022秋•浦东新区期中)在Rt△ABC中,∠C=90°,BC=9,AC=6,下列等式中正确的( )A.tan A=B.sin A=C.cot A=D.cos A=解:∵AB2=BC2+AC2,∴AB2=62+92=117,∴AB=3;A、tan A===,故A不符合题意;B、sin A===,故B不符合题意;C、cot A===,故C符合题意;D、cos A===,故D不符合题意,故选:C.4.(2022秋•杨浦区期中)在Rt△ABC中,∠C=90°,BC=1,AB=3,下列各式中,正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,BC=1,AB=3,∴AC===2,∴sin A==,cos A==,tan A===,cot A==2.故选:A.5.(2022秋•黄浦区期中)在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin A==,cos A==.tan A===,cot A==.故选:A.6.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是 .解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴sin B==,故答案为:.7.(2021秋•牡丹江期末)在△ABC中,∠A,∠C都是锐角,cos A=,sin C=,则∠B= 60° .解:∵∠A,∠C都是锐角,cos A=,sin C=,∴∠A=60°,∠C=60°,∴∠B=180°﹣∠A﹣∠C=60°,故答案为:60°.8.(2022春•衡阳月考)如图,在△ABC中,∠C=90°,AB=13,AC=12,则tan B= .解:∵∠C=90°,AB=13,AC=12,∴BC==5,∴tan B==.故答案为:.9.(2022秋•惠山区校级期中)在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.=9,求△ABC的周长.(2)tan A=2,S△ABC解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S=9,△ABC∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.10.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.知识点02:锐角三角函数的增减性11.(2022•五通桥区模拟)若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.12.(2022•路南区二模)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关解:根据锐角三角函数值的变化规律,知sin A的值越大,∠A越大,梯子越陡.故选:A.13.(2022秋•晋江市期中)比较大小:tan50° < tan60°.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.14.(2021秋•淮阴区期末)比较大小:sin50° < sin60°(填“>”或“<”).解:由于50°<60°,根据一个锐角的正弦值随着角度的增大而增大可得,sin50°<sin60°,故答案为:<.15.用锐角α的三角函数的定义去说明(1)0<sinα<1(2)0<cosα<1(3)tanα>sinα解:(1)sinα=,0<a<c,0<1,即0<sinα<1;(2)cosα=,0<b<c,0<<1,即0<cosα<1;(3)tanα=,sinα=,由0<b<c,得>,即tanα>sinα.16.(2019春•西湖区校级月考)如图,半径为4的⊙O内一点A,OA=.点P在⊙B上,当∠OPA最大时,求PA的长.解:如图,作OE⊥PA于E,∵sin∠OPA=,∴OE的值取最大值时,sin∠OPA的值最大,此时∠OPA的值最大,∵OE≤OA,∴当OE与OA重合时,即PA⊥OA时,∠OPA的值最大.如图,∵在直角△OPA中,OA=2,OP=4,∴PA==2.知识点03:同角三角函数的关系17.(2022春•巴东县期中)x为锐角,,则cos x的值为( )A.B.C.D.解:∵sin2x+cos2x=1,,∴cos x===.故选:B.18.(2021秋•舟山期末)在直角△ABC中,已知∠C=90°,sin A=,求cos A=( )A.B.C.D.2解:∵sin2A+cos2A=1,∴cos A==.\故选:C.19.(2021•温江区校级开学)计算:(cos230°+sin230°)×tan60°= .解:原式=[()2+()2]×=,故答案为:.20.(2021秋•金牛区校级期中)在△ABC中,∠C=90°,tan A=2,则sin A+cos A= .解:如图,∵tan A=2,∴设AB=x,则BC=2x,AC==x则有:sin A+cos A=+=+=.故答案为:.21.(2020秋•万州区校级期中)计算:sin225°+cos225°﹣tan60°= 1﹣ .解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.22.(2021秋•鄞州区校级月考)计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.23.(2021秋•绥宁县月考)计算:(1)sin230°+tan60°﹣sin245°+cos230°;(2)+(1+π)0﹣2cos45°﹣|1﹣|.解:(1)原式=()2+﹣()2+()2=+﹣+=+;(2)原式=2+1﹣2×﹣+1=2+1﹣﹣+1=2.24.(2022秋•蓬莱区期中)计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.知识点04:互余两角三角函数的关系25.(2022秋•芝罘区期中)在Rt△ABC中,∠C=90°,下列等式成立的是( )A.sin A=sin B B.cos A=cos B C.sin A=cos B D.tan A=tan B 解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:C.26.(2021秋•怀化期末)已知锐角α,且sinα=cos38°,则α=( )A.38°B.62°C.52°D.72°解:∵锐角α,且sinα=cos38°,sin A=cos(90°﹣∠A),∴sinα=cos(90°﹣α)=cos38°,∴90°﹣α=38°,解得:α=52°.故选:C.27.(2021秋•怀宁县期末)在Rt△ABC中,∠C=90°,cos A=,则sin B= .解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.28.(2020秋•肥东县期末)已知α为锐角,则sinα﹣cos(90°﹣α)= 0 .解:∵α为锐角,∴sinα=cos(90°﹣α),∴sinα﹣cos(90°﹣α)=0.故答案为0.29.(2019秋•双流区期末)已知,在Rt△ABC中,∠C=90°,若sin A=,则tan B= .解:如图.在Rt△ABC中,∵sin A==,∴设BC=x,AB=3x,则AC==2x,故tan B===.故答案为:.30.(2017•吴兴区校级二模)已知cos45°=,求cos21°+cos22°+…+cos289°的值.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.31.化简下列各式:(1)4cos2(90°﹣θ)+4sin2(90°﹣θ)+4(2).解:(1)原式=4sin2θ+4cos2θ+4=4(sin2θ+cos2θ)+4=4+4=8;(2)原式=﹣1=﹣1=1+tan2θ﹣1=tan2θ.知识点05:特殊角的三角函数值32.(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=,∴∠β=60°.故选:B.33.(2021秋•梁平区期末)式子2cos30°﹣tan45°﹣的值是( )A.0B.2C.2D.﹣2解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选:A.34.(2022秋•乳山市校级月考)在△ABC中,∠A=105°,∠B=45°,sin C的值是( )A.B.C.1D.解:∵∠A=105°,∠B=45°,∴∠C=180°﹣∠A﹣∠C=30°,∴sin C=sin30°=.故选:A.35.(2022秋•虎丘区校级期中)已知∠α为锐角,且sinα=,则∠α= 60° .解:∵∠α为锐角,sinα=,∴∠α=60°.故答案为:60°.36.(2022秋•东平县校级月考)若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是 直角三角形 .解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.37.(2022秋•铁西区期中)在△ABC中,若sin A=,∠A,∠B都是锐角,则∠C的度数是 75° .解:∵,∠A,∠B都是锐角,∴∠A=45°,∠B=60°,∴∠C=180°﹣45°﹣60°=75°,故答案为:75°.38.(2022秋•垦利区期中)在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 105° .解:∵|sin A﹣|+(﹣cos B)2=0,∴sin A﹣=0,﹣cos B=0,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.39.(2022秋•黄浦区期中)计算:.解:原式=﹣=cot30°﹣1﹣=﹣1﹣=﹣1﹣(+1)=﹣1﹣﹣1=﹣2.40.(2022秋•莱西市期中)计算:(1);(2)cos60°﹣2sin245°+tan230°﹣sin30°.解:(1)原式===﹣1﹣=﹣;(2)原式=﹣2×()2+×()2﹣=﹣1+﹣=﹣.。
九年级数学锐角三角函数(带答案)
锐角三角函数与解直角三角形之杨若古兰创作【考纲请求】锐角三角函数的定义、性质及利用,特殊角三角函数值的求法,应用锐角三角函数解决与直角三角形有关的实际成绩.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的常识解决成绩.【常识收集】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B 所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.ab要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变更时,比值也随之变更.(2)sinA,cosA,tanA分别是一个完好的数学符号,是一个全体,不克不及写成,,,不克不及理解成sin与∠A,cos与∠A,tan 与∠A的乘积.书写时习气上省略∠A的角的记号“∠”,但对三个大写字母暗示成的角(如∠AEF),其正切应写成“tan∠AEF”,不克不及写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有响应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变更时,,,tanA >0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地晓得0°、30°、45°、60°、90°角的各三角函数值,它的另一个利用就是:如果晓得了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)细心研讨表中数值的规律会发现:sin0︒、、、、sin90︒的值顺次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值顺次增大,其变更规律可以总结为:当角度在0°<∠A<90°之间变更时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常利用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包含其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的罕见类型及解法已知条件解法步调Rt△两两直角边(a,b) 由求∠A,∠B=90°-ABC 边∠A,斜边,不断角边(如c,a)由求∠A,∠B=90°-∠A,一边一角不断角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在碰到解直角三角形的实际成绩时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即请求出所有的未知元素,已知条件中至多有一个条件为边.考点六、解直角三角形的利用解直角三角形的常识利用很广泛,关键是把实际成绩转化为数学模型,善于将某些实际成绩中的数量关系化归为直角三角形中的边角关系是解决实际利用成绩的关键. 解这类成绩的普通过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际成绩转化为解直角三角形的成绩. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学成绩的答案并检验答案是否符合实际意义,得出实际成绩的解.拓展:在用直角三角形常识解决实际成绩时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母暗示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母暗示,则,如图,坡度通常写成=∶的方式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指南方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别暗示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东南方向指的是北偏东45°,东北方向指的是南偏西45°,东北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角常识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的成绩,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的利用题时,首先弄清题意(关键弄清其中名词术语的意义),然后准确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边暗示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.晓得某个锐角的三角函数值就晓得了该角的大小,可以用比例系数k暗示各边.(3)请求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,经常使用的方法是:利用定义,根据三角函数值,用比例系数暗示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可本人测验考试完成.举一反三:【变式】Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么c等于( )(A) a cos A bsin B+ (B)a sin A bsin B+(C)a bsin A sin B+(D)a bcos A sin B+【答案】选B.过点C作CD⊥AB于D,在Rt△ACD中,AD ADcos AAC b==,所以AD=bcosA,同理,BD=acosB,所以c=AB=AD+BD=bcosA+acosB,又∠A+∠B=90°,所以cosA=sinB,cosB=sinA,所以c=asinA+bsinB.类型二、特殊角的三角函数值2.解答以下各题:(1)化简求值:tan60tan45sin45sin30sin60cos30cos45--++°°°°°°°;(2)在△ABC中,∠C=9012sin cosA A-【思路点拨】第(2)题可以先利用关系式sin2A+cos2A=1对根号内的式子进行变形,配成完好平方的方式.【答案与解析】解 (1)tan60tan45sin45sin30 sin60cos30cos45--++°°°°°°°(2)12sin cosA A-2(sin cos)|sin cos|A A A A=-=-,12sin cosA A -cos sin(045)sin cos(4590)A A AA A A-<⎧=⎨-<<⎩°≤°°°.由第(2)题可得到今后经常使用的一个关系式:1±2sin αcos α=(sin α±cos α)2.例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角,∴2α=60°,α=30°.∴12cos sin 22βα===,∴β=45°.∴23tan()tan 3033β==°. 3.(1)如图所示,在△ABC 中,∠ACB =105°,∠A =30°,AC =8,求AB 和BC 的长;(2)在△ABC 中,∠ABC =135°,∠A =30°,AC =8,如何求AB 和BC 的长?(3)在△ABC 中,AC =17,AB =26,锐角A 满足12sin 13A =,如何求BC的长及△ABC 的面积?若AC =3,其他条件不变呢?第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B =45°;过点C 作CD ⊥AB 于D ,则Rt △ACD 是可解三角形,可求出CD 的长,从而Rt △CDB 可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.【答案与解析】解: (1)过点C 作CD ⊥AB 于D .∵∠A =30°,∠ACD =105°,∴∠B =45°.∵AC ·sinA =CD =BC ·sin B ,∴sin 8sin 30sin sin 45AC A BC B ===°°∴AB =AD+BD =AC ·cosA+BC ·cosB =8cos30°+cos45°=4+(2)作CD ⊥AB 的耽误线于D ,则AB =4,BC =(3)作BD ⊥AC 于D ,则BC =25,ABC S =△204.当AC =3时,∠ACB 为钝角,BC =25,36ABC S =△.【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,而且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形得到本来斜三角形的边、角的大小.类型三、解直角三角形及利用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=,AC+CD =18,求tanA 的值和AB 的长.【思路点拨】解题的基本思路是将成绩转化为解直角三角形的成绩,转化的目标次要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°. ∵4cos 5CD DCE CE=∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高不异,∴AD:DB =:2:3ACD CDB S S =△△. 即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k += ∴AB =AD+DB =AD+32AD =541【总结升华】在解直角三角形时,经常使用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.专题总结及利用一、常识性专题专题1:锐角三角函数的定义【专题解读】锐角三角函数定义的考查多以选择题、填空题为主.例1 如图28-123所示,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则以下结论准确的是 ( )A.sin A=32 B.tan A=12C.cos B=32 D.tan B=3分析 sin A=BCAB=12,tan A=BCAC=33,cos B=BCAB=12.故选D.例2 在△ABC中,∠C=90°,cos A=35,则tan A等于 ( )A.35 B.45 C.34 D.43分析在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=4433BC kAC k==.故选D.分析在Rt△ABC中,BC=222254AB AC-=-=3,∴sin A=35BCAB =.故填35.专题2 特殊角的三角函数值【专题解读】要熟记特殊角的三角函数值.例4 计算|-3|+2cos 45°-(3-1)0.分析 cos 45°=2 2.解:原式=3+2×22-1=2+2.例5 计算-12⎛⎫- ⎪⎝⎭+9+(-1)2007-cos 60°.分析 cos 60°=1 2.解:原式=12+3+(-1)-12=3-1=2.例6 计算|-2|+(cos 60°-tan 30°)0+8.分析cos 60°=12,tan 30°=33,∴cos 60°-tan 30°≠0,∴(cos60°-tan 30°)0=1,解:原式=2+1十+22=32+1.例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1-tan 60°|-132-.分析 tan 60°=3.解:原式=8-1-3+1+3+2=10.专题3 锐角三角函数与相干常识的综合应用【专题解读】锐角三角函数常与其他常识综合起来应用,考查综合应用常识解决成绩的能力.例8 如图28-124所示,在△ABC中,AD是BC 边上的高,E为AC边的中点,BC=14,AD=12,sin B=4 5.(1)求线段DC的长;(2)求tan∠EDC的值.分析在Rt△ABD中,由sin B=ADAB,可求得BD,从而求得CD.由直角三角形斜边上的中线等于斜边的一半,得DE=12AC=EC,则∠EDC=∠C,所以求tan∠EDC可以转化为求tan C.解:(1)∵AD是BC边上的高,∴AD⊥BC在Rt△ABD中,sin B=AD AB.∵AD=12,sin B=45,∴AB=15,∴BD=22AB AD-=221512-=9.∵BC=14,∴CD=5.(2)在Rt△ADC中,∵AE=EC,∴DE=12AC=EC,∴∠EDC=∠C∵tan C=ADDC=125,∴tan∠EDC=tan C=125.例9 如图28-125所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=1213,BC=12,求AD的长.分析(1)利用锐角三角函数的定义可得AC=BD.(2)利用锐角三角函数与勾股定理可求得AD的长.证实:(1)∵AD是BC边上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵tan B=ADBD,cos∠DAC=ADAC,tan B=cos∠DAC,∴ADBD=ADAC,∴AC=BD.解:(2)在Rt△ADC中,sin C=1213,设AD=12k,AC=13k,∴CD=22AC AD-=5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k.由已知BC=12,∴18k=12,k=2 3,∴AD=12k=12×23=8.例10 如图28-126所示,在△ABC中,∠B=45°,∠C=30°,BC=30+303,求AB的长.分析过点A作AD⊥BC于D,把斜三角形转化为直角三角形,利用AD是两个直角三角形的公共边,设AD=x,把BD,DC用含x的式子暗示出来,再由BD+CD=BC这一等量关系列方程,求得AD,则AB可在Rt△ABD中求得.解:过点A作AD⊥BC于D,设AD=x.在Rt△ADB中,tan B=ADBD,∴BD=tan tan45AD ADB=︒=x,在Rt△ADC中,tan C=ADCD,∴CD=tanADC=tan30AD︒=3x.又∵BD+CD=BC,BC=30+303,∴x +3x=30+303 ,∴x=30.在Rt△ABD中,sin B=AD AB,∴AB=30sin sin45ADB=︒=3022=302.专题4 用锐角三角函数解决实际成绩【专题解读】加强数学与实际生活的联系,提高数学的利用认识,培养利用数学的能力是当今数学改革的方向,环绕本章内容,纵观近几年各地的中考试题,与解直角三角形有关的利用成绩慢慢成为命题的热点,其次要类型有轮船定位成绩、堤坝工程成绩、建筑测量成绩、高度测量成绩等,解决各类利用成绩时要留意掌控各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学常识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(结果保存小数点后两位)分析本题可作CE⊥AB,垂足为E,求出CE的长即为河宽.解:如图28-131所示,过点C作CE⊥AB于E,则CE即为河宽,设CE=x(米),则BE=x+60(米).在Rt△BCE中,tan30°=CEEB,即33=60xx+,解得x=30(3+1)≈81.96(米).答:河宽约为81.96米.【解题计谋】解本题的关键是设CE=x,然后根据BE=AB+AE 列方程求解.例14 如图28-132所示,某边防巡查队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去救援.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C点再跳入海中;3号救生员沿岸边向前跑300米到离B点比来的D点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中泅水的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达救援地点B.(参考数据2≈1.4,3≈1.7)分析在Rt△ABD中,已知∠A=45°和AD,可求AB,BD,在Rt △BCD中,可利用求出的BD和∠BCD=60°求出BC,然后根据计算出的数据判断谁先到达.解:在Rt△ABD中,∠A=45°,∠D=90°,AD=300,∴AB=AD300cos4522=︒=3002.BDAD=tan 45°,即BD=AD·tan 45°=300.在Rt△BCD中,∠BCD=60°,∠D=90°,∴BC=300sin6032BD=︒=2003,CD=tan60BD︒=3003=1003 .1号救生员到达B点所用的时间为30022=1502≈210(秒),2号救生员到达B点所用的时间为3001003200362-+=50+25033≈192(秒),3号救生员到达B点所用的时间为3006+3002=200(秒).∵192<200<210.∴2号求生员先到达救援地点B.【解题计谋】本题为浏览理解题,题目中的数据比较多,准确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批次要物质从A处运往正东方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后到达B处,此时再测得该岛在它的北偏东30°方向上;已知在C 岛四周9海里的区域内有暗礁,若货船继续向正东方向航行,该货船有没有触礁风险?试说明理由.分析本题可作CD⊥AM于点D,在Rt△BCD中求出CD即可.解:过点C作CD⊥AM,垂足为点D,由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∠CAB=∠ACB,∴BC=AB=24×12=12(海里).在Rt△BCD中,CD=BC×sin 60°=63(海里).∵63>9,∴货船继续向正东方向航行无触礁风险.【解题计谋】此题实际上是通过⊙C(半径为9海里)与直线AM相离判断出无触礁风险.例16 如图28-134所示,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(3≈1.73,结果保存整数)分析因为CD=CE-DE,所以可分别在Rt△AED和Rt△BEC中求DE,CE的长,从而得出结论.解:∵AB=8,BE=15,∴AE=23.在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan 60°=153,∴CD=CE-DE=153-23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tan B=1,tan C=1 1.5,在Rt△ABE中,AE=4,tan B=AEBE=1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tan C=11.5 DFCF,∴CF =1.5DF ×4=6.又∵EF =AD =2.5,∴BC =BE +EF +FC =4+2.5+6=12.5.答:坝底宽BC 为12.5 m .【解题计谋】 背水坡是指AB ,而迎水坡是指CD .例18 如图28-136所示,山顶建有一座铁塔,塔高CD =30m ,某人在点A 处测得塔底C 的仰角为20°,塔顶D 的仰角为23°,求此人距CD 的水平距离AB .(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364,sin 23°≈0.391,cos 23°≈0.921,tan 23°≈0.424)分析 请求AB 的值,因为两个直角三角形中都只要角的已知条件,不克不及直接求解,所以设AB 为未知量,即用AB 暗示BD 和BC ,根据BD -BC =CD =30,列出关于AB 的方程.解:在Rt △ABC 中,∠CAB =20°,∴BC =AB tan ∠CAB =AB tan 20°.在Rt △ABD 中,∠DAB =23°,∴BD =AB tan ∠DAB =AB tan 23°.∴CD =BD -BC =AB tan 23°-AB tan 20°=AB (tan 23°-tan 20°).∴AB =tan 23tan 20CD ︒-︒≈300.4240.364-=500(m).答:此人距CD 的水平距离AB 约为500 m .二、规律方法专题专题5 公式法【专题解读】 本章的公式很多,熟练把握公式是解决成绩的关键.例19 当0°<α<90的值.分析 由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α解:∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα=.∵0°<a <90°,∴cos α>0. ∴原式=cos cos αα=1.【解题计谋】 以上解法中,利用了关系式sin 2α+cos 2α=1(0°<α<90°),这一关系式在解题中经经常使用到,该当牢记,并灵活应用.三、思想方法专题专题6 类比思想【专题解读】 求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,是以对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知a ,b ,解这个直角三角形.分析 已知两直角边长a ,b ,可由勾股定理c c ,再利用sin A =a c 求出∠A ,进而求出∠B =90°-∠A . 解:∵∠C =90°,∴a 2+b 2=c 2.∴c =222515+522a b +==2()().又∵sin A =51225a c ==,∴∠A =30°.∴∠B =90°-∠A =60°.【解题计谋】 除直角外,求出Rt △ABC 中的所有未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者巧妙结合,起到互通、互译的感化,是解决几何成绩经常使用的方法之一.例21 如图28-137所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12 B .22 C .32 D .33 分析∵y =-33x +33,∴当x =0时,y =33,当y =0时,x =1,∴A (1,0),B 30,3⎛⎫ ⎪ ⎪⎝⎭,∴OB =33,OA =1,∴AB =22OB OA +=233,∴cos ∠OBA =12OB AB =. ∴OP ⊥AB ,∴∠α+∠OAB =90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.专题8 分类讨论思想【专题解读】当结果不克不及确定,且有多种情况时,对每一种可能的情况都要进行讨论.例22 一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔挺的公路与高速公路订交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保存根号)解:①如图28-138(1)所示,在Rt△BDC中,∵CD=30,CB=60,∴∠B=30°.又PC=PB,∴∠CPD=60°,∴DP=103.故AP=AD+DP=(30+103)km.②同理,如图28-138(2)所示,可求得AP=(30-103)km,故交叉口P与加油站A的距离为(30+103)km或(30-103)km.【解题计谋】此题针对P点的地位分两种情况进行讨论,即点P 在线段AB上或点P在线段BA的耽误线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100 km.现计划在这两座城市两头构筑一条高速公路(即线段AB),经测量,森林呵护中间P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林呵护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划构筑的这条高速公路会不会穿越呵护区.为何?(参考数据:3≈1.732,2≈1.414)解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan 30°,BC=PC·tan 45°,∵AC+BC=AB,∴PC·tan 30°+PC·tan 45°=100,∴(33+1)PC=100,∴PC=50(3-3)≈50×(3-1.732)≈63.4>50.答:森林呵护区的中间与直线AB的距离大于呵护区的半径,所以计划构筑的这条高速公路不会穿越呵护区.例25 小鹃学完解直角三角形常识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD放在每格宽度为12 mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保存整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE =24 mm ,DF =48 mm .在Rt △ABE 中,sin α=BE AB , ∴AB =sin36BE ︒≈240.6=40(mm).在Rt △ADF 中,cos ∠ADF =DFAD ,∴AD =cos36DF ︒≈480.8=60(mm).∴矩形ABCD 的周长=2(40+60)=200(mm).例26 如图28-142所示,某居民楼I 高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?解:设正午时光线正好照在I 楼的一楼窗台处,此时新建居民楼Ⅱ高x 米.过C 作CF ⊥l 于F ,在Rt △ECF 中,EF =(x -2)米,FC =30米,∠ECF =30°,∴tan 30°=230x -,∴=103+2.答:新建居民楼Ⅱ最高只能建(103+2)米.。
初中三角函数知识点+题型总结+课后练习
锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如以下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值围关系正弦 斜边的对边A A ∠=sin caA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A(∠A 为锐角)正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot abA =cot0cot >A(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan 0 33 1 3 不存在 αcot不存在3133 0对边邻边 斜边 B锐角三角函数题型训练类型一:直角三角形求值1.Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.A ∠是锐角,178sin =A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:1.:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.8AB =,10BC =,则tan EFC ∠的值为 ( ) A.34 B.43C.35D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,假设1tan 5DBA ∠=,则AD 的长为( )A .2 B .2 C .1 D .224. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长. 类型三. 化斜三角形为直角三角形例1〔2021•〕如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练 1.〔2021•〕如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.假设AB=2,求△ABC 的周长.〔结果保存根号〕2.:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形例1 〔2021•江〕如下图,△ABC 的顶点是正方形网格的格点,则sinA 的值为〔 〕 A .12 B .55 C .1010 D .255DABC对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.特殊角的三角函数值例1.求以下各式的值︒-︒+︒30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0-33tan30°-tan45°= 030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+= ︒-︒+︒60tan 45sin 230cos 2tan 45sin 301cos 60︒+︒-︒=在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例2.求适合以下条件的锐角.(1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α〔5〕为锐角,且3)30tan(0=+α,求αtan 的值〔〕在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例3. 三角函数的增减性 1.∠A 为锐角,且sin A <21,则∠A 的取值围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. A 为锐角,且030sin cos <A ,则 〔 〕A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. :如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD . 解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如下图): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如下图).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1):a =35,235=c ,求∠A 、∠B ,b ;(2):32=a ,2=b ,求∠A 、∠B ,c ; (3):32sin =A ,6=c ,求a 、b ;(4):,9,23tan ==b B 求a 、c ; (5):∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长. 例4.:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长. 类型二:解直角三角形的实际应用 仰角与俯角:例1.〔2021•〕如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是〔 〕 A . 200米 B . 200米 C . 220米 D . 100〔〕米例2.:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3〔昌平〕19.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.例5.:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号). 例5.〔2021•〕如图,为测量*物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为〔 〕 A . 10米 B . 10米 C . 20米 D .米 例6.〔2021•〕超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离大道的距离〔AC 〕为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. 〔1〕求B 、C 两点的距离;〔2〕请判断此车是否超过了大道60千米/小时的限制速度.〔计算时距离准确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒〕 类型四. 坡度与坡角A B CD EA例.〔2021•〕如图,*水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是〔 〕A .100mB .1003mC .150mD .503m类型五. 方位角1.:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少"(准确到0.1海里,732.13≈) 综合题:三角函数与四边形:〔西城二模〕1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2, tan∠BDC=63. (1)求BD 的长; (2)求AD 的长.〔2021东一〕2.如图,在平行四边形ABCD 中,过点A 分别作AE BC E AF ⊥CD 于点F . 〔1〕求证:∠BAE =∠DAF ; 〔2〕假设AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与*轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为〔 〕 A .12 B .32C .35D .45〔延庆〕19.:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D,(1) 求证:∠AOD=2∠C(2) 假设AD=8,tanC=34,求⊙O 的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级《三角函数》知识点、例题、中考真题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A对边邻边ACA 90B 90∠-︒=∠︒=∠+∠得由B A8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
10、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
11、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
12、解斜三角形所根据的定理 (在△ABC 中)① 正弦定理:SinCcSinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系:Sin(180-A)= sinA , Cos(180-A)= - cosA , tan(180-A)=-cotA , cotA(180-A)=-tanA. ④ S △ABC =21absinC=21bcsinA=21casinB.:i h l=hlα三角函数中考试题分类例题解说一、三角函数的定义 例1:(滨州市) 如图1,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( ) A .sin A 的值越大,梯子越陡 B .cos A 的值越大,梯子越陡 C .tan A 的值越小,梯子越陡 D .陡缓程度与A ∠的函数值无关 分析:由锐角的正切、正弦和余弦的定义可知:锐角的正切、正弦值越大,梯子越陡,余弦值越小,梯子越陡。
因此选A 。
二、利用特殊角的三角函数值计算例4:(辽宁省十二市) 计算:242(2cos 45sin 60)4︒-︒+ 解:23262(2)224=⨯-+原式66222=-+ 2=点评:熟记特殊角的三角函数值是解决此类问题的关键。
三、求线段的长度例5:(云南省) 已知:如图3,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6。
求BC 的长(结果保留根号).分析:解决此类问题需要根据题意构造直角三角形,在直角三角形中加以研究。
如图4,过点A 作AD ⊥BC 于点D 。
在Rt △ABD 中,∠B =45°,则AD = BD 。
不妨设AD = x ,又AB = 6,所以有x 2+ x 2= 62,解得x =32,即AD = BD =32。
在Rt △ACD 中,由∠ACD = 60°得∠CAD = 30°而tan30°=CDAD ,即32CD 3=3,解得CD =6。
因此BC = BD + DC =32+6。
下面也是2007年关于锐角三角函数的中考题,请自己完成。
1、(江西省) 如图5,在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .2、(大连市)在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为___cm 。
3、(丽水市) 如图6,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米。
4、(天津市) 45cos 45sin +的值等于( )A.2B.213+ C.3D. 15、(连云港市)计算:02122sin 45--+图1图3图4ACBcb图5图6ABC6、(岳阳市)计算:10)21()13(---+|2-3|+sin 245° 7、(眉山市) 计算: 2sin450+cos300·tan600—2)3(-8、(中山市) 如图7,Rt △ABC 的斜边AB =5,cosA =53。
(1)用尺规作图作线段AC 的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l 与AB 、AC 分别相交于D 、E 两点,求DE 的长。
答案:1、12。
2、8。
3、4。
4、A 。
5、2。
6、 12。
7、- 12。
8、2。
图7AC B一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .10 B .23C .34D .3103.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =3 题 4题 5题4.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .435(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =32AB =tan BCD ∠的值为( )(A 2 (B )22(C )63(D )33二、填空题6.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . 7.(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .ACBD7题 8题8.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2. 三、解答题9.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.10.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. 一、选择题2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B .83C .833米 D .433米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( )A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .132⎛⎫- ⎪ ⎪⎝⎭,B .33⎛⎫- ⎪ ⎪⎝⎭,C .132⎛⎫-- ⎪ ⎪⎝⎭, D .132⎛⎫- ⎪ ⎪⎝⎭,6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.8.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).10.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
三、解答题11.(2009·黄石中考)计算:3-1+(2π-1)0-33tan30°-tan45° 12.(2009·崇左中考)计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.要点三、解直角三角形在实际问题中的运用 一、选择题1.(2009·白银中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .83 C 83D 43米2.(2009·衢州中考)为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是( ) A .14B .4C 17D 173.(2009·益阳中考)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A. αcos 5B.αcos 5 C. αsin 5 D. αsin 51题 2题 3题4.(2009·兰州中考)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( ) A .5m B .6m C .7m D .8m4题 5题5.(2009·潍坊中考)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 B .253 C .10033D .25253+二、填空题6.(2009·沈阳中考)如图,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为 35,则坡面AC 的长度为 m .7. (2009·南宁中考)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号).6题 7题 8题 9题8.(2008·庆阳中考)如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米. α5米AB9.(2007·湖州中考)小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全。