抗弯强度第三节规范强度计算公式第四节梁的整体稳定计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

截面形状系数: Sf Mp /Mn MMyW nfy
第三节 规范采用强度计算公式
一、弯曲正应力
部分截面发展塑性(1/4截面,a=h/8)为极限状态:
x(y)
Mx(y) f W x(y) xn(yn)
式中:
γ为塑性发展系数,按P172,表5.1;
有两种情况下塑性发展系数取γ=1.0;
二、抗剪强度
aa— —— —集 集中 中荷 荷载 载沿 沿跨 跨度 度方 方向 向的 的支 支承 承长 长度 度, ,对 对吊 吊车 车轮 轮压 压, ,无 无资 资料 料时 时可 可取 取 5500mmmm; ; hhyy— —— —自 自梁 梁顶 顶至 至腹 腹板 板计 计算 算高 高度 度处 处的 的距 距离 离; ; hhRR— —— —轨 轨道 道高 高度 度, ,梁 梁顶 顶无 无轨 轨道 道时 时取 取 hhRR==00; ; aa11— —— —梁 梁端 端至 至支 支座 座板 板外 外边 边缘 缘的 的距 距离 离, ,取 取值 值不 不得 得大 大于 于 22..55 hhyy。 。 当 当计 计算 算不 不能 能满 满足 足时 时, ,对 对承 承受 受固 固定 定集 集中 中荷 荷载 载处 处或 或支 支座 座处 处, ,可 可通 通过 过设 设置 置横 横向 向加 加劲 劲
VS I xtw
来自百度文库
fV
方法:剪力流理论分析,假定沿薄壁厚度方向均匀分布;
S : (1) 当计算腹板上任一点竖向剪应力时:为计算剪应
力处以上或以下毛截面对中和轴x的面积矩;
(2) 当计算翼缘上任一点的水平剪应力时:以左或右 毛截面对中和轴x的面积矩;
t w 为计算剪应力处截面厚度;
三、腹板局部压应力
分类: 实腹式
型钢截面:加工方便、制造简单、成本低; 组合截面:型钢没法满足强度和刚度要求时;
格构式:当跨度超过40m时,最好采用格构桁架
第一节 绪 论
梁格:纵横交错的主次梁组成的平面体系 (1)简式梁格:单一主梁 (2)普通梁格:分主、次梁 (3)复式梁格:分主梁及横、纵次梁
梁板共同作用: (1)共同工作:组合楼板 (2)不共同工作:一般的钢筋混凝土楼板
c
F
twlz
f
移动集中吊车轮压
固定集中荷载(支座反力)
当 梁 的 翼 缘 承 受 较 大 的 固 定 集 中 荷 载( 包 括 支 座 )而 又 未 设 支 承 加 劲 肋 [ 图 5 - 5
( a) ]或 受 有 移 动 的 集 中 荷 载 ( 如 吊 车 轮 压 ) [图 5-5( b) ]时 , 应 计 算 腹 板 高 度
1——局部承压强度设计值增大系数,当与c 同号或c=0 时,
1=1.1,当与c 异号时取1=1.2。
第四节 梁的整体稳定计算
一、基本概念 整体失稳现象:
机理分析:梁受弯变形后,上翼缘受压,由于梁侧向 刚度不够,就会发生梁的侧向弯曲失稳变形;梁截面从上 至下弯曲量不等,就形成截面的扭转变形,同时还有弯矩 作用平面内的弯曲变形,故梁的整体失稳为弯扭失稳形式, 完整的说应为:侧向弯曲扭转失稳。
llzz — —— —集 集中 中荷 荷载 载在 在腹 腹板 板计 计算 算高 高度 度处 处的 的假 假定 定分 分布 布长 长度 度, ,对 对跨 跨中 中集 集中 中荷 荷载 载, , llzz==aa++55hhyy++22hhRR; ;梁 梁端 端支 支反 反力 力, ,llzz==aa++22..55hhyy++aa11; ;
c
F twlz
f
( 5-7)
式 式中 中 FF— —— —集 集中 中荷 荷载 载, ,对 对动 动力 力荷 荷载 载应 应乘 乘以 以动 动力 力系 系数 数; ;
— —— —集 集中 中荷 荷载 载增 增大 大系 系数 数, ,对 对重 重级 级工 工作 作制 制吊 吊车 车轮 轮压 压, ,==11..3355; ;对 对其 其它 它荷 荷载 载, , ==11..00; ;
eq 2c 2c 3 21f
(4)复杂应力作用下的强度计算 当腹板计算高度处同时承受较大的正应力、剪应力或局部压应力时,需计算
该处的折算应力
2 c2 c 32 1f
(5-8)
式中 、、c——腹板计算高度处同一点的弯曲正应力、剪应力和局部压应力,
=(Mx/Wnx)×(h0/h) ,以拉应力为正,压应力为负;
肋 肋予 予以 以加 加强 强, ,也 也可 可修 修改 改截 截面 面尺 尺寸 寸; ;当 当承 承受 受移 移动 动集 集中 中荷 荷载 载时 时, ,则 则只 只能 能修 修改 改截 截面 面尺 尺寸 寸。 。
四、复杂应力状态下折算应力
0 1 2 xy2 yz2 zx2 3x 2 y y 2 z z 2 x
边 缘 的 局 部 承 压 强 度 。 假 定 集 中 荷 载 从 作 用 处 在 h y 高 度 范 围 内 以 1 :2 .5 扩 散 , 在
h R 高 度 范 围 内 以 1 :1 扩 散 , 均 匀 分 布 于 腹 板 高 度 计 算 边 缘 。 这 样 得 到 的 c 与 理 论
的局部压力的最大值十分接近。局部承压强度可按下式计算
第五章 受弯构件
第一节 绪论 第二节 抗弯强度 第三节 规范强度计算公式 第四节 梁的整体稳定计算 第五节 焊接组合梁的局部稳定和加劲肋设计 第六节 薄板屈曲后强度 第七节 考虑腹板屈曲后强度的梁设计 第八节 型钢梁的截面设计 第九节 焊接组合梁的截面设计 第十节 梁的拼接
第一节 绪 论
概念:承受横向荷载,楼盖梁、吊车梁、檩条、桥梁等;
第二节 抗弯强度
截面正应力发展三个阶段: (1)弹性阶段:承受动力荷载 (2)弹塑性阶段:静力荷载或者间接动荷载 (3)塑性阶段:
截面弹塑性阶段抗弯承载力:
M ydA
Ae
Ap
yfydAAe yfyy0ydAAp
yfydA
y
fy Ae yy0dAApydAfy Ie/y0Wp fy WeWp
矩形截面:
(1)弹性阶段:y 0 h /2 ,W e b h 2 /6 W n ,W p 0 ,M y W n fy
(2)塑性阶段:y 0 0 ,W p b h 2 /4 W p n ,W e 0 ,M p W p n fy
(3)弹塑性阶段: My Mpy Mp My MySfMy
相关文档
最新文档