八年级数学上册第十三章轴对称132画轴对称图形1321画轴对称图形课时作业新版新人教版

合集下载

2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。

四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。

学生:三角尺、直尺、圆规。

六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2 画轴对称图形

初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2   画轴对称图形

初中数学人教版八年级上册实用资料13.2画轴对称图形基础巩固1.(知识点2)将平面直角坐标系中的某个图形各个点的横坐标都乘-1,纵坐标不变,所得图形与原图形的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.重合2.(题型二)如图13-2-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在的直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()图13-2-1A.点AB.点BC.点CD.点D3.(知识点2)点A(-3,2)关于x轴的对称点A′的坐标为.4.(题型一)如图13-2-2,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品.图13-2-2 图13-2-35.(易错点1)图13-2-3是李华在镜中看到身后墙上的钟表,你认为实际时间是.6.(题型一)如图13-2-4,在正方形方格中,阴影部分是涂黑的7个小正方形所形成的图案.将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.图13-2-47.(题型一)如图13-2-5的3×3网格都是由9个相同的小正方形组成,每个网格图中都有3个小正方形已涂上阴影,请在剩下的6个空白小正方形中,按下列要求涂上阴影:选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形(给出三种方法)(1)(2)(3)图13-2-58.(题型一)如图13-2-6,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位长度,再向下平移5个单位长度,画出平移后得到的线段A2C2,并以它为一条边作一个格点三角形A2B2C2,使A2B2=C2B2.图13-2-69.(题型二)如图13-2-7,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).写出点D,C,B关于y轴的对称点F,G,H的坐标,并在图13-2-7中作出点F,G,H.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说明它具有怎样的性质,像我们熟知的什么图形.图13-2-710.(题型二)图13-2-8中的“鱼”是将坐标分别为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.(1)利用轴对称变换,画出原图案关于x轴的对称图形,形成美丽的“双鱼座”;(2)求两个图案的公共部分的面积(直接写结果).图13-2-8能力提升11.(题型四)如图13-2-9,将长方形纸片首先沿虚线AB按箭头方向对折,接着将对折后的纸片沿虚线CD按箭头方向对折,然后剪下一个小三角形,最后将纸片打开,则打开后的图形是()图13-2-912.(题型三)如图13-2-10,在平面直角坐标系中,线段OA与线段OA′关于直线l:y=x对称.已知点A的坐标为(2,1),则点A′的坐标为.图13-2-1013.(题型一)如图13-2-11,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出(所给的六个格纸未必全用).图13-2-1114.(题型三)如图13-2-12,在平面直角坐标系中,△ABO的顶点坐标分别为O(0,0),A (2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(2a>m>a).直线l∥y轴,交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的代数式表示).(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明理由,若能,请你说出一种平移方案(平移的长度用m,a表示).图13-2-12答案基础巩固1. C 解析:将各个点的横坐标都乘-1,纵坐标不变,即各个点的横坐标变成它的相反数,纵坐标不变,所以所得图形与原图形关于y轴对称.故选C.2. B 解析:如图D13-2-1,以B为原点建立平面直角坐标系,此时存在两个点A,C关于y轴对称.故选B.图D13-2-13.(-3,-2)4. 书解析:如图D13-2-2,这个单词所指的物品是书.图D13-2-25. 7:45 解析:由镜面对称性可知,实际时间应该是7:45.6. 3 解析:在1,2或3处(如图D13-2-3)涂黑都可得到一个轴对称图形,故涂法有3种.图D13-2-37. 解:如图D13-2-4.图D13-2-48. 解:(1)如图D13-2-5,△A1B1C1即为所求.图D13-2-5(2)如图D13-2-5,△A2B2C2即为所求.(答案不唯一)9. 解:由题意,得F(-2,-3),G(-4,0),H(-2,4).如图D13-2-6,这个图形关于y轴对称,是我们熟知的轴对称图形.图D13-2-610. 解:(1)如图D13-2-7.(2)两个图案的公共部分的面积为1/2×3×2×2+1/2×2×2=6+2=8.图D13-2-7能力提升11. D 解析:∵第三个图形中剪去的是三角形,∴将第三个图形展开,可得A项不符合题意.再展开可知三角形的短边正对着,且在内侧,∴B,C项不符合题意.故选D.12.(1,2)解析:图D13-2-8如图D13-2-8,过点A作AC⊥x轴于点C,过点A′作A′C′⊥y轴于点C′,连接AA′,交直线l于点D.∵线段OA与线段OA′关于直线l:y=x对称,∴△ODA′≌△ODA,∠C′OD=∠COD,∴∠A′OD=∠AOD,A′O=AO.∴∠A′OC′=∠AOC.在△AC O和△A′C′O中,∠AOC=∠A′OC′,∠ACO=∠A′C′O=90°,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵点A 的坐标为(2,1),∴点A′的坐标为(1,2).13解:与△ABC成轴对称且以格点为顶点的三角形如图D13-2-9.图D13-2-9`14. 解:(1)∵线段EF与CD关于y轴对称,线段EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).设CD与直线l之间的距离为x.∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-x.又∵x=m-a,∴点M的横坐标为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能重合.理由如下:由(1)知EM=2a-m-(-m)=2a=OA,EF=a+1-1=a=OB.∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:先将△ABO向上平移(a+1)个单位长度,再向左平移m 个单位长度,即可重合.。

八年级数学上册第十三章轴对称13.2画轴对称图形第1课时画轴对称图形作业课件(新版)新人教版

八年级数学上册第十三章轴对称13.2画轴对称图形第1课时画轴对称图形作业课件(新版)新人教版
第十三章 轴对称
画轴对称图形
第1课时 画轴对称图形
画轴对称图形 1.(4分)下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是( B )
2.(10分)(教材P67例1变式)已知直线AB和△DEF,作△DEF关于直线AB的对称 图形,将作图步骤补充完整:(如图所示)
(1)分别过点D,E,F作直线AB的垂线,垂足分别是点__M_,__P__,__N__; (2) 分 别 延 长 DM , EP , FN 至 __点__G_,__H__,__L___ , 使 _M__G_=__D__M___ , __N_L_=__F__N___ , __P_H__=__E_P_____; (3)顺次连接_G__H_,__H_L__,_L__G_,得△DEF关于直线AB的对称图形△GHL.
3.(8分)如图,将已知四边形分别在格点图中补成关于已知直线l1,l2,l3,l4为对 称轴的轴对称图形.
解:图略
4.(4分)如图,直线l都是这些轴对称图形的对称轴,画出这些图形关于直线l对称 的另一半图形.()(哈尔滨中考)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四 个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点; (2)求△AEF与四边形ABCD重叠部分的面积.
解:(1)△AEF如图所示 (2)重叠部分的面积=2×4-12 ×2×2=6

2020年八年级数学上册第十三章13.2 第1课时 画轴对称图形

2020年八年级数学上册第十三章13.2 第1课时 画轴对称图形
知识要点 画轴对称图形 画轴对称图形的步骤: (1)找:在原图形上找特殊点(如图, 四边形各顶点A、B、C、D); (2)作:作各个特殊点的对称点(如图, 作对称点A′、B′、C′、D′); (3)连:按原图的顺序连接所作的各对称点(连接 A′B′C′D′).
快速对答案
Hale Waihona Puke 提示:点击 进入习题1
详细答案 点击题序
3.如图,先画△ABC 关于直线 l1 对称的△A1B1C1(直 线 l1 过点 C),再画出△A1B1C1 关于直线 l2 对称的△ A2B2C2. 解:△A1B1C1,△A2B2C2 如图所示.
2
详细答案 点击题序
3
详细答案 点击题序
1.如图,在长度为 1 个单位的小正方形组成的网格 中,点 A、B、C 在小正方形的顶点上. (1)在图中画出△ABC 关于直线 l 成轴对称的△ A′B′C′; (2)线段 CC′被直线 l 垂直平分 . 解:(1)如图,△A′B′C′即为所求.
2.(教材 P68 练习 T1 变式)如图,画出△ABC 关于 直线 l 对称的图形. 解:如图所示.

人教版八年级数学上册第13章 轴对称2 第1课时 画轴对称图形

人教版八年级数学上册第13章   轴对称2 第1课时 画轴对称图形

(1) 认真观察,左脚印和右脚印
有什么关系?
P
P'
成轴对称.
(2) 对称轴是折痕所在的直线,
即直线 l,它与图中的线段 PP′
是什么关系?
l直线 l 垂直平分线段源自PP′.知识要点由一个平面图形可以得到与它关于一条直线 l 对称 的图形,这个图形与原图形的形状、大小完全相同(位 置、朝向可能不同);新图形上的每一点都是原图形上 的某一点关于直线 l 的对称点;连接任意一对对应点的 线段被对称轴垂直平分.
l
点 A′ 就是点 A 关于直线 l 的对称点. · A′
尺规作图
——作点关于 直线的对称点
点击视频 开始播放

问题2:如何画一条线段的对称图形? 已知线段 AB,画出 AB 关于直线 l 对称的线段.
A
BA
l B′ A′
A
B′
(B′)
Bl
l
A′
B
A′ (图 1)
(图 2)
(图 3)
想一想:如果有一个图形(如三角形、四边形)和一条
例4 在 3×3 的正方形格点图中,有格点△ABC 和
△DEF,且△ABC 和△DEF 关于某直线成轴对称,
请在下面给出的图中画出 4 个这样的△DEF.
E
D
C(F)
CF
D
E
C(F)
CF
A (D) B A
B(E) A
B A(D) B(E)
方法归纳:作一个图形关于一条已知直线的对称图形, 关键是作出图形上一些点关于这条直线的对称点,然 后再根据已知图形将这些点连接起来.
B A′ 就是点 A 关于直线 l 的对称点.
(2) 同理,分别画出点 B,C 关于 A

人教版初中数学八年级上册精品教学课件 第13章 轴对称 13.2 第1课时 画轴对称图形

人教版初中数学八年级上册精品教学课件 第13章 轴对称 13.2 第1课时 画轴对称图形

BC连..对对接应应B点点B',交连连对线线称被被轴对对于称称点轴轴O平垂(图分直略平). 分
D过.对点应B,点B'作连B线E,B互'F相与平对称行轴垂直,垂足分别为E和F,
则BE=B'F,
图①关闭图②∴△源自EO≌△B'FO.关闭
∴B BO=B'O.
解析 答案
快乐预习感知
1
2
3
4
4.以直线l为对称轴画出下图的另一半.
的一些特殊点(如线段端点)的对称点,连接这些 对称点
,
就可以得到原图形的 轴对称图形 .
快乐预习感知
3.如图,在方格纸中画出与△ABC关于直线MN对称的△A1B1C1.
解 △A1B1C1如图所示.
快乐预习感知
运用轴对称解决实际问题 【例题】
如图,P,Q分别为△ABC的边AB,AC上的两个定点,在BC上求作一 点D,使△DPQ的周长最短.
第1课时 画轴对称图形
快乐预习感知
1.由一个平面图形可以得到与它关于一条直线l对称的图形,这个
图形与原图形的 形状 、 大小 完全相同;新图形上的每一点
都是原图形上的某一点关于直线l的 对称点 ;连接任意一对对
应点的线段被 对称轴 垂直平分.
2.几何图形都可以看作由点组成,对于某些图形,只要画出图形中
快乐预习感知
1
2
3
4
2.如图,在4×4正方形网格中,已有3个小方格涂成了黑色.现在要从
其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图 形成为轴对称图形,这样的白色小方格有( )
如图,有 4 个位置使之成为轴对称图形. A.1个 B.2个 C.3个D.4个

最新人教版八年级数学上册 13.2.1画轴对称图形(1)

最新人教版八年级数学上册   13.2.1画轴对称图形(1)

13.2.1画轴对称图形(1)学习目标1、 掌握用“连结对称点的线段被对称轴垂直平分”2、 熟练画出轴对称图形的对称轴。

3、培养良好的动手实践能力。

学习重点:验证一个图形是不是轴对称图形学习难点:画轴对称图形的对称轴。

课前预习1、如图:不通过折叠的方法,你能验证出这两个四边形是否关于直线MN 对称吗?2、设A 、B 两点关于直线MN 对称,则______垂直平分________.3、轴对称图形的对称轴与对应点所连线段的垂直平分线有什么关系?4、作轴对称图形的对称轴就是做作出一对对应点所连线段_____________5、只用圆规和直尺(不量长度)你能作出线段AB 垂直平分线吗?根据下面的做法试一试。

作法:(1)分别以点A 、B 为圆心,以大于1/2AB 的长为半径画弧,两弧相交于点C 、D ;(2)作直线CD所以直线CD 就的垂直平分线,也是线段AB 的对称轴。

问:这样所作的直线为什么是线段的垂直平分线?6、课本P35练习题1、2课内探究例1、试着画出下边两个轴对称图形的对称轴。

例2、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。

长方形 正方形 三角形 等腰三角形 等边三角形平行四边形 任意梯形 等腰梯形 圆当堂检测A组1:画出以下图形的对称轴2课本P35练习题33、课本P37习题5B组1:下面的虚线,哪些是图形的对称轴,哪些不是?2、课本P37习题7,9C组课后训练1、如图所示,下图是由一个圆,一个半圆和一个三角形组成的图形,请你以直线AB为对称轴,把原图形补成轴对称图形.(保留作图痕迹,不要求写作法和证明)2、如图所示,两个三角形关于某条直线成轴对称,则x= °.3、某居民小区搞绿化,要在一块长方形空地上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数不限)并且使整个长方形场地成轴对称图形,请在长方形中画出你设计的方案.4、用若干火柴棒可以摆出一个优美的图案,如图所示就是用火柴棒摆出的一个优美图案,此图案表示的含义可以是天平(或公正),请你用五根或五根以上火柴棒摆成一个轴对称图形,并说明你摆出的图案的含义.。

人教版八年级数学上册课时练 第十三章 轴对称 13.2 画轴对称图形

人教版八年级数学上册课时练 第十三章 轴对称 13.2 画轴对称图形

人教版八年级数学上册课时练 第十三章 轴对称 13.2 画轴对称图形一、选择题1.如图,点P 在∠MON 的内部,点P 关于OM ,ON 的对称点分别为A ,B ,连接AB ,交OM 于点C ,交ON 于点D ,连接PC ,PD .若∠MON =50°,则∠CPD =( )A .70°B .80°C .90°D .100°2.如图,已知等边△ABC 的面积为 P 、Q 、R 分别为边AB 、BC 、AC 上的动点,则PR +QR 的最小值是( )A .3B .CD .43.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒4.如图,45AOB ∠=︒,OC 为AOB ∠内部一条射线,点D 为射线OC 上一点,OD ,点E 、F 分别为射线OA 、OB 上的动点,则DEF △周长的最小值是( )A B .2 C . D .45.在坐标平面上有一个轴对称图形,其中A (3,﹣52)和B (3,﹣112)是图形上的一对对称点,若此图形上另有一点C (﹣2,﹣9),则C 点对称点的坐标是( )A .(﹣2,1)B .(﹣2,﹣32)C .(﹣32,﹣9)D .(﹣2,﹣1)6.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-7.如图,在锐角△ABC 中,AC =10,S △ABC =25,∠BAC 的平分线交 BC 于点 D ,点 M ,N 分别是 AD 和 AB 上的动点,则 BM +MN 的最小值是( )A .4B .245C .5D .68.如图,CD 是△ABC 的角平分线,△ABC 的面积为12,BC 长为6,点E ,F 分别是CD ,AC 上的动点,则AE +EF 的最小值是( )A .6B .4C .3D .29.如图,四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A .80°B .90°C .100°D .130°10.如图,已知等边△ABC 的边长为4,面积为,点D 为AC 的中点,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为( )A .3B .C .D .二、填空题 11.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.12.如图,在直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.13.如图,∠AOB=30°,内有一点P且OP=5,若M∠N为边OA∠OB上两动点,那么△PMN的周长最小为__________∠14.如图,点P是∠AOB内任意一点,OP=4cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°则△PMN 周长的最小值=________ .15.如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD n= .三、解答题16.如图所示,点P在∠AOB内,点M、N分别是点P关于AO、BO所在直线的对称点.(1)若△PEF的周长为20,求MN的长.(2)若∠O=50°,求∠EPF 的度数.(3)请直接写出∠EPF 与∠O 的数量关系是_____________________________17.(阅读)如图1,四边形OABC 中,OA a =,3OC =,2BC =,90AOC BCO ∠=∠=︒,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角OCB ∠沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为[],FZ a θ.(理解)若点D 与点A 重合,则这个操作过程为FZ [__________,__________];(尝试)(1)若点D 恰为AB 的中点(如图2),求θ;(2)经过[]45,FZ a ︒操作,点B 落在E 处,若点E 在四边形OABC 的边AB 上(如图3),求出a 的值.18.如图,∠AOB=30°,点P 是∠AOB 内一点,PO=8,在∠AOB 的两边分别有点R 、Q (均不同于O ),求△PQR 周长的最小值.19.在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A′与点A关于l对称,A′B与l交于点P).观察计算(1)在方案一中,d1=km(用含a的式子表示)(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=km (用含a的式子表示).探索归纳(1)①当a=4时,比较大小:d1d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1d2(填“>”、“=”或“<”);(2)请你参考方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?20.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,(1)如图2中A′落在ED′上,求∠FEG的度数;(2)如图3中∠A′ED′=50°,求∠FEG的度数;(3)如图4中∠FEG=85°,请直接写出∠A′ED′的度数;(4)若∠A′ED'=n°,直接写出∠FEG的度数(用含n的代数式表示).21.几何模型:条件:如图1∠A∠B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:∠1)如图2,已知平面直角坐标系中两定点A∠0∠-1∠∠B∠2∠-1∠,P为x轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______∠∠2)如图3,正方形ABCD的边长为2∠E为AB的中点,P是AC上一动点.由正方形对称性可知,B与D关于直线AC 对称,连接BD,则PB+PE的最小值是______∠∠3)如图4,正方形ABCD的面积为12∠∠ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD∠PE的最小值为∠∠4)如图5,在菱形ABCD中,AB=8∠∠B=60°,点G是边CD边的中点,点E∠F分别是AG∠AD上的两个动点,则EF+ED 的最小值是_______________.22.如图,∠ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若∠A1B1C1与∠ABC关于y轴成轴对称,则∠A1B1C1三个顶点坐标分别为A1_____,B1_____,C1_____(2)在y轴上是否存在点Q.使得S△ACQ=12S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是_____.23.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B∠8∠6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′∠∠1)若点A′落在矩形的对角线OB上时,OA′的长=∠∠2)若点A′落在边AB的垂直平分线上时,求点D的坐标;∠3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).【参考答案】1.B 2.B 3.C 4.B 5.A 6.D 7.C 8.B 9.C 10.C11.(-4,2)或(-4,3)12.(0,3)13.514.4cm15.12n +.16.∠1∠20∠∠2∠80°∠∠3∠∠EPF= 180°-2∠O17.[]453FZ ︒,;(1)30°;(2)518.819.观察计算:(1)a +2;(2)√a 2+24;探索归纳:(1)①<,②>;(2)当a >5时,选方案二;当a =5时,选方案一或方案二;当1<a <5时,选方案一.20.(1)∠FEG =90°;(2)∠FEG =115°;(3)∠A ′ED ′=10°;(4)∠FEG 的度数为1802n ︒+︒或1802n ︒-︒.21.∠1∠点P 的横坐标是 1 ,此时PA+PB 的最小值是 ∠3∠这个最小值为∠∠4∠EF+ED 的最小值是22.(﹣1,1) (﹣4,2) (﹣3,4) (2,0)23.∠1∠4∠∠2)点∠0∠∠∠3)点D 的坐标为()或(﹣。

人教版八年级上册数学第13章 轴对称 画轴对称图形

人教版八年级上册数学第13章 轴对称  画轴对称图形
种即可);
(2)再将图②中其余小三角形涂黑两个,使整个图形构 成一个轴对称图形(画出两种即可).
解:答案不唯一,如:(1)如图①所示. (2)如图②所示.
11.如图,将长方形纸片ABCD沿对角线BD折叠,使点C落在C′处,BC′交AD于 点E.
(1)若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也 视为角的边)有多少个?
2.小明站在平面镜前,看见镜子中自己胸前球衣的号码是,则实际的号码为 () C
3.(中考·舟山)将一张正方形纸片按如图步骤①②沿虚线对折两次,然后沿③中 平行于底边的虚线剪去一个角,展开铺平后的图形是( )
A
4.如图,与正六边形ABCDEF关于直线l成轴对称的图形是六边形A′B′C′D′E′F′,
解:图中45°的角有5个.
(2)你认为图中有全等三角形吗?如果有,请写出图中一对全等三角形,并说明 理由;如果没有,也请说明理由.
解:有.△BCD≌△DAB≌△BC′D,△ABE≌△C′DE.理由略.
12.(中考·衡阳)如图,方格图中每个小正方形的边长为1,点A,B,C都是格 点.
(1)画出△ABC关于直线BM对称的△A1B1C1;
对称点
垂直平分
6.下面是四位同学作△ABC关于直线MN对称的△A′B′C′,其中正确的是( ) B
7.如图所示,在3×3的方格图中,再给其中一个小方格画上半径相等的圆,使整个
图形为轴对称图形,方法有( )
A.1种 B.2种
C
C.3种 D.4种
*8.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正 三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )

人教版初中八年级上册数学精品课件 第十三章 轴对称 画轴对称图形 画轴对称图形

人教版初中八年级上册数学精品课件 第十三章 轴对称 画轴对称图形 画轴对称图形
练一练
1.点P(–5, 6)与点Q关于x轴对称,则点Q的坐标为__(_–_5__, _–_6__). 2.点M(a, –5)与点N(–2, b)关于x轴对称,则a=__–_2__, b =___5__.
探究新知
问题3: 如图,在平面直角坐标系中你能画出点A关于y轴的对称点吗?
y
A′(–2,3)
A (2,3)
巩固练习 连接中考
1.如图,点A的坐标(–1,2),点A关于y轴的对称点的坐标为 ( A)
A.(1,2) B.(–1,–2) C.(1,–2) D.(2,–1)
巩固练习
连接中考
2.在平面直角坐标系中,点B的坐标是(4,–1),点A与点B关 于x轴对称,则点A的坐标是( A )
A.(4,1)
B.(–1,4)
O
你能说出点A 与点A'坐标的 关系吗?
x
探究新知
做一做: 在平面直角坐标系中画出下列各点关于y轴的对称点.
y
(x , y)
关于 y轴 对称
( –x, y )
B(–4,2) O
C '(3,4)
B '(–4,–2)
x
C (3,–4)
探究新知 归纳总结
关于y轴对称的点的坐标的特点是: 横坐标互为相反数,纵坐标相等. (简称:横反纵同)
导入新知
如图,是一幅老北京城的示 意图,其中西直门和东直门是关 于中轴线对称的.如果以天安门 为原点,分别以长安街和中轴线 为x轴和y轴建立平面直角坐标系. 根据如图所示的东直门的坐标, 你能说出西直门的坐标吗?
素养目标
2.掌握在平面直角坐标系中作出一个图形的轴 对称图形的方法.
1. 理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.

八年级数学上册第十三章轴对称13.2画轴对称图形预习作业人教版.docx

八年级数学上册第十三章轴对称13.2画轴对称图形预习作业人教版.docx

第十三章轴对称13.2 画轴对称图形【预习速填】1轴对称变换的性质.轴对称变换是由一个平面图形得到它的轴对称图形,它描述的是两个图形的位置、形状、大小的关系,即:①由一个平面图形可以得到它关于条直线l成轴对称的图形,这个图形与原图形的,完全相同;②新图形上的任意一点,都是原图形上某一点关于直线l的;③连接任意一对对称点的线段被对称轴 .2.作关于直线对称的图形的方法画轴对称图形的依据是轴对称的性质,找特殊点对作出轴对称图形极其重要,因为几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的 ,再这些对称点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的 ,再连接这些对称点,就可以得到原图形的轴对称图形.3.点关于坐标轴对称.实际动手操作,在平面直角坐标系中任意选取一些点,画出它们分别关于x轴、y轴的对称点,观察每对对应点的坐标规律,总结:点(x,y)关于x轴对称的点的坐标为 ,即横坐标相同,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为 ,即横坐标互为相反数,纵坐标相同;在记忆规律时,要注意,关于坐标轴对称的点的坐标只有符号不同,其绝对值相同.4.图形关于坐标轴对称.要在平面直角坐标系中作出一个图形关于坐标轴对称的图形,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对称点的坐标,描出并顺次这些点,即可得到这个图形关于坐标轴对称的图形注意:所我的特殊点,一定要能确定原图形,否则作出的图形与原图形不一定成轴对称.【自我检测】1.如图,△ABC和△ABC'关于直线l成轴对称,连接AA、CC分别交直线l于点D、E若AD=2cm,C'E=lcm,则AA’= cm,CE= cm.2.已知点P(2a+b,-3a)与点P'(8,b+2).若点P与点P关于x轴对称,则a= ,b= ;若点P 与点P关于y轴对称,则a= ,b= .3.(1)已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(2)如图,把下列图形补成以直线l为对称轴的轴对称图形.4.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积;(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标并在坐标系中作出△A1B1C1.参考答案【预习速填】1.【答案】形状,大小,对称点,垂直平分2.【答案】对称点,连接,对称点3.【答案】(x,-y),(-x,y)4.【答案】连接【自我检测】1.【解析】由轴对称可知,AA’=2AD=4cm,CE=C’E=1cm。

人教版八年级数学上册第13章2 第1课时 画轴对称图形 同步练习题及答案

人教版八年级数学上册第13章2 第1课时  画轴对称图形 同步练习题及答案

13.2 第1课时画轴对称图形基础闯关全练拓展训练1.(2016山东济宁邹城一模)若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为( )A.4B.3C.2D.13.如图,在10×10的正方形网格中有一个四边形和两个三角形(所有顶点都在方格的格点上).(1)请你画出以上三个图形关于直线MN对称的图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.能力提升全练拓展训练1.(2016江西中考模拟)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点2.在平面直角坐标系中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是( )A.(-a,5)B.(a,-5)C.(-a+2,5)D.(-a+4,5)3.如图,在正方形ABCD(正方形四边相等,四个角均为直角)中,E、F、P、H分别为四边的中点,请分别在图1、2、3中画一个以A、B、C、D、E、F、P、H中的三点为顶点的三角形,所画三角形要求与△APH成轴对称(三个三角形的位置要有区别),并画出相应的一条对称轴.三年模拟全练拓展训练1.(2018山西吕梁孝义期中,15,★★☆)若点A(2a+1,-3a+2)关于x轴对称的点在第四象限,则a的取值范围是.2.(2017辽宁丹东中考模拟,15,★★☆)如图,在平面直角坐标系中,线段OA与线段OA'关于直线l:y=x对称.已知点A的坐标为(2,1),则点A'的坐标为.五年中考全练拓展训练(2016山东滨州中考,7,★☆☆)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)核心素养全练拓展训练1.在平面直角坐标系中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;……,按此规律,则点B2 017的坐标是.2.平面直角坐标系中有一点A(1,1),对点A进行如下操作:第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;……则点A2的坐标为,点A2 017的坐标为.若点A n的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式.13.2画轴对称图形基础闯关全练拓展训练1.D 由点A(a-2,3)和点B(-1,b+5)关于y轴对称,得a-2=1,b+5=3,解得a=3,b=-2,则点C(a,b)在第四象限.2.D ∵点M关于直线x=3的对称点N的坐标为(5,3),∴点N到直线x=3的距离为2,∴点M(a,3)到直线x=3的距离为2,又点M在y轴与直线x=3之间,∴a=1.3.解析(1)所画图形如图所示:(2)这个整体图形共有4条对称轴.能力提升全练拓展训练1.B 如图所示,以B点为原点,建立平面直角坐标系,此时存在两个点A,C关于y轴对称,故选B.2.D ∵直线m上各点的横坐标都是2,点P(a,5)在第二象限,∴点P到直线m的距离为2-a,∴点P关于直线m 对称的点的横坐标是2-a+2=4-a,故点P关于直线m对称的点的坐标是(-a+4,5).3.解析如图所示(虚线为相应的对称轴):三年模拟全练拓展训练1.答案-<a<解析∵点A(2a+1,-3a+2)关于x轴对称的点在第四象限,∴点A在第一象限,∴解不等式①得,a>-,解不等式②得,a<,所以,a的取值范围是-<a<.故答案为-<a<.2.答案(1,2)解析过点A作AC⊥x轴于点C,过点A'作A'C'⊥y轴于点C',连接AA',则∠ACO=∠A'C'O=90°.∵线段OA与线段OA'关于直线l:y=x对称,∴△ODA'≌△ODA,∠C'OD=∠DOC,∴∠A'OD=∠AOD,OA'=OA,∴∠C'OD-∠A'OD=∠DOC-∠AOD,即∠A'OC'=∠AOC.在△ACO和△A'C'O中,∴△ACO≌△A'C'O,∴AC=A'C',CO=OC',∵点A的坐标为(2,1),∴OC=2,AC=1,∴OC'=2,A'C=1,∴点A'的坐标为(1,2).五年中考全练拓展训练C 由A(0,a)可知点A一定在y轴上,由C(b,m),D(c,m)可知点C与点D关于y轴对称,∴y轴过点A,且垂直平分CD,x轴平行于CD,∴点B与点E关于y轴对称,∵点B(-3,2),∴点E(3,2),故选C.核心素养全练拓展训练1.答案(2 016,2 017)解析如图所示.易知B1(0,1),B2(1,2),B3(2,3),B4(3,4),B5(4,5),依次类推,点B2 017的坐标是(2 016,2 017).2.答案(1,-2);(2504,-2504);m=n解析由题意得,A1(1,-1),A2(1,-2),A3(-1,-2),A4(-2,-2),A5(-2,2),A6(-2,4),A7(2,4),A8(4,4),∵2 017÷8=252……1,∴点A2 017为第253循环组的第一个点,易知A2 017和A1所在象限一样,A2 017(2504,-2504).若点A n的坐标恰好为(4m,4n)(m、n均为正整数),则m和n的关系式为m=n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第十三章轴对称132画轴对称图形1321画轴对称图形课
时作业新版新人教版
第1课时画轴对称图形
知识要点基础练
知识点1轴对称变换
1.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)
2.如图,等边△ABC的边长为10 cm,D,E分别是AB,AC边上的点,将△ADE沿直线DE 折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为30 cm.
知识点2画轴对称图形
3.【教材母题变式】如图,作出△ABC关于直线l的对称图形.
解:如图所示.
综合能力提升练
4.王刚在镜中看到身后墙上的钟,实际时间最接近4点的是(B)
5.图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是(1).
6.如图,已知△ABC.
(1)画出△A1B1C1,使△A1B1C1和△ABC关于直线MN成轴对称.
(2)画出△A2B2C2,使△A2B2C2和△ABC关于直线PQ成轴对称.
(3)△A1B1C1与△A2B2C2成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由.解:(1)(2)所画图形如图所示.
(3)不成轴对称,因为它们不关于直线对称.
拓展探究突破练
7.如图,方格纸上画有AB,CD(点A,B,C,D是格点)两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法):
(1)请你在图1中画出线段AB关于CD所在直线成轴对称的图形;
(2)请你在图2中添上一条线段,使图中的3条线段组成一个轴对称图形(画出一种即可,图1的情况除外).
解:(1)图略.
(2)如图所示.(答案不唯一)。

相关文档
最新文档