原子吸收光谱法的特点和应用范围课件.ppt

合集下载

原子吸收光谱法

原子吸收光谱法
但是石墨炉原子化法的分析速度较慢,分析成本高 ,精密度差,基体干扰比较大。
低温原子化法:低温原子化法也称为化学原子化法 ,包括冷原子化法和氢化物发生法。
一般冷原子化法与氢化物发生法可以使用同一装置 。
冷原子化法:直接测量Hg 氢化物发生法:氢化物发生器生成金属或类金属元
素氢化物,进入原子化器。
第四节 干扰及其消除方法
物理干扰:由于溶液的物理性质(如粘度、表面张力、密度和蒸 气压等)的变化引起的试液抽吸过程、雾化过程和蒸发过程的比 例不同。消除物理干扰的主要方法是配制与被测试样相似组成的 标准溶液,或采用标准加入法。
电离干扰:在高温下,原子电离成离子,而使基态原子数目减少 ,导致测定结果偏低,此种干扰称电离干扰。消除办法是向试液 中加入过量比待测元素电离电位低的其他元素(通常为碱金属元 素)。例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的 电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离使钙离子 得到电子而生成原子。
{ C2H2:空气
> ¼ 富燃火焰 ≈¼ 中性火焰 化学计量火焰
< ¼ 贫燃火焰
根据燃气和助燃气的种类不同常用的有以下火焰:
乙炔-空气火焰; 氢-空气火焰; 乙炔-氧化亚氮火焰。
① Al,Ti,Ta,Zr等易形成难解离氧化物,不宜使用
② As 193.64,197.20nm;Se 196.09nm 不易使用 乙炔—空气火焰 是原子吸收测定中最常用的火焰,该火焰 燃烧稳定,重现性好,温度较高,可达23000C ,对大多数元
化学干扰:被测元素与共存组分发生化学反应,生成更稳定的 化合物,影响被测元素的原子化。由于PO43-的存在,钙与其形 成了磷酸钙、焦磷酸钙等化合物,这些化合物其键能很高,在 火焰中不易分解产生钙原子,结果偏低。消除方法:加入干扰 抑制剂的方法,如加入锶盐后Sr与PO43-反应生成比磷酸钙更加 稳定的化合物,从而释放出钙原子,消除了磷酸根离子对钙的 干扰。

8-原子吸收光谱法29页PPT

8-原子吸收光谱法29页PPT

⑴ 电热原子化法与火焰原子化器法的比较:
① 灵敏度高 基态原子在吸收区停留时间长( 1~10-1 s),比火焰法高1000倍。
② 绝对检出限低 (10-9~10-12)。 ③ 试样用量少,一般在10~100μL之间。 ④ 能分析粘度大的样品及固体试样。 ⑤ 精密度较差;背景吸收较高;操作过程比火
焰法慢,采用自动进样装置可以提高仪器的 精密度。
8.3 定量分析
1. 标准曲线法
对样品比较了解、方便。标准曲线最好为直线过原点,但 也可不过原点,不是直线。
2. 标准加入法
标准曲线必须过原点,且为直线,共存成分复杂,基体效 应大可用此法。
a. 加一次标准加入法
Ax = kcx A = kVxcx
Vx
+Vscs
+Vs
cx
b. 曲线外推法
cx
③ 贫燃火焰: 燃气小于助燃器的比例(1:6),燃烧完全,氧化性 强,温度低。适宜于易解离、易电离的元素测定。
2. 电热原子化器
在电热原子化法中,石墨炉原子吸收分析已成为 痕量元素分析的一种重要手段。电热原子化法是将固 定体积的试样注入可被加热的石墨管中,在惰性气体的 保护下通电加热后(10V,300A;2000~3000℃), 试样迅速加热原子化,得到峰形吸收信号。信号的峰 高和峰面积与待测元素的浓度成正比。
⒉ 干扰少,分析精度好; ⒊ 分析速度快; ⒋ 应用范围广; ⒌ 仪器比较简单,操作方便。
三、原子吸收的测量
比耳定律 A =εb c dIkIdl k :吸收系数
积分: II0td I I 0 tkd l It I0ekl
积分吸收系数:
k d
e2
mec
fn0
积分吸收与单位体积火焰介质中的基态原子数成正比。

原子吸收光谱法课件

原子吸收光谱法课件
原子吸收光谱法课件
欢迎来到原子吸收光谱法课件!本课件将为您介绍原子吸收光谱法的定义和 原理,并探讨其在科学实验室中的常见仪器,以及样品制备和操作步骤。
原子吸收光谱法的定义和原理
原子吸收光谱法是一种分析方法,通过测量样品中特定元素的吸收光谱来定 量分析该元素的浓度。基于原子对特定波长的吸收特性,该方法被广泛应用 分析食品中的微量元素和有害物质,确 保食品安全和质量合规。
3 药物研发
用于药物制剂中活性成分的浓度分析,确保 药品质量和疗效。
4 金属分析
用于金属合金、地质样品等材料中金属元素 的定量分析,检测材料成分。
优缺点分析
优点
高选择性和准确度,能够定量分析微量元素。适用于多种样品类型。
缺点
需要专用设备和经验操作,成本较高。对于某些元素和化合物可干扰。
技术的进展和未来发展趋势
原子吸收光谱法的技术不断发展,提高了灵敏度和分析速度。未来的发展趋 势包括更小型化的仪器、多元素分析和在线监测技术的推广。
总结和要点
• 原子吸收光谱法是一种常用的定量分析方法。 • 不同类型的原子吸收光谱仪器适用于不同的分析需求。 • 样品制备和操作步骤对结果的准确性至关重要。 • 应用领域广泛,包括环境监测、食品安全和药物研发。 • 优点包括高准确度和选择性,缺点包括设备成本和干扰因素。 • 技术的进展将进一步提高分析性能和便捷性。
常见的原子吸收光谱仪器
火焰原子吸收光谱仪
适用于常见金属元素的分析,如 铁、铜和锌。操作简单,常用于 实验室环境。
石墨炉原子吸收光谱仪
适用于痕量金属元素的分析,如 铅和汞。能够提高灵敏度和准确 度,但操作较为复杂。
电感耦合等离子体原子发 射光谱仪
适用于多元素的快速分析,可检 测从微量到痕量的元素含量。具 有高灵敏度和低检测限。

《分析化学》PPT课件

《分析化学》PPT课件

积分吸收与峰值吸收
• 锐线光源: 所发射谱线与原子化器中待测元素所吸收谱线中心频率(ν0)
一致,而发射谱线半宽度(ΔνE)远小于吸收谱线的半宽度 ( ΔνA )。
原子吸收光谱法的特点
选择性好:空心阴极灯作锐线光源,光 谱干扰小。
灵敏度高:适应于微量与痕量金属与 类金属分析。石墨炉原子化法,10-10~10-14水平。
精密度高。操作方便和快速。 应用范围广:分析不同含量、不同性质、不 同状态的元素。 局限性:不适于多元素混合物的定性分析, 难以原子化的元素分析灵敏度低。
在原子光谱中的带光谱和连续光谱
• 当获得原子的线光谱时,除观察到线光谱外,还会出现带光谱和连 续辐射。
• 连续辐射来源于原子化介质中的热微粒物质产生的热辐射。等离子 体,电弧,火花也会产生带光谱和连续辐射。
原子吸收分光光度计
仪器结构与工作原理 原子化系统 原子吸收分光光度计的性能指标
仪器结构与工作原理
锐线光源 原子化器
单色器 检测器 计算机工作站
空心阴极灯(HLC)
火焰原子化器(FAAS) 石墨炉原子化器(GFAAS) 氢化物原子化器(HGAAS) 平面衍射光栅 中阶梯光栅二维色散系统
光电倍增管(PMT)
包括雾粒的脱溶剂、蒸发、解离等阶段。 大部分分子解离为气态原子。
火焰原子化
火焰原子化器 火焰的类型 火焰的构造及其温度分布 自由原子在火焰中的空间分布 燃气和助燃气的比例
火焰的类型
• 当空气作为助燃气时,由不同燃气获得的火焰温度在1 700~2 400 ℃。仅仅能够原子化那些易分解的试样。
• 对难熔的试样,必须采用氧或氮氧化合物作为助燃气进行原子化。
光源的调制也可用稳定的直流电供给空心 阴极灯,在空心阴极灯和火焰之间插入一个切 光器,进行机械调制。

原子吸收光谱法ppt课件

原子吸收光谱法ppt课件
7
定量分析的依据
基态原子对共振线的吸收程度 与蒸气中基态原子的数目和原子蒸气 厚度的关系,在一定的条件下,服从 朗伯-比耳定律:
8
定量分析的依据
由于原子化过程中激发态原子数目和离子 数很少,因此蒸气中的基态原子数目实际上接近 于被测元素的总原子数目,而总原子数目与溶液 中被测元素的浓度c成正比。在L一定条件下:
9
原子吸收分光度计
10
原子吸收分光度计
光源 原子化器 单色器 检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
11
➢光 源
提供待测元素的特征光谱。获得较 高的灵敏度和准确度。
光源应满足如下要求; 1 能发射待测元素的共振线; 2 能发射锐线; 3 辐射光强度大,稳定性好。
12
注意:在高浓度时,标准曲线易发生弯曲。 27
➢标准加入法
计算法:
设容量瓶A,待测元素浓度Cx,吸光度Ax; 容量瓶B,待测元素浓度为(Cx+Cs),吸光 度为Ax+s,可求得被测试液元素的浓度为:
28
➢标准加入法
作图法:
设同体积容量瓶编号 A B C D
试液+标准溶液浓度 cx cx+ cs cx+ 2cs cx+ 4cs
原子化过程分为干燥、灰化(去除基体)、 原子化、净化( 去除残渣)四个阶段,待测元 素在高温下生成基态原子。
21
石墨炉原子化装置
优点:原子化程度高,试样用量少(1100μL),可测固体及粘稠试样,灵敏度 高,检测极限10-12 g/L。
缺点:精密度差,测定速度慢,操 作不够简便,装置复杂。
22
➢单色器
质和内充惰性气体的光谱; 14

原子吸收光谱法(共73张课件)

原子吸收光谱法(共73张课件)

比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置

处吸收轮廓上两点间的距离

(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。

原子吸收 培训课件

原子吸收 培训课件

抗干扰能力强
操作简便
原子吸收光谱法具有较强的抗干扰能力, 能够克服基质效应和共存离子的干扰,提 高分析的准确性和可靠性。
原子吸收光谱法操作简便,仪器自动化程 度高,可以快速进行样品处理和测定。
缺点
样品消耗量大
原子吸收光谱法需要消耗较大的样品量,对于一些稀有或珍贵样品, 可能会造成浪费。
检测范围有限
联用技术如色谱-原子吸收联用技术的 出现,使得原子吸收光谱法在复杂样 品分析中具有更高的实用价值。
新型光源和检测器的研发,如激光诱 导击穿光谱技术和电感耦合等离子体 发射光谱技术等,为原子吸收光谱法 提供了更广阔的应用前景。
应用领域的拓展
原子吸收光谱法最初主要用于金属元素的分析,随着技术的 进步和应用研究的深入,其应用领域已经拓展到了非金属元 素、有机物和生化样品的分析。
身伤害。
实验结束后,正确处理废弃物, 防止对环境和人体造成危害。
事故处理
如发生意外事故,应立即采取 应急措施,并及时报告相关部
门。
实验废弃物的处理与处置
分类收集
将废弃物按照可回收、有害、一般废弃物进行分类收集。
有害废弃物处理
对有害废弃物进行无害化处理,如酸碱中和、沉淀、焚烧等。
废弃物处置
将处理后的废弃物按照相关规定进行处置,如深埋、排放等。
03
原子吸收光谱法可以用于陶瓷材料中金属元素的分析,以了解
陶瓷材料的成分和性能。
04
原子吸收的优缺点
优点
灵敏度高
选择性好
原子吸收光谱法具有很高的灵敏度,能够 检测出低浓度的元素,适用于痕量元素的 分析。
原子吸收光谱法具有较好的选择性,不同 元素有不同的吸收波长,可以实现对目标 元素的特异性检测。

仪器分析张新荣原子吸收光谱ppt

仪器分析张新荣原子吸收光谱ppt

在生物体内的分布、代谢和作用。
03
临床诊断与疾病预防
通过原子吸收光谱法对生物体液和排泄物中的元素进行定量分析,为
临床诊断和疾病预防提供依据和支持。
原子吸收光谱法的应用前景及挑战
样品前处理
原子吸收光谱法的样品前处理方法需要进一步优化和完 善,以提高待测元素的回收率和纯度,降低干扰物质的 影响。
仪器性能与技术参数
仪器分析张新荣原子吸收光谱
xx年xx月xx日
Байду номын сангаас
目 录
• 原子吸收光谱法简介 • 原子吸收光谱仪基本结构与原理 • 原子吸收光谱仪的实验技术 • 原子吸收光谱法与其他仪器分析方法比较 • 原子吸收光谱法在环境样品中的应用 • 原子吸收光谱法的展望
01
原子吸收光谱法简介
原子吸收光谱法的基本原理
原子吸收光谱法是一种基于原子能级跃迁的定量分析方法,样品中的基态原子在 吸收特定波长的光源后,吸收能量跃迁到激发态,再回到基态时发射出与光源波 长相同的光,通过测量光源通过样品后的吸光度来定量分析样品中的元素含量。
结果分析
对测定结果进行分析,判断土壤中重金属元素含量的高低,了解 土壤污染状况。
原子吸收光谱法测定大气颗粒物中的重金属元素
样品前处理
采集大气颗粒物样品,将颗粒物 进行分离、洗涤、干燥等处理, 以备后续分析。
仪器分析
利用原子吸收光谱法测定大气颗 粒物中重金属元素的含量,如Pb 、Cd、Cr等。
结果分析
原子发射光谱法
是一种基于原子能级跃迁的分析方法,通过测定样品在加热或电激发下发射 的光谱线来确定元素浓度。该方法具有较高的多元素分析能力和较低的检出 限,但干扰因素较多且分析时间较长。
05

原子吸收光谱法PPT课件

原子吸收光谱法PPT课件

消除电离干扰的方法
加入消电离剂 利用富燃火焰也可抑制电离干扰 利用温度较低的火焰 提高溶液的吸喷速率 标准加入法
化学干扰
是指试样溶液转化为自由基态原子的过程中,待 测元素和其他组分之间发生化学作用而引起的干 扰效应.它主要影响待测元素化合物的熔融,蒸发 和解离过程.这种效应可以是正效应,增强原子吸 收信号;也可以是负效应,降低原子吸收信号.化学 干扰是一种选择性干扰,它不仅取决于待测元素与 共存元素的性质,还与火焰类型,火焰温度,火焰状 态,观察部位等因素有关.化学干扰是火焰原子吸 收分析中干扰的主要来源,其产生的原因是多方面 的.
物理干扰
吸喷速率
喷雾量和雾化效率
毛细管形状
物理干扰一般都是负干扰,最终影响火焰分 析体积中原子的密度.
消除物理干扰的方法
配制与待测试液基体相一致的标准溶液; 当前者困难时,可采用标准加入法; 当被测元素在试液中浓度较高时,可以稀释溶液来降低
或消除物理干扰; 在试液中加入有机溶剂,改变试液的粘度和表面张力,
A.
A lg
I0 I
KC
原子吸收光谱仪的构成
光源:提供特征锐线光谱 原子化器:产生原子蒸汽,使被测元素
原子化 分光系统:将被测分析线与光源其他谱
线分开,并阻止其他谱线进入检测器 检测系统:光电倍增管 数据处理系统器
测量条件的选择
吸收线的选择 灯电流的选择 火焰种类的选择 燃烧气和助燃气的流量 火焰高度 石墨炉原子化条件的选择
内标法:分别在标准试样和被测试样中加入已知量的第
三种元素作为内标元素,测定分析线和内标线的吸光度比
D (工D作,曲D线x .)然并后以在D对标应准标曲准线溶上液根中据被测元计素算含出量试或样浓中度待绘测制

原子吸收光谱分析ppt课件

原子吸收光谱分析ppt课件
原子吸收分光光度法 Atomic Absorption Spectrophotometry,
(AAS)
1.简述 2.方法原理 3.仪器设备 4.火焰原子化法测试的任务参数选择 5.石墨炉原子化法测试的任务参数选择 6.干扰及消除
第一节.简述
1.原子吸收的发现
1802年,伍朗斯顿(W. H. Wollaston)在进展太 阳察看时,发现太阳光谱中存在一些暗线。 夫郎霍费(J. Fraunhofer)在1814~1817年,布鲁 斯特(D. Brewster) 在1820年相继对这些暗线 进展仔细的察看,以为是由于太阳外围较 冷 的气体吸收了太阳光所引起的。
1964年,黄本立等将蔡司Ⅲ型滤光片式 火焰光度计改装为一台简易原子吸收光谱安装, 测定了溶液中的钠,发表了最早的原子吸收光谱 分析的研讨论文。
1965年吴庭照等利用自制的同心型气动 玻璃雾化器、预混合金属层流熄灭器、镁空心阴 极灯,英国Hilger的H-700火焰分光光度计的单色 器、10 cm长不锈钢平头水冷熄灭器的预混合型火 焰原子化器组装了原子吸收光谱仪器。完成了鋰 中微量镁的测定。
4.原子吸收光谱分析的特点
优点: ⑴ 检出限低 火焰原子吸收法的检出限可到达 ng/mL量级,石墨炉原子吸收光谱法的检出限可到 达10-13~10-14g。 ⑵ 选择性好 由于原子吸收是线状吸收,又采用 待测元素特征谱线作为光源,即使在溶液中有多 个元素共存,只需它们不与待测元素产生难原子 化的化合物,就不会产生较大的谱线干扰。加上 吸收谱线比发射谱线少的多,各元素谱线的重叠
鉴于沃尔什在建立和开展原子吸收光谱分析方 面的历史功勋,1991年在挪威卑尔根召开的第27 届国际光谱学大会(CSI)上授予他第一届CSI奖。
Alan Walsh(1916-1998)和他的原子吸收光谱仪

原子吸收光谱法演示精品PPT课件

原子吸收光谱法演示精品PPT课件
14
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。 而原子吸收线半宽度:10-3nm。
15
德国耶拿公司
连续光源:高聚焦短弧氙灯 分辨率:2pm(10-12m) 价格:80多万人民币左右(普通:60万) 光源价格:1万人民币左右
16
2、原子化器
作用
将试样中待测组分转变成原子蒸气。
原子化方法
火焰法 高温原子化 无火焰法—电热高温石墨管 冷原子化
20
(3)火焰 作用:试样雾滴在火焰中,经蒸发,干燥,离解(还原)
等过程产生大量基态原子。 分区:焰心(发射强的分子带和自由基,很少用于分析)、
内焰(基态原子最多,为分析区)和外焰(火焰内部 生成的氧化物扩散至该区并进入环境)。
燃烧速度:混合气着火点向其它部分的传播速度。当供气速 度大于燃烧速度时,火焰稳定。但过大则导致火 焰不稳或吹熄火焰,过小则可造成回火。
第七章 原子吸收分光光度法
1
一、概 述
2
1、定义 原子吸收分光光度法(AAS)
(atomic absorption spectrophotometry ) 基于气态的基态原子在某特定波长光的辐射
下、原子外层电子对光的特征吸收这一现象建 立起来的光谱分析方法。(位于紫外可见区)
3
光源 分光系统
样品池
O2 900-1400 2550-2933 高燃烧速度,高温,但不易控制
N2O ~390
~2880 高温,适于难分解氧化物的原子化
低温,适于易解离的元素,如碱金
Air
~82
~2198 属和碱土金属。
22
石墨炉原子化器
——电源、保护系统和石墨管三部分。
23
电源:10~25V,500A。用于产生高温。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点:原子吸收光谱法的特点 和应用范围
情境四:原子吸收法对金属离子的测定 任务一:原子吸收光谱法的认识
课程:仪器分析

原子吸收光谱法的特点和应用范围
原子吸收分析是一种很好的快速定量分析方法,它具有 如下特点。
(l)灵敏度高检出限低。 [原子吸收的绝对检出极限
为10-6g/mL(火焰法),甚至可达10-14g/ mL (无火焰法)]
(5)样品用量少
石墨炉无火焰原子化法,液体进样量1~50μL,固体只需 0.1~10mg。
4
原子吸收光谱法的特点和应用范围 (6)局限性
测定一种元素,需更换相应的空心阴极灯,复合灯已研 制成功(如医院用带多元素复合灯的原子吸收)。
5

2
原子吸收光谱法的特点和应用范围 (2)准确度好。
火焰原子吸收法的相对误差小于1%,石墨炉原子吸 收法的相对误差一般约为3%~5%)
(3)选择性好,方法简便快速。
不经分离可在同一溶液中直接测定多种元素。
3
原子吸收光谱法的特点和应用范围 (4)应用广泛
目前已能测70多种金属元素,还可间接测定部分非金属元 素和有机化合物。
相关文档
最新文档