(完整版)高中数学基础知识练习题答案

合集下载

高中数学第三章函数的概念与性质基础知识手册(带答案)

高中数学第三章函数的概念与性质基础知识手册(带答案)

高中数学第三章函数的概念与性质基础知识手册单选题1、已知函数f(1x+1)=2x+3.则f(2)的值为()A.6B.5C.4D.3答案:B分析:根据题意,令1x +1=2可得x的值,将x的值代入f(1x+1)=2x+3,即可得答案.解:根据题意,函数f(1x +1)=2x+3,若1x+1=2,解可得x=1,将x=1代入f(1x+1)=2x+3,可得f(2)=5,故选:B.2、函数的y=√−x2−6x−5值域为()A.[0,+∞)B.[0,2]C.[2,+∞)D.(2,+∞)答案:B分析:令u=−x2−6x−5,则u≥0,再根据二次函数的性质求出u的最大值,进而可得u的范围,再计算y=√u的范围即可求解.令u=−x2−6x−5,则u≥0且y=√u又因为u=−x2−6x−5=−(x+3)2+4≤4,所以0≤u≤4,所以y=√u∈[0,2],即函数的y=√−x2−6x−5值域为[0,2],故选:B.3、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A .60单位B .70单位C .80单位D .90单位答案:D分析:设生产每单位试剂的成本为y ,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y ,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元,职工的工资总额为7500+20x 元,后续保养总费用为x (x +600x −30)元, 则y =50x+7500+20x+x 2−30x+600x=x +8100x +40≥2√x ⋅8100x +40=220, 当且仅当x =8100x ,即x =90时取等号,满足50≤x ≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D .4、函数f (x )=x 2−1|x |的图象大致为( ) A .B .C .D .答案:D 分析:求定义域,确定奇偶性后排除两个选项,再由单调性排除一个,得正确结论.f (x )=x 2−1|x |的定义域是{x |x ≠0},关于原点对称,f(−x)=(−x)2−1|−x |=x 2−1|x |=f (x ),所以f (x )是偶函数,排除B ,C ;当x >0时,f(x)=x 2−1x =x −1x ,易知f (x )在(0,+∞)上是增函数,排除A . 故选:D . 5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( )A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α,因为幂函数的图像过点(3,√3),所以√3=3α,解得α=12,所以k +α=1+12=32, 故选:A6、下列图形是函数图像的是( )A .B .C .D .答案:C 分析:根据函数的定义,对四个选项一一判断.按照函数的定义,一个自变量只能对应一个函数值.对于A :当x =0时,y =±1,不符合函数的定义.故A 错误;对于B :当x =0时,y =±1,不符合函数的定义.故B 错误;对于C :每一个x 都对应唯一一个y 值,符合函数的定义.故C 正确;对于D:当x=1时,y可以取全体实数,不符合函数的定义.故D错误;故选:C7、下列各组函数表示同一函数的是()3B.f(x)=1,g(x)=x0A.f(x)=x,g(x)=√x3D.f(x)=√x2,g(x)=(√x)2C.f(x)=x+1,g(x)=x2−1x−1答案:A分析:根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案. 解:对于A,两个函数的定义域都是R,3=x,对应关系完全一致,g(x)=√x3所以两函数是相同函数,故A符合题意;对于B,函数f(x)=1的定义域为R,函数g(x)=x0的定义域为{x|x≠0},故两函数不是相同函数,故B不符题意;对于C,函数f(x)=x+1的定义域为R,的定义域为{x|x≠1},函数g(x)=x2−1x−1故两函数不是相同函数,故C不符题意;对于D,函数f(x)=√x2的定义域为R,函数g(x)=(√x)2的定义域为[0,+∞),故两函数不是相同函数,故D不符题意.故选:A.8、已知函数f(x+2)=x2+6x+8,则函数f(x)的解析式为()A.f(x)=x2+2x B.f(x)=x2+6x+8C.f(x)=x2+4x D.f(x)=x2+8x+6答案:A分析:利用配凑法(换元法)计算可得.解:方法一(配凑法)∵f(x+2)=x2+6x+8=(x+2)2+2(x+2),∴f(x)=x2+2x.方法二(换元法)令t=x+2,则x=t−2,∴f(t)=(t−2)2+6(t−2)+8=t2+2t,∴f(x)=x2+2x.故选:A多选题9、已知函数f(x)={x2,x≤0,−x2,x>0,则下列结论中正确的是()A.f(√2)=2B.若f(m)=9,则m≠±3C.f(x)是奇函数D.在f(x)上R单调递减答案:CD分析:A.由分段函数求解判断;B.分m≤0,m>0,由f(m)=9求解判断;不成立;C.利用奇偶性的定义判断; D.画出函数f(x)的图象判断.因为f(x)={x2,x≤0,−x2,x>0,A. f(√2)=−(√2)2=−2,故错误;B. 当m≤0时,f(m)=m2=9,解得m=−3或m=3(舍去),当m>0时,f(m)=−m2=9,不成立;故错误;C. 当x<0时,f(x)=x2,则−x>0,f(−x)=−(−x)2=−x2,又f(0)=0,所以f(−x)=−f(x);当x>0时,f(x)=−x2,则−x<0,f(−x)=(−x)2=x2,又f(0)=0,所以f(−x)=−f(x),所以f(x)是奇函数,故正确;D.函数f(x)的图象如图所示:,由图象知f (x )在上R 单调递减,故正确.故选:CD10、下列各组函数中,两个函数是同一函数的有( )A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1 C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B ,f(x)=x +1,g(x)=x +1(x ≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B 不正确;对于C ,f(x)={1,x >0−1,x <0,g (x )={1,x >0−1,x <0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C 正确;对于D ,f (t )=|t −1|与g (x )=|x −1|的对应关系和定义域都相同,所以两个函数为同一函数,故D 正确. 故选:ACD11、有如下命题,其中真命题的标号为( )A .若幂函数y =f (x )的图象过点(2,12),则f (3)>12B .函数f (x )=a x−1+1(a >0且a ≠1)的图象恒过定点(1,2)C .函数f (x )=x 2−1在(0,+∞)上单调递减D .若函数f (x )=x 2−2x +4在区间[0,m ]上的最大值为4,最小值为3,则实数m 的取值范围是[1,2] 答案:BD分析:由f (x )所过点可求得幂函数f (x )解析式,由此得到f (3)<12,知A 错误;由f (1)=2恒成立可知f (x )过定点(1,2),知B 正确;由二次函数的性质可知C 错误;由二次函数的最值可确定自变量的范围,即可确定m 的范围,知D 正确.对于A ,令f (x )=x α,则2α=12,解得:α=−1,∴f (x )=x −1,∴f (3)=13<12,A 错误; 对于B ,令x −1=0,即x =1时,f (1)=1+1=2,∴f (x )恒过定点(1,2),B 正确;对于C ,∵f (x )为开口方向向上,对称轴为x =0的二次函数,∴f (x )在(0,+∞)上单调递增,C 错误; 对于D ,令f (x )=4,解得:x =0或x =2;又f (x )min =f (1)=3,∴实数m 的取值范围为[1,2],D 正确. 故选:BD.12、已知函数f(x)={−x 2−2x,x ≤m x −4,x >m,如果函数f(x)恰有两个零点,那么实数m 的取值范围可以是( ) A .m <−2B .−2≤m <0C .0≤m <4D .m ≥4.答案:BD解析:在同一平面直角坐标系中,作出函数y =−x 2−2x,y =x −4的图象,观察函数图象即可得出答案. 在同一平面直角坐标系中,作出函数y =−x 2−2x,y =x −4的图象,如图,由图象可知,当−2≤m <0时,函数f (x )有两个零点−2和4,当m ≥4时,函数f (x )有两个零点−2和0.故选:BD13、函数f(x)的定义域为R,对任意的x1,x2∈R都满足x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),下列结论正确的是()A.函数f(x)在R上是单调递减函数B.f(−2)<f(1)<f(2)C.f(x+1)<f(−x+2)的解为x<1D.f(0)=02答案:BC分析:由x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),可得(x1−x2)[f(x1)−f(x2)]>0,所以可判断出f(x)在R 上为增函数,然后逐个分析判断即可解:由x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),得(x1−x2)[f(x1)−f(x2)]>0,所以f(x)在R上单调递增,所以A错,因为f(x)为R上的递增函数,所以f(−2)<f(1)<f(2),所以B对,,所以C对因为f(x)在R上为增函数,f(x+1)<f(−x+2)⇔x+1<−x+2⇒x<12函数R上为增函数时,不一定有f(0)=0,如f(x)=2x在R上为增函数,但f(0)=1,所以D不一定成立,故D 错.故选:BC填空题14、已知幂函数f(x)=x p2−2p−3 (p∈N∗)的图像关于y轴对称,且在(0,+∞)上是减函数,实数a满足(a2−1)p3<(3a+3)p3,则a的取值范围是_____.答案:−1<a<4分析:根据幂函数的性质求出p的值,根据幂函数的单调性得到关于a的不等式解出即可.∵幂函数f(x)=x p2−2p−3(p∈N∗)在(0,+∞)上是减函数,∴p2−2p−3<0,解得−1<p<3,∵p∈N∗,∴p=1或2.当p=1时,f(x)=x−4为偶函数满足条件,当p=2时,f(x)=x−3为奇函数不满足条件,则不等式等价为(a2−1)p3<(3a+3)p3,即(a2−1)13<(3a+3)13,∵f(x)=x13在R上为增函数,∴a2−1<3a+3,解得:−1<a<4.所以答案是:−1<a<4.15、已知a∈R,函数f(x)={x2−4,x>2|x−3|+a,x≤2,若f[f(√6)]=3,则a=___________.答案:2分析:由题意结合函数的解析式得到关于a的方程,解方程可得a的值.f[f(√6)]=f(6−4)=f(2)=|2−3|+a=3,故a=2,所以答案是:2.16、已知f(x)=k⋅2x+2−x为奇函数,则k=______.答案:−1分析:根据奇函数的定义可得f(−x)=−f(x),即(k+1)⋅(2−x+2x)=0,由此可求得答案.由题意f(x)=k⋅2x+2−x是奇函数,则f(−x)=−f(x),即k⋅2−x+2x=−k⋅2x−2−x,故(k+1)⋅(2−x+2x)=0,由于2−x+2x≠0,故k=−1,所以答案是:−1解答题17、已知幂函数f(x)=(2m2−5m+3)x m的定义域为全体实数R.(1)求f(x)的解析式;(2)若f(x)>3x+k−1在[−1,1]上恒成立,求实数k的取值范围.答案:(1)f(x)=x2(2)(−∞,−1)分析:(1)根据幂函数的定义可得2m2−5m+3=1,结合幂函数的定义域可确定m的值,即得函数解析式; (2)将f(x)>3x+k−1在[−1,1]上恒成立转化为函数g(x)=x2−3x+1−k在[−1,1]上的最小值大于0,结合二次函数的性质可得不等式,解得答案.(1)∵f(x)是幂函数,∴2m2−5m+3=1,∴m=12或2.当m=12时,f(x)=x12,此时不满足f(x)的定义域为全体实数R,∴m=2,∴f(x)=x2.(2)f(x)>3x+k−1即x2−3x+1−k>0,要使此不等式在[−1,1]上恒成立,令g(x)=x2−3x+1−k,只需使函数g(x)=x2−3x+1−k在[−1,1]上的最小值大于0. ∵g(x)=x2−3x+1−k图象的对称轴为x=32,故g(x)在[−1,1]上单调递减,∴g(x)min=g(1)=−k−1,由−k−1>0,得k<−1,∴实数k的取值范围是(−∞,−1).18、已知函数f(x)=kx2+(2k+1)x+2.(1)当k=−1时,写出函数y=|f(x)|的单调递增区间(写出即可,不要过程);(2)当k<12时,解不等式f(x)>0.答案:(1)函数y=|f(x)|的单调递增区间有[−2,−12]和[1,+∞);(2)当k<0时,f(x)>0的解集为(−2,−1k );当k=0时,f(x)>0的解集为(−2,+∞);当0<k<12时,f(x)>0的解集为(−∞,−1k)∪(−2,+∞)分析:(1)化简函数y=|f(x)|解析式,作出函数图象,利用图象求函数的单调递增区间;(2)分别在k=0,k<0,0<k<12时解不等式f(x)>0即可.(1)因为f(x)=kx2+(2k+1)x+2,所以当k=−1时,y=|f(x)|=|−x2−x+2|=|x2+x−2|所以当x<−2或x>1时,|f(x)|=x2+x−2,当−2≤x≤1时,|f(x)|=−x2−x+2,作出函数y=|f(x)|的图象如下:所以函数y=|f(x)|的单调递增区间有[−2,−12]和[1,+∞);(2)因为f(x)=kx2+(2k+1)x+2,所以f(x)=(kx+1)(x+2),当k=0时,不等式f(x)>0,可化为x+2>0,解得x>−2,故解集为(−2,+∞)当k≠0时,方程f(x)=0的解为x1=−2,x2=−1k当k<0时,x1=−2<0<x2=−1k ,不等式f(x)>0的解集为(−2,−1k),当0<k<12时,x2=−1k<x1=−2,不等式f(x)>0的解集为(−∞,−1k)∪(−2,+∞);综上,当k<0时,f(x)>0的解集为(−2,−1k);当k=0时,f(x)>0的解集为(−2,+∞);当0<k<12时,f(x)>0的解集为(−∞,−1k)∪(−2,+∞).。

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案1.方程组3x=6,x+2y=6的解构成的集合是{2}。

2.不同于另外三个集合的是C.{x=1}。

3.若函数f(x)=ax^2-x-1有且仅有一个零点,则实数a的值为1/4.4.是空集的是C.{x|x^2<0}。

5.能使A⊇B成立的实数a的取值范围是B.{a|3<a<4}。

6.若B⊆A,则实数m=4.7.M∪N={3,5,6,7,8}。

8.A∩B={x|x>-1}。

9.M∩N={0}。

10.A∩B={x|-1<x≤3}。

11.A∩(∁B U)=C.{3}。

12.集合C={x|x≥1/2}。

则f(x)=2x+1,x>2或x<-427.若f(x)=ax+b,且f(1)=2,f(2)=3,则a=(),b=().28.已知函数f(x)=x2-4x+3,g(x)=2x-1,则f(g(x))=()A.4x2-12xB.4x2-8x-1C.4x2-4x-1D.4x2-4x+129.已知函数f(x)=x2-x+1,g(x)=x+1,则f(g(x))=() A.x2+2xB.x2+x+1C.x2+2x+1D.x2-2x+130.已知函数f(x)=x3+1,g(x)=x-1,则f(g(x))=()A.x3-x2+xB.x3-3x2+3xC.x3-3xD.x3-2x2+x31.已知函数f(x)=x+1,g(x)=2x-1,则f(g(x))=()A.2xB.2x+1C.2x+2D.2x-132.已知函数f(x)=2x-1,g(x)=x2,则f(g(x))=()A.2x2-1B.2x4-1C.2x2-2D.2x4-2x+133.已知函数f(x)=x2-1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+2x-1D.x2+x34.已知函数f(x)=x+1,g(x)=x2,则f(g(x))=()A.x2+xB.x2+x+1C.x2+2xD.x2+2x+135.已知函数f(x)=x2+1,g(x)=x+1,则f(g(x))=()A.x2+2xB.x2+2x+1C.x2+x+2D.x2+2x+236.已知函数f(x)=|x|,g(x)=x2,则f(g(x))=()A.|x2|B.x2C.x2+1D.|x2|+137.已知函数f(x)=x2,g(x)=|x|,则f(g(x))=()A.x4B.x2C.|x|2D.|x|27.已知函数f(x) = {2x。

高中数学《排列组合的常见模型》基础知识与练习题(含答案)

高中数学《排列组合的常见模型》基础知识与练习题(含答案)

高中数学《排列组合的常见模型》基础知识与练习题(含答案)一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。

例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。

例如:在10件产品中,有7件合格品,3件次品。

从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。

3310785N C C =−=(种) 3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。

但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。

例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。

解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。

所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。

例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。

高中数学《指对数比较大小》基础知识与练习题(含答案解析)

高中数学《指对数比较大小》基础知识与练习题(含答案解析)

高中数学《指对数比较大小》基础知识与练习题(含答案解析)在填空选择题中我们会遇到一类比较大小的问题,通常是三个指数和对数混在一起,进行排序。

这类问题如果两两进行比较,则花费的时间较多,所以本讲介绍处理此类问题的方法与技巧一、一些技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN += log log log a a a M M N N−= (3)()log log 0,1,0na a N n N a a N =>≠>(4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a = (令c b =) log log m na a n N N m= 二、典型例题:例1:设323log ,log 3,log 2a b c π===,,a b c 的大小关系是______________ 思路:可先进行0,1分堆,可判断出1,0b 1,0c 1a ><<<<,从而a 肯定最大,只需比较,b c即可,观察到,b c 有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:22311log 3log 3,log 2log 222b c ====,从而可比较出32log 21log 3<<,所以c b < 答案:c b a <<例2:设123log 2,ln 2,5a b c −===,则,,a b c 的大小关系是___________思路:观察发现,,a b c 均在()0,1内,,a b 的真数相同,进而可通过比较底数得到大小关系:a b <,在比较和c 的大小,由于c 是指数,很难直接与对数找到联系,考虑估计,,a b c 值得大小:1215254c −==<=,可考虑以12为中间量,则331log 2log 32a =>=,进而12a c >>,所以大小顺序为b a c >> 答案:b a c >>例3:设ln2ln3ln5,,,235a b c === 则,,a b c 的大小关系为( )A. a b c >>B. a c b >>C. b a c >>D. b c a >> 思路:观察到,,a b c 都是以e 为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。

(完整版)高中数学基础知识练习题答案

(完整版)高中数学基础知识练习题答案

高中数学基础知识练习题答案黄浦区教研室数学组提供 (供黄浦区2011年高三学生使用)一、集合和命题1、{}2112--,,,;2、23、φ,{}0,{}2,{}4,{}0,2,{}0,4,{}2,4,{}0,2,4;4、01±或5、11x y =⎧⎨=-⎩;6、(01],7、(1)若0ab =,则0a =;(2)否命题:若2x ≠且3x ≠,则2560x x -+≠;逆否命题:若2560x x -+≠,则2x ≠且3x ≠。

8、否命题:若0a ≠或0b ≠,则220a b +≠;逆否命题:若220a b +≠,则0a ≠或0b ≠。

9、必要非充分;10、D二、不等式1、(1),(2),(3);2、A ;3、B4、(1)()()()()222222222220a b cd ac bd a d b c abcd ad bc ++-+=+-=-≥所以()()()22222a b c c ac bd ++≥+,当且仅当ad bc =等号成立。

(2)()()()2220a b a b a b a b b a ab-++-+=>,所以22a b a b b a +>+.(3)()()()23322a b a b ab a b a b +-+=-+所以,当a b =时,3322a b a b ab +=+;当a b ≠时,3322a b a b ab +>+。

(4)因()222232()24b b a b b a b a +-+=-+,故()222a b b a b +≥+,当且仅当0a b ==时等号成立。

(5) x y >5、{}6,a a a R ⎪≥∈;6、1142x x x ⎧⎫⎪<>⎨⎬⎩⎭或;7、解:(]2,2-8、(1)1,1111,11,111a a a a x R a a a ⎧⎛⎫+∞<-> ⎪⎪+⎝⎭⎪⎪∅=∈⎨=-⎪⎪⎛⎫-∞-<<⎪ ⎪+⎝⎭⎩,当或时,当时当时,当(2)()()22,,0101,,01a a a a x a a a a a ⎧<>⎪⎪∈∅==⎨⎪<<⎪⎩当或时,当或时当时。

高中数学基本试题及答案

高中数学基本试题及答案

高中数学基本试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)=2x^2-4x+3,下列哪个值是f(x)的最小值?A. 1B. 2C. 3D. 4答案:A2. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B3. 已知等差数列{an}的首项a1=2,公差d=3,那么第五项a5的值是:A. 14B. 15C. 16D. 17答案:A4. 函数y=x^3-3x^2+4x的图像在x=1处的切线斜率是:A. 2B. 4C. 6D. 8答案:B5. 圆的方程为x^2+y^2-6x+8y-24=0,那么它的半径是:A. 2√5B. 3√5C. 4√5D. 5√5答案:C二、填空题(每题4分,共20分)6. 已知直线y=2x+1与x轴的交点坐标是______。

答案:(-1/2, 0)7. 函数f(x)=x^3-3x^2+2的极大值点是x=______。

答案:18. 抛物线y=x^2-2x-3与y轴的交点坐标是______。

答案:(0, -3)9. 等比数列{an}的前三项依次为2,6,18,则其公比q为______。

答案:310. 已知三角形ABC中,角A=60°,边a=3,边b=4,则边c的长度为______。

答案:√7三、解答题(每题10分,共60分)11. 已知函数f(x)=x^2-4x+3,求f(x)的单调区间。

答案:函数f(x)的单调递增区间为(2, +∞),单调递减区间为(-∞, 2)。

12. 求证:若a,b,c为实数,且a^2+b^2+c^2=1,则(a+b+c)^2≤3。

答案:由柯西-施瓦茨不等式,有(a^2+b^2+c^2)(1^2+1^2+1^2)≥(a+b+c)^2,即3≥(a+b+c)^2,得证。

13. 已知数列{an}满足a1=1,an+1=2an+1,求证:数列{an}是等比数列。

高中数学基础练习(含答案)

高中数学基础练习(含答案)

12 . 已 知 sin( ) 1 33
()


A 1 3
1
B
3
23
C
3
13.下列给出的赋值语句中正确的是(
D 2 3 3

A.3=A B. M=-M C. B=A=2 D. x y 0
14..(i-i-1)3 的虚部为
试卷第 2 页,总 15 页
cos( ) 6
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
A. OM 1 OA 3 OB 22

B. OM OA 2OB
C. OM 2OA OB
D. OM 3 OA 1 OB 22
9.设 O 是 ABC 内一点,且 OA 2OB 3OC 0 ,则 AOC 的面积与 BOC 的面
积之比值是( )
A. 3 2
B. 5 3
C.2
D.3
10.若圆 (x a)2 ( y b)2 b2 1 始终平分圆 (x 1)2 ( y 1)2 4 的周长, 则 a、b
27.考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这 6 个
点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于
A. 4 225
B. 2 225
C. 2 75
D. 4 75
28.在等差数列 {an} 中,已知 a5 a7 14 ,则该数列前 11 项和 S11 A.196 B.132 C.88 D.77
32 . 已 知 复 数 z 1

高中数学基础试题及答案

高中数学基础试题及答案

高中数学基础试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式x^2 - 4 < 0的解集?A. x > 2B. x < -2C. -2 < x < 2D. x ≠ ±22. 函数y = 2x + 3的图像经过点:A. (0, 3)B. (-1, 1)C. (1, 5)D. (2, 7)3. 一个圆的半径为5,圆心坐标为(0, 0),则该圆的方程是:A. x^2 + y^2 = 25B. x^2 + y^2 = 5C. x^2 + y^2 - 10x - 10y + 25 = 0D. x^2 + y^2 - 10x - 10y + 50 = 04. 直线y = 3x + 4与x轴的交点坐标是:A. (0, 4)B. (-4/3, 0)C. (4, 0)D. (3, 0)5. 集合{1, 2, 3}与{2, 3, 4}的交集是:A. {1, 2}C. {1, 3, 4}D. {1, 2, 3, 4}6. 函数f(x) = x^3 - 3x^2 + 2x的导数是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3xD. x^2 - 3x + 27. 等差数列3, 7, 11, ...的第10项是:A. 37B. 41C. 45D. 498. 函数y = sin(x)的周期是:A. 2πB. πC. 1D. 09. 圆x^2 + y^2 = 16与直线x + y = 4的交点个数是:A. 0B. 1C. 2D. 310. 抛物线y^2 = 4x的焦点坐标是:A. (0, 0)B. (1, 0)D. (0, 1)二、填空题(每题4分,共20分)1. 等比数列2, 6, 18, ...的第5项是______。

2. 函数f(x) = x^2 - 4x + 3的顶点坐标是______。

3. 直线y = 2x - 1与y轴的交点坐标是______。

高中数学基础训练测试及参考答案1-10

高中数学基础训练测试及参考答案1-10

高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。

高中数学必修1基础知识过关100题带答案

高中数学必修1基础知识过关100题带答案

必修1 基础知识过关100题(1-23)班级_____________ 姓名___________1.方程组⎩⎪⎨⎪⎧3x =6,x +2y =6的解构成的集合是( )A .{2,2}B .{2}C .(2,2)D .{(2,2)} 2.下列集合中,不同于另外三个集合的是( ) A .{x |x =1} B .{y |(y -1)2=0} C .{x =1} D .{1}3.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值=________. 4.下列四个集合中,是空集的是( )A .{x |x +3=3}B .{(x ,y )|y 2=x 2,x ,y ∈R }C .{x |x 2<0}D .{x |x 2+x -1=0}5.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( ) A .{a |3<a ≤4} B .{a |3<a <4} C .{a |3≤a ≤4} D .∅6.已知集合A ={-1,3,m },集合B ={3,4}.若B ⊆A ,则实数m =________. 7.设集合M ={3,5,6,8},集合N ={3,6,7,8},那么M ∪N =( ) A .{3,5,6,7,8} B .{5,8} C .{3,5,7,8} D .{4,5,6,8}8.若A ={x |x +1>0},B ={x |x -3<0},则A ∩B =( ) A .{x |x >-1} B .{x |x <3} C .{x |-1<x <3} D .{x |1-x <3}9.集合M ={0,1,2},N ={x |x =2a ,a ∈M },则M ∩N =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}10.若集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},则A ∩B =( ) A .{x |x ≤3或x >4} B .{x |-1<x ≤3} C .{x |3≤x <4} D .{x |-2≤x <-1}11.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,5},则A ∩(∁U B )=( ) A .{2} B .{2,3} C .{3} D .{1,3}12.已知全集U =R ,A =⎩⎨⎧x ⎪⎪⎭⎬⎫-4<x <12,B ={x |x +4≤0},C ={x |2x ≥1},则集合C =( ) A .A ∩B B .A ∪B C .∁U (A ∩B ) D .∁U (A ∪B )13.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =____________. 14.下列各图中,可表示函数y =f (x )的图象的只可能是( )15.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 16.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}17.下列四组函数中,表示同一个函数的是( ) A .f (x )=|x |,g (t )=t 2 B .f (x )=x 2,g (x )=(x )2 C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-118.已知函数f (x )=2x 3+|x -2|,则f (1)=____________.19.已知函数f (x )的定义域为[-2,2],则f (x -1)的定义域是( ) A .[-1,3] B .[0,3] C .[-3,3] D .[-2,2] 20.函数y =1x 的值域是( )A .(0,+∞)B .(-∞,0)C .(-∞,0)∪(0,+∞)D .R 21.函数y =1x 2+2x +3的值域是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎦⎤-∞,12C.⎝⎛⎦⎤0,12D.⎝⎛⎭⎫0,12 22.已知函数f (x +2)的定义域是[-2,3],则f (x -2)的定义域是( ) A .[-2,3] B .[-1,4] C .[2,7] D .[-4,1]23.已知函数f (x )的值域是[-2,3],则函数f (x -2)的值域为( ) A .[-4,1] B .[0,5] C .[-4,1]∪[0,5] D .[-2,3]必修1 基础知识过关100题(24-47)班级_____________ 姓名___________24.已知g (x +2)=2x +3,则g (3)=( ) A .2 B .3 C .4 D .525.已知f (2x )=4x -1,f (a )=5,则a 的值为( ) A .5 B .2 C .3 D.5426.已知f (x )=x +1,则f (x +1)=( ) A .x -1 B .x +2 C .x D .x +327.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2,则f (2)=________;若f (x 0)=8,则x 0=________.28.已知f (x )=ax 2+bx +c ,若f (0)=0,且f (x +1)=f (x )+x +1,则f (x )的表达式=________. 29.设集合A ={x |0≤x ≤6},集合B ={y |0≤y ≤2},从A 到B 的各对应关系中不是映射的是( ) A .f 1:x →y =12x B .f 2:x →y =13xC .f 3:x →y =14xD .f 4:x →y =15x30.下列函数中,在区间(0,2)上为增函数的是( ) A .y =-3x +1 B .y =3x C .y =x 2-4x +3 D .y =4x31.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-12 D .k <-1232.如果二次函数y =5x 2-nx -10在区间(-∞,1]上是减函数,在(1,+∞)上是增函数,则n 的值是( )A .1B .-1C .10D .-1033.定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2总有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则必有( ) A .函数f (x )是先增后减 B .函数f (x )是先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数 34.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减35.函数f (x )在(-∞,+∞)上为减函数,则f (-3)与f (2)的大小关系是__________. 36.函数f (x )=|x |的单调递减区间是__________.37.函数f (x )=x 在R 上的最大值是( ) A .0 B .+∞ C .-∞ D .不存在 38.函数f (x )=1x +1,x ∈[1,2]的最小值是( )A .f (1)B .f (2)C .f (0)D .不存在39.函数y =-x 2+2x 在[1,2]上的最大值是( ) A .1 B .2 C .-1 D .不存在40.函数f (x )在[-2,2]上的图象如图J1-3-1,则此函数的最小值和最大值分别是( )图J1-3-1A .f (-2),0B .0,2C .f (-2),2D .f (2),2 41.已知函数f (x )=x 2+x +1,x ∈⎣⎡⎦⎤0,32的最大(小)值情况为( ) A .有最大值为34,但无最小值 B .有最小值为34,有最大值为1C .有最小值为1,有最大值为194 D .无最大值,也无最小值42.下列函数是奇函数的是( ) A .y =|x +1| B .y =x 3-2x C .y =x D .y =x 3+2x 243.已知f (x )是R 上的奇函数,f (1)=-2,f (3)=1,则( ) A .f (3)>f (-1) B .f (3)<f (-1)C .f (3)=f (-1)D .无法比较f (3)和f (-1)的大小 44.函数y =x 2(x >0)( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 45.下列函数是偶函数的是( ) A .y =2x 2 B .y =x 3+x C .y =3x D .y =x46.已知函数f (x )是定义在[1-2a ,a ]上的奇函数,则a =________.47.设f (x )是定义在R 上的奇函数,当x <0时,f (x )=x 2+1,则f (2)=________.必修1 基础知识过关100题(48-72)班级_____________ 姓名___________48.对于定义域为R的任意奇函数f(x)都有()A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0C.f(x)·f(-x)<0 D.f(x)·f(-x)≤049.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2) D.f(π)<f(-2)<f(-3)50.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则k=________.51.函数y=x2-6x的减区间是()A.(-∞,2] B.[2,+∞)C.[3,+∞) D.(-∞,3]52.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅53.已知f(x)=3xx-3,x∈[4,6].则f(x)的最大值与最小值分别为__________.54.已知函数f(x)=x2+4(1-a)x+1在[1,+∞)上是增函数,则实数a的取值范围是__________.55.将抛物线y=2(x+1)2-3向右平移1个单位,再向上平移2个单位,所得抛物线为______________,其顶点坐标为__________.()A.2 B.-2 C.±2 D.-857.323=()A. 2 D.2758.式子3(-2)3+4(π-2)4+3(2-π)3化简得__________.59.化简[(- 3 )2]12-的值等于()A. 3 B.- 3 C.33D.-3360.下列各式正确的是()A.35a-B.3x2=32x C.12a·14a·18a-=111248a⎛⎫⨯⨯-⎪⎝⎭D.1123331222x x x--⎛⎫-⎪⎝⎭=1-4x61.下列函数一定是指数函数的是()A.y=5x+1B.y=x4C.y=3-x D.y=2·3x62.下列各式错误的是()A.30.8>30.7B.0.50.4>0.50.6C.0.75-0.1<0.750.1D.(3)1.6>(3)1.463.指数函数y=a x与y=b x的图象如图J2-1-1,则()图J2-1-1A.a<0,b<0 B.a<0,b>0C.0<a<1,b>1 D.0<a<1,0<b<164.函数y=(1-a)x在R上为减函数,则实数a的取值范围是()A.a>1 B.0<a<1C.a>1且a≠2 D.a<1且a≠065.指数函数y=a x(a>0且a≠1)的图象过点(-1,2),则该指数函数的解析式为____________.66.方程4x+2x-2=0的解是____________.67.已知a=0.80.7,b=0.80.9,c=1.20.8,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b68.当x∈[-1,1]时,函数f(x)=3x-2的值域为____________.69.函数f(x)=11-e x的定义域是____________.70.a b=N化为对数式是()A.log b a=N B.log a N=b C.log N b=a D.log N a=b 71.log a b=1成立的条件是()A.a=b B.a=b且b>0C.a>0且a≠1 D.a>0,a=b≠1 72.已知log3(lg x)=0,那么x=()A.1 B.10 C.110D.3必修1 基础知识过关100题(73-100)班级_____________ 姓名___________73.下列各式正确的个数是( )①log 416=2;②log 164=12;③log 10100=2;④log 100.01=-2.A .0个B .1个C .2个D .4个 74.已知log 2x =3,则12x =________. 75.log 6[log 4(log 381)]=________. 76.log 29log 23的值是( ) A.23 B.32 C .1 D .2 77.lg8+3lg5的值为( ) A .-3 B .-1 C .1 D .3 78.32log 103的值是( )A.109B.910C .20D .100 79.已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≤0,log 2x ,x >0,则f [f (-1)]=( )A .-2B .-1C .1D .2 80.4lg2+3lg5-lg 15=__________.81.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( ) A .{x |x >1} B .{x |x <1} C .{x |-1<x <1} D .∅82.若12log x <1,则x 的取值范围是( )A .x =12B .0<x <12C .x >12D .x >283.已知a =log 0.50.6,b =log 1.50.9,c =1.010.9,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .c <a <b D .b <a <c84.函数f (x )=log 5(2x +1)的单调增区间是____________. 85.函数y =6-5x -x 2lg (x +3)的定义域是____________.86.若a >1,0<x <1,则log a x 的值属于( ) A .(0,1) B .(0,+∞) C .(-∞,0) D .(1,+∞)87.函数y =log 2x 的定义域是[1,64),则值域是( ) A .R B .[0,+∞) C .[0,6) D .[0,64)88.下面不等式成立的是( )A .log 32<log 23<log 25B .log 32<log 25<log 23C .log 23<log 32<log 25D .log 23<log 25<log 3289.设a >0,且a ≠1,函数y =log a x 的反函数和y =a x 的反函数的图象关于( ) A .x 轴对称 B .y 轴对称 C .y =x 对称 D .原点对称 90.方程log 3(2x -1)=1的解x =____________.91.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么( ) A .F ∩G =∅ B .F =G C .F G D .G F 92.若a =log 3π,b =log 76,c =log 20.8,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a93.函数y =f (x )的图象与函数y =log 4x (x >0)的图象关于直线y =x 对称,则f (x )=____________. 94.下列函数中是幂函数的是( )①y =-x 2;②y =2x ;③y =x π;④y =(x -1)3;⑤y =1x 2;⑥y =x 2+1x .A .①③⑤B .①②⑤C .③⑤D .①⑤95.设a =⎝⎛⎭⎫353,b =⎝⎛⎭⎫254,c =⎝⎛⎭⎫253,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a96.已知幂函数f (x )的图象过点(2,2),若f (a )=8,则a 为( ) A .2 2 B .4 2 C .±2 2 D .±4 297.f (x )既是幂函数又是二次函数,则这个函数是____________.98.已知α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,则使函数y =x α在[0,+∞)上单调递增的所有α值为__________.99.函数y =lg(x -1)的零点是( ) A .1 B .2 C .10 D .11100.方程ln x =3-x 的根的个数是( ) A .0个 B .1个 C .2个 D .3个101.方程lg x+x=0在下列的哪个区间内有实数解()A.[-10,-0.1] B.[0.1,1]C.[1,10] D.(-∞,0]102.若x0是方程lg x+x=2的解,则x0属于区间()A.(0,1) B.(2,3) C.(3,4) D.(1,2)103.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是() A.(-1,1) B.(-2,2)C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)104.若函数f(x)=x2+ax+b的零点是-2和1,则a=________,b=________.106.方程x5-x-1=0的一个正零点的存在区间可能是()A.[0,1] B.[1,2] C.[2,3] D.[3,4]107.已知函数f(x)的图象是连续不断的一条曲线,且有如下的对应值表:①函数f(x)在区间(-1,0)内至少有一个零点;②函数f(x)在区间(2,3)内至少有一个零点;③函数f(x)在区间(5,6)内至少有一个零点;④函数f(x)在区间(-1,7)内至少有三个零点.基础知识过关100题答案班级_____________ 姓名____________。

(完整版)高一数学必修一基础知识测试含答案

(完整版)高一数学必修一基础知识测试含答案

必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。

函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。

高中数学入门试题及答案

高中数学入门试题及答案

高中数学入门试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333...D. -2答案:B2. 函数f(x) = 2x^2 + 3x - 5的图像关于哪条直线对称?A. x = -1B. x = 1C. x = 0D. x = 3/4答案:D3. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

A. 37B. 38C. 39D. 40答案:A4. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B5. 集合A={1,2,3},集合B={2,3,4},求A∪B。

A. {1,2,3}B. {2,3}C. {1,2,3,4}D. {1,4}答案:C6. 已知sinθ = 1/3,求cosθ的值。

A. 2√2/3B. √3/3C. 2√2/9D. -2√2/3答案:A7. 直线y = 2x + 1与x轴的交点坐标是?A. (-1/2, 0)B. (0, 1)C. (-1, 0)D. (1, 0)答案:C8. 函数y = x^3 - 3x^2 + 2的导数是?A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^2 - 6x - 2答案:A9. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。

A. 6B. 9C. 10D. 12答案:A10. 抛物线y^2 = 4x的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)答案:D二、填空题(每题2分,共10分)1. 函数f(x) = x^2 - 4x + 4的最小值是________。

答案:02. 已知等比数列的首项a1=8,公比q=1/2,求第5项a5的值是________。

答案:1/83. 函数y = ln(x)的定义域是________。

答案:(0, +∞)4. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积是________。

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。

只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。

4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。

横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。

8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。

高一数学练习题带答案

高一数学练习题带答案

高一数学练习题带答案高一数学是高中数学学习的重要基础阶段,涵盖了代数、几何、函数等多个领域。

以下是一些高一数学练习题及答案,供同学们练习和参考。

练习题一:代数基础1. 解不等式:\( 2x - 5 < 3x + 1 \)2. 化简表达式:\( \frac{3x^2 - 7x + 2}{x - 1} \)3. 求多项式\( 4x^3 - 3x^2 + 2x - 1 \)的因式分解。

答案一:1. 解不等式:首先将不等式两边的\( x \)项合并,得到\( -x < 6 \),然后两边同时除以-1,注意不等号方向要改变,得到\( x > -6 \)。

2. 化简表达式:通过长除法或多项式除法,可以得到\( 3x - 5 \)。

3. 因式分解:首先提取公因式\( x - 1 \),得到\( x - 1 (4x^2 - 4x + 2) \),然后对余下的二次多项式继续分解,得到\( x - 1 (2x - 1)(2x - 2) \)。

练习题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。

2. 已知圆的半径为7,求圆的面积。

3. 已知点P(1,2),求点P到直线\( x - 2y + 3 = 0 \)的距离。

答案二:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,即\( BC^2 = AB^2 - AC^2 = 5^2 - 3^2 = 25 - 9 = 16 \),所以BC=4。

2. 圆的面积公式为\( A = \pi r^2 \),代入半径r=7,得到\( A =49\pi \)。

3. 点到直线的距离公式为\( d = \frac{|Ax + By + C|}{\sqrt{A^2+ B^2}} \),代入点P(1,2)和直线方程\( x - 2y + 3 = 0 \),得到\( d = \frac{|1 - 4 + 3|}{\sqrt{1^2 + (-2)^2}} =\frac{0}{\sqrt{5}} = 0 \)。

高中数学基础试题及答案

高中数学基础试题及答案

高中数学基础试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 32. 函数f(x) = 2x + 3的值域是什么?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [2, +∞)3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}4. 圆的方程是(x - 3)² + (y - 4)² = 25,圆心坐标是什么?A. (0, 0)B. (3, 4)C. (-3, 4)D. (3, -4)5. 已知sin(θ) = 1/√2,cos(θ) = -1/√2,求tan(θ)。

A. 1B. -1C. √2D. -√2二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别是3和4,其斜边长为_________。

7. 函数y = x² - 4x + 4可以化简为y = (x - ________)²。

8. 已知集合C = {x | x > 5},D = {x | x < 10},求C∩D。

9. 一个圆的半径为5,其面积为_________。

10. 已知向量a = (3, 4),b = (-1, 2),求向量a与向量b的点积。

三、解答题(每题5分,共20分)11. 解方程:2x² - 5x + 3 = 0。

12. 证明:如果a,b,c是连续的整数,那么a² + b² + c²是3的倍数。

13. 求函数f(x) = x³ - 3x² + 2的极值点。

14. 解不等式:|x - 2| + |x + 3| ≥ 5。

四、证明题(每题5分,共5分)15. 证明:对于任意实数x,都有(x + 1)² ≥ 4x。

高中数学《求参数的取值范围》基础知识与练习题(含答案解析)

高中数学《求参数的取值范围》基础知识与练习题(含答案解析)

高中数学《求参数的取值范围》基础知识与练习题(含答案解析)一、基础知识:求参数的取值范围宏观上有两种思路:一个是通过解不等式求解,一个是利用函数,通过解函数的值域求得参数范围1、解不等式:通过题目条件建立关于参数的不等式,从而通过解不等式进行求解。

常见的不等关系如下:(1)圆锥曲线上的点坐标的取值范围① 椭圆(以()222210x y a b a b +=>>为例),则[],x a a ∈−,[],y b b ∈−② 双曲线:(以()22221,0x y a b a b−=>为例),则(],x a ∈−∞−(左支)[),a +∞(右支)y R ∈③ 抛物线:(以()220y px p =>为例,则[)0,x ∈+∞(2)直线与圆锥曲线位置关系:若直线与圆锥曲线有两个公共点,则联立消元后的一元二次方程0∆>(3)点与椭圆(以()222210x y a b a b+=>>为例)位置关系:若点()00,x y 在椭圆内,则2200221x y a b +< (4)题目条件中的不等关系,有时是解决参数取值范围的关键条件2、利用函数关系求得值域:题目中除了所求变量,还存在一个(或两个)辅助变量,通过条件可建立起变量间的等式,进而可将等式变形为所求变量关于辅助变量的函数,确定辅助变量的范围后,则可求解函数的值域,即为参数取值范围(1)一元函数:建立所求变量与某个辅助变量的函数关系,进而将问题转化为求一元函数的值域,常见的函数有:① 二次函数;②“对勾函数”()0ay x a x=+>;③ 反比例函数;④ 分式函数。

若出现非常规函数,则可考虑通过换元“化归”为常规函数,或者利用导数进行解决。

(2)二元函数:若题目中涉及变量较多,通过代换消元最后得到所求参数与两个变量的表达式,则可通过均值不等式,放缩消元或数形结合进行解决。

3、两种方法的选择与决策:通常与题目所给的条件相关,主要体现在以下几点:(1)若题目中含有某个变量的范围,则可以优先考虑函数的方向,将该变量视为自变量,建立所求变量与自变量的函数关系,进而求得值域(2)若题目中含有某个表达式的范围(或不等式),一方面可以考虑将表达式视为整体,看能否转为(1)的问题进行处理,或者将该表达式中的项用所求变量进行表示,从而建立起关于该变量的不等式,解不等式即可 二、典型例题:例1:已知椭圆()2222:10x y C a b a b+=>>,1F 、2F 是其左右焦点,离心率为3,且经过点()3,1.(1)求椭圆C 的标准方程;(2)若12,A A 分别是椭圆长轴的左右端点,Q 为椭圆上动点,设直线1AQ 斜率为k ,且11,23k ⎛⎫∈−− ⎪⎝⎭,求直线Q A 2斜率的取值范围;解:(1)3c e a ==::a b c ∴=∴椭圆方程为:222213x y b b +=代入()3,1可得:24b =22312a b ∴== ∴椭圆方程为:221124x y +=(2)由(1)可得:()()12,A A − 设(),Q x y , 则k =2A Q k =22212A Qy k k x ∴⋅==− Q 在椭圆上 ()222211121243x y y x ∴+=⇒=−2221123A Qy k k x ∴⋅==−− 213A Q k k∴=−11,23k ⎛⎫∈−− ⎪⎝⎭12,133k ⎛⎫∴−∈ ⎪⎝⎭即22,13A Q k ⎛⎫∈ ⎪⎝⎭例2:已知椭圆()2222:10xy C a b a b +=>>,其左,右焦点分别是12,F F ,过点1F 的直线l交椭圆C 于,E G 两点,且2EGF 的周长为 (1)求椭圆C 的方程(2)若过点()2,0M 的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25PA PB −<t 的取值范围 解:(1)2c e a ==::a b c ∴= 2EGF 的周长4C a a ==⇒=1b ∴=∴椭圆方程为:2212x y +=(2)设直线AB 的方程为()2y k x =−,()()1122,,,A x y B x y ,(),P x yOA OB tOP += 1212x x txy y ty +=⎧∴⎨+=⎩ 联立直线与椭圆方程:()()222222212882021y k x k x k x k x y =−⎧⎪⇒+−+−=⎨+=⎪⎩ ()()()22228412820k k k ∴∆=−+−>,解得:212k <()23121212222884,44212121k k kx x y y k x x k k k k k +=+=+−=−=−+++()()222821421k x t k k y t k ⎧=⎪+⎪∴⎨⎪=−⎪+⎩,代入2212x y +=可得:()()2222284222121k k t k t k ⎛⎫⎛⎫ ⎪ ⎪+−= ⎪ ⎪++⎝⎭⎝⎭2221612k t k∴=+ 由条件25PA PB −<可得:25AB <123AB x ∴=−<()()22121220149kx x x x ⎡⎤∴++−<⎣⎦,代入22121222882,2121k k x x x x k k −+==++可得: ()()()222222228822014411413021219k k k k k k k ⎡⎤⎛⎫−+−⋅<⇒−+>⎢⎥ ⎪++⎢⎥⎝⎭⎣⎦214k ∴>211,42k ⎛⎫∴∈ ⎪⎝⎭22221618=16,411232k t k k ⎛⎫∴=⋅∈ ⎪+⎝⎭+ 262,,233t ⎛⎫⎛⎫∴∈−− ⎪⎪⎝⎭⎝⎭例3:在平面直角坐标系中,已知椭圆()2222:10x yC a b a b +=>>的离心率为2,且在所有(1)求椭圆方程(2)若过点()0,2B 的直线l 与椭圆交于不同的两点,EF (E 在,B F 之间),求三角形OBE 与三角形OBF 面积比值的范围 解:(1)2c e a == ::a b c ∴=由椭圆性质可得,焦点弦的最小值为22b a =1,b a ∴==∴椭圆方程为2212x y +=(2)设:2l y kx =+,()()1122,,,E x y F x y112211,22OBEOBFSOB x x S OB x x ∴=⋅⋅==⋅⋅= 1122OBE OBFx S x Sx x ∴==联立直线与椭圆方程:()222221286022y kx k x kx x y =+⎧⇒+++=⎨+=⎩ ()()22238241202k k k ∴∆=−+>⇒>12122286,01212k x x x x k k+=−=>++ 12,x x ∴同号 ()()22221212212212832122631212k x x k x x k x x x x k k ⎛⎫− ⎪++⎝⎭∴===++++232k > ()22232321164,1333122k k k⎛⎫∴=⋅∈ ⎪+⎝⎭+ 122116423x x x x <++< 设120x t x =>,所解不等式为:124111612333t t tt t t⎧++>⇒≠⎪⎪⎨⎪++<⇒<<⎪⎩()121,11,33x x ⎛⎫∴∈ ⎪⎝⎭,即()1,11,33OBE OBFS S⎛⎫∴∈ ⎪⎝⎭例4:已知椭圆()22122:10x y C a b a b +=>>的离心率为3,直线:2l y x =+与以原点为圆心,椭圆1C 的短半轴长为半径的圆相切 (1)求椭圆1C 的方程(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程 (3)设2C 与x 轴交于点Q ,不同的两点,R S 在2C 上,且满足0QR RS ⋅=,求QS 的取值范围解:(1)c e a a ==⇒= :2l y x =+与圆222x y b +=相切O l d b −∴== b ∴= 3a c = 22222b a c c ∴=−=即21c =,解得1c =a ∴=221:132x y C ∴+=(2)由(1)可得1:1l x =−线段2PF 的垂直平分线交2l 于点M2PM MF ∴=即12M l d MF −=M ∴的轨迹为以2F 为焦点,1l 为准线的抛物线,设为()220y px p =>()21,0F 2p ∴= 22:4C y x ∴=(3)思路:由已知可得()0,0Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则所求QS 为关于2y 的函数,只需确定2y 的范围即可,因为0QR RS ⋅=,所以有可能对2y 的取值有影响,可利用此条件得到2y 关于1y 的函数,从而求得2y 范围。

高中数学基础试题及答案

高中数学基础试题及答案

高中数学基础试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,下列哪个是f(-1)的值?A. 1B. -1C. 5D. -5答案:B2. 圆的方程为(x-2)^2 + (y-3)^2 = 9,该圆的半径是多少?A. 3B. 6C. 9D. 12答案:A3. 已知向量a = (3, -2),向量b = (-1, 4),向量a与向量b的点积是多少?A. -2B. 10C. -10D. 2答案:C4. 函数y = x^2 - 4x + 3的顶点坐标是?A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:B5. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,该三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B6. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},集合A与集合B 的交集是多少?A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}答案:B7. 函数y = sin(x) + cos(x)的值域是?A. [-2, 2]B. [-1, 1]C. [0, 1]D. [1, 2]答案:B8. 已知等差数列{an}的首项a1 = 2,公差d = 3,第5项a5的值是多少?A. 17B. 14C. 11D. 8答案:A9. 已知不等式x^2 - 5x + 6 < 0的解集是?A. (2, 3)B. (-∞, 2) ∪ (3, +∞)C. (-∞, 2) ∪ (3, +∞)D. (2, 3)答案:D10. 已知抛物线y = ax^2 + bx + c的顶点坐标为(1, -4),且过点(0,3),求a的值?A. 1B. -1C. 2D. -2答案:B二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x) = ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基础知识练习题答案黄浦区教研室数学组提供 (供黄浦区2011年高三学生使用)一、集合和命题1、{}2112--,,,;2、23、φ,{}0,{}2,{}4,{}0,2,{}0,4,{}2,4,{}0,2,4;4、01±或5、11x y =⎧⎨=-⎩;6、(01],7、(1)若0ab =,则0a =;(2)否命题:若2x ≠且3x ≠,则2560x x -+≠;逆否命题:若2560x x -+≠,则2x ≠且3x ≠。

8、否命题:若0a ≠或0b ≠,则220a b +≠;逆否命题:若220a b +≠,则0a ≠或0b ≠. 9、必要非充分;10、D二、不等式1、(1),(2),(3);2、A ;3、B4、(1)()()()()222222222220a bcd ac bd a d b c abcd ad bc ++-+=+-=-≥所以()()()22222a bc c ac bd ++≥+,当且仅当ad bc =等号成立。

(2)()()()2220a b a b a b a b b a ab-++-+=>,所以22a b a b b a +>+。

(3)()()()23322a b a b aba b a b +-+=-+所以,当a b =时,3322a b a b ab +=+;当a b ≠时,3322a b a b ab +>+。

(4)因()222232()24b b a b b a b a +-+=-+,故()222a b b a b +≥+,当且仅当0a b ==时等号成立。

(5) x y >5、{}6,a a a R ⎪≥∈;6、1142x x x ⎧⎫⎪<>⎨⎬⎩⎭或;7、解:(]2,2-8、(1)1,1111,11,111a a a a x R a a a ⎧⎛⎫+∞<-> ⎪⎪+⎝⎭⎪⎪∅=∈⎨=-⎪⎪⎛⎫-∞-<<⎪ ⎪+⎝⎭⎩,当或时,当时当时,当(2)()()22,,0101,,01a a a a x a a a a a ⎧<>⎪⎪∈∅==⎨⎪<<⎪⎩当或时,当或时当时。

9、(1)()1,1-;(2)1,22⎛⎤-⎥⎝⎦;(3)()0,1;(4)()(),11,3-∞-;(5)()()7,33,-+∞ (6)()()(),10,,11,0,1,1a a a -∞-⋃+∞>⎧⎪⎨-<≠-⎪⎩;10、(1)1,13⎛⎫ ⎪⎝⎭;(2)51,11,42⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭;(3)()(),11,1-∞--;(4)1(2]2-, (5)11,32⎛⎫- ⎪⎝⎭;(6)()2,2- 11、(),3-∞-12、(1)2,,422a a a ;(2)(3)10,8⎛⎤⎥⎝⎦;(4,当54x =时;(5)2-;(6)[)2+∞,;(7)(][),22,-∞-+∞。

13、2112a b a b+≤≤≤+(当且仅当a b =时,等号成立) 【中档题】解:由26ax +<,得84ax -<<,则必有0a <,所以414a a=-⇒=-()142x x f x x ≤⇒≤1-+,得52042x x -≤-+,得25x ≤或12x >; 因此解集21,,52⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三、函数的基本性质1、(1)否;(2)否;(3)是;(4)否;(5)否;(6)否;(7)是。

2、(1)()()2,11,-+∞;(2)()[),22,-∞-+∞;(3)()3,33,2⎡⎫-+∞⎪⎢⎣⎭3、(1)()240,10,20y x x =-+∈;(2)()2f x x =-。

4、(1)R ;(2)()(),00,-∞+∞;(3)24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭;(4)24,4ac b a ⎛⎤--∞ ⎥⎝⎦;(5)(][),22,-∞-+∞5、(1)2x ,()(),00,-∞+∞;(2)1,[)1,-+∞;(3)[)(]1,00,1-。

6、(1)非奇非偶;(2)(){}0,1,1f x x =∈-,所以既奇又偶;(3)奇函数; (4)定义域为R ,因为()()0f x f x -+=,所以为奇函数; (5)定义域为[)(]1,00,1-,()f x =,所以为奇函数;(6)定义域为()1,1-,因为()()0f x f x -+=,所以为奇函数; (7)定义域为R ,因为()()0f x f x --=,所以为偶函数。

7、(1)12;(2)12。

8、(1)()9f π=;(2)()2211,00,011,0x x x x f x x x x x x ⎧-+-<⎪⎪==⎨⎪⎪--++>⎩9、(1)[)5,-+∞;(2)[]3,1--和[)1,+∞;(3)(,-∞和)+∞;)⎡⎣和((4)1,2⎛⎤-∞ ⎥⎝⎦和[)1,+∞。

10、2m ≥-;11、(1)min 32y =,当12x =。

(2)1(3)()()2max min 2,1f x m m f x =+=-; (4)min 12y =,当12x =+;max 5y =,当1x =;(5)2;(6)无最大值,最小值为754。

12、有,1;13、不存在。

四、幂函数、指数函数和对数函数1.2y x -=;2.(1)2()f x x -=;(2)133()()()f x x f x x f x x ===、、; 3.(1,1)--,y x =和2y x =--;4.1a =且1,b b R ≠-∈5.图像略;递增区间是(],0-∞;递减区间是[)0,+∞;最大值为1;无最小值。

6.(1)1a >且1b ≥;(2)32和12;(3)(],1-∞。

7、(1)0;1;N ;(2)log ()a MN ;log aM N;(3)log log c c b a ;(4)log a n M ;log a M 。

8、(1)11y x =+<;(2)1y x =>-;(3)11,122x y x x +=≠-; (4)21,0y x x =-≥;(5)2log (2)1,2y x x =-+>。

9、13a =;10、(6,2);11、 1;12.1()24,xf x x R -=+∈;13、(1)(]2,3 (2)当1a >时,递减区间为(],1-∞;当1a ≤时,递减区间为(,1-∞-(3)1,2⎛⎫+∞⎪⎝⎭;(4)10,2⎡⎤⎢⎥⎣⎦;14.或415. (1)1x =(2)5x =(3)32log 2x =(4)2log 3x =【中档题】1、(1)1(11)m D ==-,,;(2)()f x 在D 上是单调减函数。

2、(1)0m =;(2)当13k =时,解集为φ;当13k >时,解集为11()42k k +--,; 当13k <时,解集为11()24k k -+,-。

3、(1)min 7()(1)2f x x ==;(2)3a >-。

4、(1) 当1a =-时,值域为{}1-;当1a >-时,值域为1(1)2a --,;(2)2011min 22a =+。

五、三角比1、(1)=+2k ,k Z αβπ∈;(2)180π;(3)180π2、(1(2)2;3ππ;3(1)5-;(2)25-;(3)12;4、⎛ ⎝⎭;h=3ABb=65、{}3,1-;6、(1)411-,(2)2041;7、(1)212t -,(2)(3)(2112t ±+(4)()232t t -;8、1; 9、(1)15-,(2)13-;10、32;11、(1)cos θ-,(2)15;12、(1)34-;(2)12; 13、(1)cos α;(2;(3)sin α;(4)12;(514、(1)52sin 2cos()63⎛⎫++ ⎪⎝⎭ππαα或;(2)sin 3πα⎛⎫- ⎪⎝⎭;(34x π⎛⎫+ ⎪⎝⎭;(4)34x π⎛⎫+⎪⎝⎭;15、(1)3356;(2第四;16、34;55-; 17、cos2α-;18、(1)30;(2)2,30,105c A B ===;(3)等腰或直角三角形;(4)等腰或直角三角形【中档题】1、因为2224x x ππ⎛⎫=-- ⎪⎝⎭所以cos 2cos 2sin 22sin cos 24444x x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--=-=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, cos sin 4424=2cos -=413x x x πππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭原式2、根据题意并结合图知,(1)当03m <<时,不能构成三角形;(2) 当36m <<时,可以构成二个三角形; (3) 当36m m =≥或时,只能构一个三角形。

六、三角函数1、(1)()5112,266k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,(2)5,44ππ⎡⎤⎢⎥⎣⎦;(3)3,-9;2、B 。

3、(1)偶函数非奇函数;(2)偶函数非奇函数;(3)a =0时既是偶函数又是奇函数,0a ≠时奇函数非偶函数; (4)偶函数非奇函数;(5)偶函数非奇函数。

4、(1)()2k k Z πϕπ=+∈中的一个值;(2)()k k Z =∈ϕπ中的一个值; (3)()2k k Z πϕπ=+∈中的一个值;(4)()k k Z =∈ϕπ中的一个值。

5、略; 6、(1)(),028k k Z ππ⎛⎫-∈⎪⎝⎭中的一个;(2)()28k x k Z ππ=+∈中的一条直线。

7、(1)向左平移3π个单位,再将sin 3y x π⎛⎫=+ ⎪⎝⎭的图像上每个点的横坐标缩短为原来的一半;(2)向右,平移2π个单位;(3)向右平移12π。

8、3sin 226y x π⎛⎫=+ ⎪⎝⎭;9、(1)⎛⎤ ⎥ ⎝⎦,(2)2⎛⎤ ⎥ ⎝⎦,(3)⎣⎦;1arcsin ,42π⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10、(1)7|22,66x x k x k k Z ⎧⎫=-=+∈⎨⎬⎩⎭ππππ或, (2)|22,2x x k x k k Z πππ⎧⎫==-∈⎨⎬⎩⎭或,(3)15,27,87,(4)24,,333πππ⎧⎫⎨⎬⎩⎭。

【中档题】解:()2+4f x x π⎛⎫=⎪⎝⎭(1)T=π;减区间为()5,88k k k Z ⎡⎤++∈⎢⎥⎣⎦ππππ (2)略七.数列与数学归纳法1. ⑴2*,n a n n n N =+∈,⑵()1*11,n n a n N -=+-∈,⑶()*7101,;9n n a n N =-∈⑷*411,;910nn a n N ⎡⎤⎛⎫=-∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⑸*5sin ,;2n n a n N π=∈ ⑹1*121(1)2()42n n n n n a n N n n ++⎧⎪++-⎪==∈⎨⎪⎪⎩为奇数为偶数;⑺*21,.n n a n N =+∈ 2. ⑴37; ⑵B ; 3. ⑴1292-; ⑵0,()()12p q p q ++-;⑶*12,n N n-∈4. ⑴153 ⑵201023⋅ ⑶13; 5. > ; 6. ⑴⑵⑶⑷; 7. m m nmm nn nb bb -+=; 8. -5; 9. ⑴C ;⑵C ;⑶C ;10. 112122n n +++; 11. ⑴*12,n N n -∈;⑵*,na n N ∈; ⑶1; ⑷*5,n N n ∈;⑸1;⑹1;12. ⑴3;2 ⑵3;2 ⑶1; ⑷[0,1);⑸3;2 ⑹ 89-;13. ⑴-1. ⑵527; ⑶1110,,442⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭。

相关文档
最新文档