2019高考数学专题题库及解析 附加题(BC)
2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)
绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学试题(带答案)
19.已知 OA 1 , OB 3 , OA • OB 0 ,点 C 在 AOB 内,且 AOC 30 ,设
OC
mOA
nOB
,
(m,
n
R)
,则
m n
__________.
20.若函数 f (x) x2 x 1 a ln x 在 (0, ) 上单调递增,则实数 a 的最小值是
附:参考数据与公式 6.92 2.63 ,若 X ~ N , 2 ,则①
P( X ) 0.6827 ;② P( 2 X 2 ) 0.9545;③ P( 3 X 3 ) 0.9973 . (1)根据频率分布直方图估计 50 位农民的年平均收入 x (单位:千元)(同一组数据用
A. 2
B. 3
C. 2 2
D. 3 2
6.若干年前,某教师刚退休的月退休金为 6000 元,月退休金各种用途占比统计图如下面
的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折
线图.已知目前的月就医费比刚退休时少 100 元,则目前该教师的月退休金为( ).
A.6500 元
2019 年高考数学试题(带答案)
一、选择题
1.如图,点 是抛物线
的焦点,点 , 分别在抛物线 和圆
线部分上运动,且 总是平行于 轴,则
周长的取值范围是( )
的实
A.
B.
ห้องสมุดไป่ตู้C.
D.
2. 1
1 x2
1
x6 展开式中
x2
的系数为(
)
A.15
B.20
C.30
D.35
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
2019年高考数学试卷(带答案)
B.钝角三角形
C.等边三角形
D.等腰三角形但不是等边三角形.
11.已知 ,函数 ,若函数 恰有三个零点,则( )
A. B.
C. D.
12.已知 是非零向量且满足 , ,则 与 的夹角是()
A. B. C. D.
二、填空题
13.已知曲线 在点 处的切线与曲线 相切,则a=.
14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
附:参考数据与公式 ,若 ,则① ;② ;③ .
(1)根据频率分布直方图估计50位农民的年平均收入 (单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图可以认为该贫困地区农民年收入X服从正态分布 ,其中 近似为年平均收入 近似为样本方差 ,经计算得: ,利用该正态分布,求:
故选:B
【点睛】
本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.
2.C
解析:C
2019年高考数学试卷(带答案)
一、选择题
1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A. B. C. D.都不对
2.下列函数图像与x轴均有公共点,其中能用二分法求零点的是( )
A. B. C. D.
3. 展开式中的常数项为()
A.80B.-80C.40D.-40
17.已知 , , ,且 ,则 的最小值为_________.
2019年全国高考试题数学江苏卷附答案详解
2019年全国高考试题数学江苏卷I 卷一、填空题1.已知集合{1,0,1,6}A =-,{|0,}B x x x R =>∈,则A B = .答案:{1,6}2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 答案:23.右图是一个算法流程图,则输出的S 的值是 . 答案:54.函数y =的定义域是 . 答案:{1,7}-5.已知一组数据6,7,8,9,10,则该组数据的方差是 . 答案:536.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 答案:7107.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .答案:y = 解析:由题知0,11692>=-b b,所以2=b,所以渐近线方程为y = 8.已知*{|()}n a n N ∈是等差数列,n S 是其前n 项和,若2340a a a +=,427S =,则n S 的值是 . 答案:169.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 . 答案:10解析:因为121212131313111=⨯⨯===∆∆-C C EC S S C C S ECS VV ABCD BCD ABCD BCD BCDE10120121121=⨯==-V V BCD E10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线0x y +=的距离的最小值是 .答案:4解析:由题设)4,(xx x P +,0>x 所以424222422|4|=⋅≥+=++=x x x x x x x d11.在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(,1)e --(e 为自然对数的底数),则点A 的坐标是 . 答案:(,1)e12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O ,若6AB AC AO EC ⋅=⋅,则ABAC的值是 .13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 .答案:10解析: 法一32tan 1)tan 1(tan )4tan(tan -=+-=+αααπαα,解得2tan =α或31-ααααααααπα2222cos sin sin cos cos sin 22)2cos 2(sin 22)42sin(+-+=+=+102tan 1tan 1tan 2222=+-+=ααα 法二 令y x =+=4,παα,则y tan 2tan 3-=α,22)sin(=-x y 则,cos sin 2cos sin 3x y y x -=22sin cos cos sin =-x y x y解得1023sin cos ,52cos sin =-=y x y x 则102sin cos cos sin )42sin(=+=+y x y x πα 14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数,当(0,2]x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >,若在区间(0,9]上,关于x 的方程()()f x g x =有8不同的实数根,则k 的取值范围是 .答案:1[3解析:当]2,0(∈x 时,2)1(1)(--==x x f y 等价于)0(1)1(22≥=+-y y x又)(x f 是周期为4的奇函数,可作出)(x f 在(0.9]上的图象 因为当]2,1(∈x 时,21)(-=x g 且)(x g 的周期为2由图可知:当]8,7(]6,5(]4,3(]2,1(⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有2个交点 由已知, )(x f 与)(x g 的图象在区间(0,9]上有8个交点所以当]9,8(]7,6(]5,4(]3,2(]1,0(⋃⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 又当]1,0(∈x 时,)2()(+==x k x g y 表示的直线恒过定点)0,2(-A ,且斜率0>k又)(x g 的周期为2及)(x f 的图象可知:当]7,6(]3,2((⋃∈x 时, )(x f 与)(x g 的图象无交点 所以当]9,8(]5,4(]1,0(⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 由)(x f 与)(x g 的周期性可知]1,0(∈x 时, )(x f 与)(x g 的图象有2个交点如图,当线段)10)(2(≤<+=x x k y 与圆弧)10,0(1)1(22≤<≥=+-x y y x 相切时8111|3|22=⇒=+=k k k d 又0>k .所以42=k (此时恰有1个交点) 当线段)10)(2(≤<+=x x k y 过点B(1、1)时,31==AB k k (此时恰有2个交点) 结合图形分析可知:k 的取值范围是)42,31[ 二、解答题15.在ABC D 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =2cos 3B =,求c 的值; (2)若sin cos 2A B a b =,求sin()2B p+的值. 解答:(1)22222222cos 292363b ac ac B c c c c c c=+-?+-创??(2)sin cos cos sin 22A B BB a b ===,sin()cos 2B B p +==16.如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =.求证:(1)11//A B 平面1DEC ; (2)1BE C E ^. 解答:(1)证明:“直三棱柱111ABC A B C -,∴四边形11ABB A 是平行四边形,∴11//A B AB又∵D 、E 分别是BC 、AC 的中点,//DE AB ,∴11//A B DE , 又DE Ì平面1DEC ,111A B DEC Ë, ∴11//A B 平面DEC .(2)证明:∵直三棱柱111ABC A B C -,.∴1AA ^平面ABC ,又∵BE Ì平面ABC ,∴1AA BE ^,又∵AB BC =,E 是AC 的中点,∴AC BE ^,∵1AC AA A =I ,AC Ì平面11ACC A ,1AA Ì平面11ACC A , ∴BE ^平面11ACC A ,又1EC Ì平面11ACC A ,∴1BE C E ^.17.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,l 与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结AG ,并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.解:(1)设椭圆C 的焦距为2c因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=25,AF 2⊥x 轴,所以23221212=-=F F DF DF 因此2a=DF 1+DF 2=4,从而a=2;由b 2=a 2-c 2,得b 2=3因此,椭圆C 的标准方程为13422=+y x (2)解法一 由(1)知,椭圆13422=+y x ,a=2 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4因为点A 在x 轴上方,所以A(1,4);又F 1(-1,0),所以直线AF 1:y=2x+2由⎩⎨⎧=+-+=16)1(2222y x x y 得5x 2+6x-11=0,解得x=1或511-=x 将511-=x 代入22+=x y ,得 512-=y ,因此)512,511(--B 又F 2(1,0),所以直线BF 2:)1(43--=x y由()⎪⎪⎩⎪⎪⎨⎧=+-=13414322y x x y ,得013672=--x x ,解得1-=x 或713=x ,又因为E 是线段2BF 与椭圆的交点,所以1-=x ,将1-=x 代入)1(43-=x y ,得23-=y ,因此,⎪⎭⎫ ⎝⎛--23,1E解法二 由(1)知,椭圆13422=+y x ,如图,连接1EF 因为a BF 22=,a EF EF 221=+ ,所以EB EF =1,从而.1B E BF ∠=∠因为B F A F 22=,所以B A ∠=∠,所以E BF A 1∠=∠,从而A F EF 21// , 因为x AF ⊥2轴,所以x EF ⊥1轴;因为()0,11-F ,由⎪⎩⎪⎨⎧=+-=134122y x x ,得23±=y ,又因为E 是线段2BF 与椭圆的交点,所以.23-=y 因此得又因为E 是线段BF2与椭圆的交点,所以3因此E(-1,-),由⎪⎭⎫ ⎝⎛--23,1E 18.如图、一个湖的边界是圆心为O 的绩、湖的一侧有一条直线型公路l 、湖上有桥AB (AB 是湖O 的直径)、规划在公路l 上选两个点P 、Q 、并修建两段直线的道路PB 、QA 、规划要求:线段PB 、QA 上的所有点O 的距离不小于圆O 的半径,已知点A ,8到直线l 的距离分为AC 和BD (C ,D 为垂足)(单位:百米)(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明雅由: (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点简的距离. 解答:解法一 (1)过A 作AE⊥B D,垂足为E.由已知条件得,四边形ACDE 为矩形,DE=BE=AC=6,AE=CD=8 因为PB⊥AB,所以os∠PBD=sin∠ABE=54108==,所以15cos =∠=PBDBD PB 因此道路PB 的长为15(百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B.E)到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求若Q 在D 处,连结AD,由(1)知1022=+=ED AE AD ,从而0257AB 2AD cos 222>=⋅-+=∠ BD AB AD BAD所以∠BAD 为锐角所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F,OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求 设1P 为l 上一点,且P 1B⊥AB由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 解法二 (1)如图,过O 作OH⊥l ,垂足为H以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系因为BD=12,AC=6,所以OH=9,直线l 的方程为9=y ,点A.B 的纵坐标分别为3,-3 因为AB 为圆O 的直径,AB=10.所以圆O 的方程为25y x 22=+ 从而A(4,3),B(-4,-3),直线AB 的斜率为43 因为PB⊥AB,所以直线PB 的斜率为34-直线PB 的方程为32534--=x y所以P(-13,9),153)(94)(-1322=+++=PB因此道路PB 的长为15(百米)(2)①若P 在D 处,取线段BD 点一点)0,4(-E ,则EO=4<5,故P 选在D 处不满足规划要求 ②若Q 在D 处,连结AD,由(1)知D(-4,9) A(4,3),所以线段AD:)44(643≤≤-+-=x x y 在线段AD 上取点)415,3(M ,因为543)415(32322=+<+=OM所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F 、OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求设1P 为l 上一点,且P 1B⊥AB ,由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 19.设函数))()(()(c x b x a x x f ---=,)('x f 为()f x 的导函数. (1)若a b c ==,(4)8f =,求a 的值;(2)若a b ¹,b c =,且()f x 和()f x ¢的零点均在集合{3,1,3}-中,求()f x 的极小值; (3)若0a =,01b <?,1c =,且()f x 的极大值为M ,求证:427M <. 解答:(1)易知3()()f x x a =-,由8)4(=f 解得4=a . (2)易知2()()()f x x a x b =--, )32)((3)('ba xb x x f +--= 令0)('=x f 得32,ba xb x +== 由}3,1,3{32,,-∈+b a b a 易知213a b+=,则3a =,3b =-, 则2()(3)(3)f x x x =-+,=)('x f 3(3)(1)f x x x ¢=+-,0)('=x f 得1,3-=x所以()f x 的极小值为(1)32f =-(3)可知()(1)()f x x x x b =--,b x b x x f ++-=)1(23)('2因为10≤<b ,所以03)12(2>+-=∆b所以)('x f 有两个不同的零点,设为)(,,2121x x x x <311,3112221+-++=+--+=b b b x b b b x所以)(x f 的极大值)(1x f M = 法一:121311)1()(bx x b x x f M ++-==9)1(9)1(2)913)()1(23(121121+++-+-++-=-b b x b b b x b x b x322)1(2729)1(27)1)(1(2++++++-=--b b b b b b b322)1(27227)1()1(227)1(+++-++=-b b b b b b27427227)1(≤++≤b b 法二:因为10≤<b ,所以)1,0(1∈x当)1,0(1∈x 时,2)1()1)(()(-≤--=x x x b x x x f 令2)1()(-=x x x g ,)1,0(1∈x ,)1)(31(3)('--=x x x g 由0)('=x g 得31=x所以31=x 时,)(x g 的极大值即最大值274)31()(max ==g x g所以)1,0(∈x 时,274)()(≤≤x g x f ,因此274≤M 法三:①当1b =时,2()(1)f x x x =-, =)('(31)(1)f x x x ¢=--,此时易知14()327M f ==,成立; ②当01b <<时;32()(1)f x x b x bx =-++,=)('x f 2()32(1)f x x b x b ¢=-++,由于(0)0f b ->,031)31('<-=b f ,01)1('>-=b f (1)10f b ¢=->, 则存在121013x x <<<<,0)(')('21==x f x f ,且易知1()M f x =, 由=)('x f 221111132()32(1)021x x f x x b x b x -¢=-++=?-, 则223232111121111111113232()(1)(1)2121x x x x M f x x b x bx x x x x x --==-++=-++--22111(1)12x x x -=-, 令1112(,1)3t x =-?,则22422111(1)12111(2)121616x x t t t t x t t--+==-+-.令211()(2)16g t t t t =-+,1(,1)3t Î,)('t g 2221(31)(1)()(0)16t t g t t --¢=<, 则14()()327g t f <=,则427M <; 综上可知427M <成立,证毕. 20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N Î满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M 一数列”;(2)已知数列*{}()n b a N Î满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式:②设m 为正整数,若存在“M -数列”*{}()n c n N Î、对任意正整数k 、当k m £时,都有1k kk c b c +#成立,求m 的最大值.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力解:(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24n n n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-. 23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤因为当3n ≥n ≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
2019年高考数学试题(附答案)
2019年高考数学试题(附答案)2019年高考数学试题是许多学生备战高考的重要参考资料。
在这份试题中,涵盖了数学的各个方面,包括代数、几何、概率与统计等。
这些试题不仅考察了学生对数学知识的掌握程度,也考察了他们的逻辑思维能力和解决问题的能力。
下面我们将对2019年高考数学试题进行详细分析,并附上相应的答案,希望能对广大学生有所帮助。
一、选择题部分。
1. 已知集合$A=\{x | -1\leq x\leq 3\}$,$B=\{x | 2\leq x\leq 4\}$,则$A\cap B$的元素个数为()。
A. 0B. 1C. 2D. 3。
解析,$A\cap B$表示集合A和集合B的交集,即同时属于A和B的元素组成的集合。
根据题意可知,$A\cap B=\{x | 2\leq x\leq 3\}$,所以$A\cap B$的元素个数为1,故选B。
2. 曲线$y=\ln x$和直线$y=x-2$的交点坐标为()。
A. (1, -1)B. (1, 1)C. (2, 0)D. (2, 1)。
解析,曲线$y=\ln x$和直线$y=x-2$的交点坐标即为满足方程$\ln x=x-2$的点的坐标。
通过计算可得,当x=2时,$\ln 2=2-2=0$,所以交点坐标为(2, 0),故选C。
3. 在$\triangle ABC$中,已知$\angle A=30^\circ$,$\angle B=45^\circ$,$AB=4$,则$AC$的长度为()。
A. $2\sqrt{2}$B. $2\sqrt{3}$C. $3\sqrt{2}$D. $4\sqrt{2}$。
解析,根据正弦定理可知,$\frac{AB}{\sin B}=\frac{AC}{\sin A}$,代入已知数据可得$AC=\frac{4\sin 30^\circ}{\sin 45^\circ}=2\sqrt{3}$,故选B。
4. 设随机变量X的概率密度函数为$f(x)=\begin{cases} kx^2 & 0<x<1 \\ 0 & others \end{cases}$,则k的值为()。
2019高考数学专题题库及解析 附加题(二项式定理、计数原理)
1.设函数(,)1(0,0)xm f x y m y y ⎛⎫=+>> ⎪⎝⎭. (1)当3m =时,求(6,)f y 的展开式中二项式系数最大的项;(2)若31240234(4,)a a a a f y a y y y y =++++且332a =,求40i i a =∑; (3)设n 是正整数,t 为正实数,实数t 满足(,1)(,)n f n m f n t =,求证:7(2010,)f f t >-.解:(1)展开式中二项式系数最大的项是第4项=33633540C y y ⎛⎫= ⎪⎝⎭; (2分) (2)431240234(4,)(1)a a a a m f y a y y y y y =++++=+,3334322a C m m ==⇒=, 4402(1)811i i a==+=∑; (5分) (3)由(,1)(,)n f n m f n t =可得2(1)(1)()n n n n m m m m m t t+=+=+,即21m m m m t +=+⇒=⇒201020101(1(1)1000f =+=+. 2341234201020102010201011114211227100010001000100033C C C C ⎛⎫⎛⎫⎛⎫>++++>++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而1)11()1(),2010(20102010<+=+=---t t m t f ,所以原不等式成立. (10分) 2. 从函数角度看,组合数r n C 可看成是以r 为自变量的函数)(r f ,其定义域是{}n r N r r ≤∈,. (1)证明:)1(1)(-+-=r f rr n r f ; (2)利用(1)的结论,证明:当n 为偶数时,n b a )(+的展开式中最中间一项的二项式系数最大.23.(1)已知*k n ∈N 、,且k n ≤,求证:11C C kk n n k n --=;(2)设数列0a ,1a ,2a ,…满足01a a ≠,112i i i a a a -++=(i =1,2,3,…).证明:对任意的正整数n ,011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+是 关于x 的一次式.(1)证明:左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---, 右边(1)!!(1)!()!(1)!()!n n n k n k k n k -=⋅=----, 所以11C C kk n n k n --=;(3分)(2)证明:由题意得数列0a ,1a ,2a ,…为等差数列,且公差为100a a -≠.(5分)则011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+ [][]0110010010C (1)+()C (1)+()C n n n n n n n a x a a a x x a n a a x -=-+--+⋅⋅⋅+- 01111222010C (1)C (1)C ()C (1)+2C (1)C n n n n n n n n n n n n n n a x x x x a a x x x x n x ---⎡⎤⎡⎤=-+-+⋅⋅⋅++---+⋅⋅⋅+⎣⎦⎣⎦[]011211010111(1)()C (1)+C (1)C nn n n n n n n a x x a a nx x x x x -------⎡⎤=-++---+⋅⋅⋅+⎣⎦。
2019年高考真题——理科数学(北京卷)附答案解析
绝密★启用前
2019年普通高等学校招生全国统一考试(北京卷)
理科数学
本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知复数z=2+i,则z z
A. 3
B. 5
C. 3
D. 5
【答案】D
【解析】
【分析】
题先求得z,然后根据复数的乘法运算法则即得.
【详解】∵z2i,z z(2i)(2i)5故选D.
【点睛】本容易题,注重了基础知识、基本计算能力的考查.
2.执行如图所示的程序框图,输出的s值为
A. 1
B. 2
C. 3
D. 4。
【真题】2019年江苏省高考数学试题(含附加题+答案)
15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
sin A sin B
2b b
从而 cos2 B (2sin B)2 ,即 cos2 B 4 1 cos2 B ,故 cos2 B 4 . 5
因为 sin B 0 ,所以 cos B 2sin B 0 ,从而 cos B 2 5 . 5
因此 sin
B
π 2
cos
B
25 5
.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力和推理论证能力.满分 14 分.
10.在平面直角坐标系 xOy 中,P 是曲线 y x 4 (x 0) 上的一个动点,则点 P 到直线 x+y=0 的距离的 x
最小值是 ▲ .
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
2019年数学高考试题(带答案)
2019年数学高考试题(带答案)一、选择题1.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)2.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}3.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称4.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .575.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .46.函数()ln f x x x =的大致图像为 ( )A .B .C .D .7.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.8.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .29.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.2n n +<n+1(n∈N *),某同学应用数学归纳法的证明过程如下: (1)当n=1时211+不等式成立.(2)假设当n=k(k∈N *)时,不等式成立,2k k +<k+1. 那么当n=k+1时()()()2222(k 1)k 1k 3k 2k3k 2k 2(k 2)+++=++<+++++所以当n=k+1时,不等式也成立.根据(1)和(2),可知对于任何n∈N *,不等式均成立.则上述证法( ) A .过程全部正确 B .n=1验得不正确C .归纳假设不正确D .从n=k 到n=k+1的证明过程不正确11.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________. 16.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.17.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 18.在等腰梯形ABCD 中,已知AB DC ,2,1,60,AB BC ABC ==∠=点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==则AE AF ⋅的值为 . 19.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.20.计算:1726cos()sin 43ππ-+=_____. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值. 24.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.25.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B 、20005000步,C 、50008000步,D 、800010000步,E 、1000012000步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.26.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2019年高考数学13套试卷及解析答案
2019 考数学 卷 I 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 001 2019 考数学 卷 I 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .006 2019 考数学 卷 I 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 016 2019 考数学 卷 I 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .021 2019 考数学 卷 II 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 029 2019 考数学 卷 II 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 034 2019 考数学 卷 II 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 043 2019 考数学 卷 II 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 048 2019 考数学 卷 III 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 056 2019 考数学 卷 III 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 062 2019 考数学 卷 III 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 073 2019 考数学 卷 III 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 078 2019 考数学北京卷理科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .088 2019 考数学北京卷理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 093 2019 考数学北京卷文科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 2019 考数学北京卷文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2019 考数学 卷理科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 2019 考数学 卷理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2019 考数学 卷文科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 2019 考数学 卷文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2019 考数学浙江卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2019 考数学浙江卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2019 考数学江苏卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 2019 考数学江苏卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 2019 考数学上海卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 2019 考数学上海卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
2019年高考浙江卷数学真题试题(word版,含答案与解析)
2019年高考数学真题试卷(浙江卷)原卷+解析一、选择题:本大题共10小题,每小题4分,共40分。
1.(2019•浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则=()A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3}【答案】 A【考点】交、并、补集的混合运算【解析】【解答】解:,所以={-1}.故答案为:A.【分析】根据集合的补写出即可得到.2.(2019•浙江)渐近线方程为x±y=0的双曲线的离心率是()A. B. 1 C. D. 2【答案】 C【考点】双曲线的简单性质【解析】【解答】解:根据双曲线的渐近线方程,得,所以离心率e= .故答案为:C.【分析】根据双曲线的渐近线方程,得到,即可求出离心率e.3.(2019•浙江)若实数x,y满足约束条件,则z=3x+2y的最大值是()A. -1B. 1C. 10D. 12【答案】 C【考点】简单线性规划的应用【解析】【解答】作出可行域和目标函数相应的直线,平移该直线,可知当过(2,2)时,目标函数取最大值10.故答案为:C.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值.4.(2019•浙江)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=sh,其中s是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示,则该柱体的体积是()A. 158B. 162C. 182D. 32【答案】 B【考点】由三视图求面积、体积【解析】【解答】根据三视图,确定几何体为五棱柱,其底面积,所以体积V=27 .故答案为:B.【分析】根据三视图确定几何体的结构特征,根据祖暅原理,即可求出相应的体积.5.(2019•浙江)若a>0,b>0,则“a+b≤4“是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】 A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】作出直线y=4-x和函数的图象,结合图象的关系,可确定“a+b≤4“是“ab≤4”的充分不必要条件.故答案为:A.【分析】作出函数的图象,结合图象确定充分必要性即可.6.(2019•浙江)在同一直角坐标系中,函数y= ,y=log a(x+ ),(a>0且a≠0)的图像可能是()A B C D【答案】 D【考点】函数的图象【解析】【解答】当a>1时,y= 的底数大于0小于1,故过(0,1)单调递减;y=log a(x+ )过(,0)单调递增,没有符合条件的图象;当0<a<1时,y= 的底数大于1,故过(0,1)单调递增;y=log a(x+ )过(,0)单调递减;故答案为:D.【分析】对a的取值分类讨论,结合指数函数和对数函数的特点,确定函数的图象即可.7.(2019•浙江)设0<a<1随机变量X的分布列是X 0 a 1P则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大【答案】 D【考点】离散型随机变量的期望与方差【解析】【解答】解:E(X)= ,,根据二次函数的单调性,可知D(X)先减小后增大;故答案为:D.【分析】根据期望的公式求出E(X),结合方差的计算公式及二次函数的性质即可确定D(X)先减小后增大.8.(2019•浙江)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点,(不含端点),记直线PB与直线AC所成角为α.直线PB与平面ABC所成角为β.二面角P-AC-B的平面角为γ。
2019年高考真题全国3卷理科数学(附答案解析)
绝密★启用前2019年普通高等学校招生统一考试理科数学试题卷一、单选题1.已知集合{}{}21,0,1,21A B x x ,=−=≤,则A B ⋂=( )A .{}1,0,1−B .{}0,1C .{}1,1−D .{}0,1,22.若(1i)2i z +=,则z =( ) A .1i −−B .1+i −C .1i −D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A .,1a e b ==−B .,1a e b ==C .1,1a e b −==D .1,1a e b −==−7.函数3222x xx y −=+在[]6,6−的图像大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线9.执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122−B .5122−C .6122−D .7122−10.双曲线C :2242x y −=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f −−⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229,)其中所有正确结论的编号是 A .①④ B .②③C .①②③D .①③④二、填空题13.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________.14.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 15.设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O EFGH −后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .三、解答题17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.19.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.20.已知函数32()2f x x ax b =−+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1−且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.21.已知曲线C :y =22x ,D 为直线y =12−上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC,曲线3M 是弧»CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标. 23.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z −++++的最小值; (2)若2221(2)(1)()3x y z a −+−+−≥成立,证明:3a −≤或1a ≥−.参考答案1.A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴Q 11x −≤≤,∴{}11B x x =−≤≤,则{}1,0,1A B ⋂=−, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.D 【解析】 【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z −===+++−.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归4.A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数. 5.C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 6.D 【解析】 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,x y ae x '=++1|12x k y ae ='==+=,1a e −∴=将(1,1)代入2y x b =+得21,1b b +==−,故选D .本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 7.B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x xx y f x −==+,则332()2()()2222x x x x x x f x f x −−−−==−=−++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f −⨯=>+排除选项D ;36626(6)722f −⨯=≈+,排除选项A ,故选B . 【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查. 8.B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCE , MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性. 9.C 【解析】 【分析】根据程序框图,结合循环关系进行运算,可得结果. 【详解】输入的ε为0.01,1.01,0.50.01?x S x ==+=<不满足条件; 1101,0.01?24S x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<L 满足条件 输出676111112122222S ⎛⎫=++⋯+=−=− ⎪⎝⎭,故选C .【点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析. 10.A 【解析】 【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题. 【详解】由2,,,a b c ====.,P PO PF x =∴=Q ,又P 在C 的一条渐近线上,不妨设为在2y x =上,112224PFO P S OF y ∴=⋅==△,故选A . 【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积. 11.C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f −−⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422−−−−>==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f −−⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f −−⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值. 12.D 【解析】【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案. 【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选D . 【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题. 13.23. 【解析】 【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果. 【详解】因为2c a =v v,0a b ⋅=vv ,所以22a c a b vv v v⋅=⋅2=,222||4||5||9c a b b =−⋅+=vv v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案. 14.4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 15.( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【详解】由已知可得2222236,20,16,4a b c a b c ==∴=−=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =−舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 16.118.8 【解析】 【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量. 【详解】由题意得, 2146423122EFGH S cm =⨯−⨯⨯⨯=, 四棱锥O −EFG 的高3cm , ∴31123123O EFGH V cm −=⨯⨯=.又长方体1111ABCD A B C D −的体积为32466144V cm =⨯⨯=, 所以该模型体积为22114412132V V V cm =−=−=,其质量为0.9132118.8g ⨯=. 【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.17.(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=−=−,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【点睛】本题考查频率分布直方图和平均数,属于基础题.18.(1) 3B π=;(2)()82. 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅V ,又根据正弦定理和1c =得到ABC S V 关于C 的函数,由于ABC V 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C V 的值域. 【详解】 (1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sinsin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B π<,02AC π+<<因为故2A CB +=或者2AC B π++=,而根据题意A B C π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<−<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ−=⋅=⋅=⋅=⋅V 22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ−==⋅−=+.又因,tan 623C C ππ<<>,故3188tan 82C <+<,故82ABC S <<V . 故ABC S V的取值范围是 【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查ABC V 是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.19.(1)见详解;(2) 30o . 【解析】 【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC V 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2)在图中找到B CG A −−对应的平面角,再求此平面角即可.于是考虑B 关于GC 的垂线,发现此垂足与A 的连线也垂直于CG .按照此思路即证. 【详解】(1)证:Q //AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥Q .AB ∴⊥平面BCGE ,AB ⊂Q 平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)过B 作BH GC ⊥延长线于H ,连结AH ,因为AB ⊥平面BCGE ,所以AB GC ⊥ 而又BH GC ⊥,故GC ⊥平面HAB ,所以AH GC ⊥.又因为BH GC ⊥所以BHA ∠是二面角B CG A −−的平面角,而在BHC △中90BHC ∠=o ,又因为60FBC ∠=o 故60BCH ∠=o ,所以sin 60BH BC ==o而在ABH V 中90ABH ∠=o ,tanAB BHA BH ∠===B CG A −−的度数为30o .【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.20.(1)见详解;(2) 01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【解析】 【分析】(1)先求()f x 的导数,再根据a 的范围分情况讨论函数单调性;(2) 根据a 的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出a ,b 的值. 【详解】(1)对32()2f x x ax b =−+求导得2'()626()3af x x ax x x =−=−.所以有当0a <时,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 当0a =时,(,)−∞+∞区间上单调递增;当0a >时,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以若0a <,(,)3a −∞区间上单调递增,(,0)3a 区间上单调递减,(0,)+∞区间上单调递增; 此时在区间[0,1]上单调递增,所以(0)1f =−,(1)1f =代入解得1b =−,0a =,与0a <矛盾,所以0a <不成立.若0a =,(,)−∞+∞区间上单调递增;在区间[0,1].所以(0)1f =−,(1)1f =代入解得1a b =⎧⎨=−⎩. 若02a <≤,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≥,故所以区间[0,1]上最大值为(1)f .即322()()13321a a ab a b ⎧−+=−⎪⎨⎪−+=⎩相减得32227a a −+=,即(0a a a −+=,又因为02a <≤,所以无解.若23a <≤,(,0)−∞区间上单调递增,(0,)3a 区间上单调递减,(,)3a +∞区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3a f 而(0),(1)2(0)fb f a b f ==−+≤,故所以区间[0,1]上最大值为(0)f .即322()()1331a a ab b ⎧−+=−⎪⎨⎪=⎩相减得3227a =,解得x =23a <≤,所以无解.若3a >,(,0)−∞区间上单调递增,(0,)3a区间上单调递减,(,)3a +∞区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =⎧⎨−+=−⎩解得41a b =⎧⎨=⎩.综上得01a b =⎧⎨=−⎩或41a b =⎧⎨=⎩. 【点睛】这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.21.(1)见详解;(2) 3或【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t −然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=−,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥u u u u v u u u v得出t 的值,从而求出M 坐标和EM u u u u u v 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t −,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=−,整理得112210tx y −+=. 设22(,)B x y ,同理得222210tx y −+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y −+=.于是直线2210tx y −+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y −+=.即2(21)0tx y +−+=,当20,210x y =−+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx −−=, 于是2121212122,1,()121x x t x x y y t x x t +==−+=++=+212|||2(1)AB x x t =−==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =−u u u u r ,AB u u u r 与向量(1,)t 平行,所以()220t t t +−=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.22.(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=−∈,(2) )6π,)3π,2)3π,5)6π. 【解析】 【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围. (2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈, 23:2cos()2sin ([,])244M πππρθθθ=−=∈,33:2cos()2cos ([,])4M πρθπθθπ=−=−∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为)3π或2)3π解方程32cos [,])4πθθπ−=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π. 【点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.(1) 43;(2)见详解. 【解析】【分析】(1)根据条件1x y z ++=,和柯西不等式得到2224(1)(1)(1)3x y z −++++≥,再讨论,,x y z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的,,x y z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z −++++++≥−++++=+++=故2224(1)(1)(1)3x y z −++++≥等号成立当且仅当111x y z −=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=−⎨⎪⎪=−⎪⎩时等号成立 所以222(1)(1)(1)x y z −++++的最小值为43. (2) 因为2221(2)(1)()3x y z a −+−+−≥,所以222222[(2)(1)()](111)1x y z a −+−+−++≥. 根据柯西不等式等号成立条件,当21x y z a −=−=−,即22321323a x a y a z a +⎧=−⎪⎪+⎪=−⎨⎪+⎪=−⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a −+−+−++=−+−+−=+成立. 所以2(2)1a +≥成立,所以有3a −≤或1a ≥−.【点睛】两个问都是考查柯西不等式,属于柯西不等式的常见题型.。
2019年高考数学试题及答案解析
2019年高考数学试题及答案解析2019年高考数学试题及答案解析2019年高考数学试题有许多,同学们着实费了不少功夫来准备,本文将通过列出部分试题及其答案解析,来帮助同学们回顾一下高考考试中出现的题目,也可以更好地加深对理解和熟练运用所学知识的能力。
一、单项选择题1、对于给定的几何体,若两个棱的中点连接,得到的图形是一个()A、四面体B、六面体C、八面体D、十二面体答案:B解析:在三角形ABC中,求得AT角为30°,而AT角和MT共线,故MT角为30°;1特别地,可知AM和BC共线,MT就在伸展图上,由此可以构造一个六面体。
2、已知a、b、s的的单位分别为米、千克和秒,若形如as/b的组合称为物理量,它的单位是( )A、米/千克B、米/秒C、千克/秒D、米·千克/秒答案:B解析:根据力的定义,as/b的组合是速度,即物体每秒钟所移动的距离,因此它的单位应该是米每秒。
二、问答题1、数列{an}和 {bn}满足:a1=1,an=2an-1+1, b2=2, bn=3bn-1-2,设cn=anbn,求cn的表达式是()答案:cn=2cn-2+1解析:由题可知,cn=anbn,利用递推公式可以有:an=2an-1+1,bn=3bn-1-2,故cn=anbn=2an-1bn-1+1×bn-1-2=2cn-2+1,即cn=2cn-2+1。
2、已知a、b、c、d分别是棱锥AP-DC的四边长,其中AD及PC垂直于DC,且d=6,若a+b+c=12,则AP的高h的值为()答案:h=4解析:由等式a+b+c=12可知,APD和APC是直角三角形,AD=d=6,故三边求斜边求得PC=2,AP=√(a²+b²+2ac)=√(12²+2×12×6)=4,即h=4。
2019年江苏卷高考附加题(含答案)
X
的概率分布为 P( X
1)
7 C62
7 , P(X 15
2)
4 C62
4, 15
P( X
2)
2 C62
2 , P(X 15
5)
2 C62
2 15
.
(2)设 A(a ,b) 和 B(c ,d ) 是从 M n 中取出的两个点.
因为 P( X n) 1 P( X n) ,所以仅需考虑 X n 的情况. ①若 b d ,则 AB n ,不存在 X n 的取法; ② 若 b 0 ,d 1 , 则 AB (a c)2 1 n2 1 , 所 以 X n 当 且 仅 当
(1 3)n (1 3)5
C50 C15 3 C52 ( 3)2 C35 ( 3)3 C54 ( 3)4 C55 ( 3)5
ab 3.
解法一:
因为 a, b N* ,所以 a C50 3C52 9C54 76, b C15 3C35 9C55 44 ,
从而 a2 3b2 762 3 442 32 .
2
1
当x> 时,原不等式可化为x+2x–1>2,解得x>1.
2
综上,原不等式的解集为{x | x 1 或x 1} . 3
22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算
求解能力,满分10分.
解:(1)因为 (1 x)n C0n C1n x C2n x2 Cnn xn ,n 4 ,
因此 a2 3b2 (a b 3)(a b 3) (1 3)5 (1 3)5 (2)5 32 .
23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识, 考查逻辑思维能力和推理论证能力.满分10分.
2019年数学高考试卷(含答案)
2019年数学高考试卷(含答案)一、选择题1.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .2.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .144.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为A .π6B .π3C .2π3D .5π65.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)6.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( )A .23B .2C .2D .17.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .48.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]9.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7 B .8C .9D .1010.设集合,,则=( )A .B .C .D .11.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.设25a b m ==,且112a b+=,则m =______. 15.曲线21y x x=+在点(1,2)处的切线方程为______________. 16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.18.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.19.若45100a b ==,则122()a b+=_____________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.23.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.24.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.25.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xx x f x x >⎧=⊕=⎨≤⎩,只有选项A 中的图象符合要求,故选A.2.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.3.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2. 故选B .4.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.5.D解析:D 【解析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.6.B解析:B 【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.7.C解析:C 【解析】 【分析】 由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值. 【详解】 由由4παβ+=,得到1tanαβ+=(), 所以11tan tan tantan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-,则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C . 【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.8.B解析:B【分析】【详解】试题分析:利用辅助角公式化简函数为=+-,令,则,所以此f x x x m()3sin2cos2时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.9.D解析:D【解析】=所以从高二年级应抽取9人,从高三年级应抽试题分析:因为210:270:3007:9:10,取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.10.B解析:B【解析】试题分析:集合,故选B.考点:集合的交集运算.11.D解析:D【解析】【分析】利用方差公式结合二次函数的单调性可得结论;解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<,()D X ∴先减小后增大 故选:D . 【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.12.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】 【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力 10【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.15.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x '=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.16.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主解析:4+【解析】 【分析】由4c =,a A =,利用正弦定理求得4C π=.,再由余弦定理可得2216a b =+,利用基本不等式可得(82ab ≤=+,从而利用三角形面积公式可得结果. 【详解】因为4c =,又42sin sin c a C A==, 所以2sin 2C =,又C 为锐角,可得4C π=.因为()2222162cos 222a b ab C a b ab ab =+-=+-≥-, 所以()1682222ab ≤=+-, 当且仅当()822a b ==+时等号成立, 即12sin 44224ABC S ab C ab ∆==≤+, 即当()822a b ==+时,ABC ∆面积的最大值为442+. 故答案为442+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.17.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12- 【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为18.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】 【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果. 【详解】45100a b ==,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b∴+=+==, 则1222a b ⎛⎫+=⎪⎝⎭故答案为2 【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由ce a =,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(1)见解析(2(3【解析】 【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD中,CA CD 2AD ===,ACD1S2==,由AO =1,知2CDE1S 22==,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角. 在△OME中,111222EM AB OE DC ====, ∵OM 是直角△AOC 斜边AC 上的中线,∴112OM AC ==,∴1114cos OEM +-∠==, ∴异面直线AB 与CD所成角大小的余弦为4(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=,1133ACDCDEh S AO S ∴=...,在△ACD 中,2CA CD AD ===,,∴212724222ACDS⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭, ∵AO =1,21332242CDES =⨯⨯=, ∴31212772CDE ACDAO S h S ⨯⋅===,∴点E 到平面ACD 的距离为217.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题. 22.(1)3,2a c ==;(2)2327【解析】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=. 解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin .3B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6. 由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=.解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,2212sin 1cos 1()33B B =-=-= 由正弦定理,得22242sin sin 339c C B b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=1724223393927⋅+⋅=. 考点:1.解三角形;2.三角恒等变换.23.(1)22:1,(1,1]4y C x x +=∈-;:23110l x y ++=;(27【解析】 【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值. 【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:23110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l 的距离4sin 112cos 23sin 11677d πθθθ⎛⎫++ ⎪++⎝⎭==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min 7d = 【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.24.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知5533a a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.25.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.【解析】 【详解】(1)依题意,2,2,24d d ++成等比数列, 故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.。
2019年江苏高考数学试题答案解析
2019年高考江苏卷数学试题解析1.已知集合A ={-1,0,1,6},{}|0,B x x x R =>∈,则A ∩B =_____.【答案】{1,6}.由题意利用交集的定义求解交集即可.【解析】由题知,{1,6}A B = .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____.【答案】2本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【解析】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++ ,令20a -=得2a =.3.下图是一个算法流程图,则输出的S 的值是_____.【答案】5结合所给的流程图运行程序确定输出的值即可.【解析】执行第一次,1,1422xS S x =+==≥不成立,继续循环,12x x =+=;执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=;执行第三次,3,342x S S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442x S S x =+==≥成立,输出 5.S =4.函数y =【答案】[-1,7]由题意得到关于x 的不等式,解不等式可得函数的定义域.【解析】由已知得2760x x +-≥,即2670x x --≤解得17x -≤≤,故函数的定义域为[-1,7].5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.【答案】53由题意首先求得平均数,然后求解方差即可.【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】710先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【解析】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =根据条件求b ,再代入双曲线的渐近线方程得出答案.【解析】由已知得222431b -=,解得b =或b =,因为0b >,所以b =.因为1a =,所以双曲线的渐近线方程为y =.8.已知数列{a n }*()n ∈N 是等差数列,S n 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16由题意首先求得首项和公差,然后求解前8项和即可.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩,解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=.9.如图,长方体ABCD -A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E -BCD 的体积是_____.【答案】10由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.【答案】4将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【解析】当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小.由2411y x '=-=-,得2(2)x =舍,32y =即切点2,32)Q ,则切点Q 到直线22gR r4=,故答案为:4.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是____.【答案】(e,1)设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【解析】设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=,点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1e x x ---=-,即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e 12.如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是_____.3由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即3,AB = 故3AB AC =.【迁移】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.【答案】10由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【解析】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭,当tan 2α=时,上式22222122==22110⎛⎫⨯+- ⎪+⎝⎭当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2.410πα⎛⎫+= ⎪⎝⎭【迁移】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当(0,2]x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可.【解析】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x=在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点;当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,1=,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =.综上可知,满足()()f x g x =在(0,9]上有8个实根的k 的取值范围为1234⎡⎪⎢⎪⎣⎭,.【迁移】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)33c =;(2)255.(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin(2B π+的值.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2ac b B ac +-=,得2222(3)(2)323c c c c+-=⨯⨯,即213c =.所以33c =.(2)因为sin cos 2A B a b=,由正弦定理sin sin a b A B =,得cos sin 2B B b b =,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25 sin cos25B B⎛⎫+==⎪⎝⎭.【迁移】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【迁移】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,2E --.(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标.【解析】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1)2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,2E --.【迁移】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321解:解法一:⊥,垂足为E.利用几何关系即可求得道路PB的长;(1)过A作AE BD(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.解法二:(1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB的长;(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.【解析】解法一:⊥,垂足为E.(1)过A作AE BD由已知条件得,四边形ACDE为矩形,6, 8DE BE AC AE CD =====.因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-≤≤.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+,所以Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+d 最小,此时P ,Q 两点间的距离4(13)17PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17+(百米).【迁移】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.设函数()()()(),,,R f x x a x b x c a b c =---∈,()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{-3,1,3}中,求f (x )的极小值;(3)若0,01,1a b c =<≤=,且f (x )的极大值为M ,求证:M ≤427.【答案】(1)2a =;(2)见解析;(3)见解析.(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式:解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式;解法二:由题意构造函数,求得函数在定义域内的最大值,因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:x1(0,)3131(,1)3()g'x +0–()g x ↗极大值↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x =b 或23a bx +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠,所以21,3,33a ba b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(-∞,-3)-3(-3,1)1(1,+∞)+0–0+()f x ↗极大值↘极小值↗所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得1211,33b b x x ++==.列表如下:x1(,)x -∞1x ()12,x x 2x 2(,)x +∞+0–0+()f x ↗极大值↘极小值↗所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:x1(0,)3131(,1)3()g'x +0–()g x ↗极大值↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫==⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【迁移】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k qk q -≤≤,其中k =1,2,3,…,m .当k=1时,有q≥1;当k=2,3,…,m时,有ln lnln1 k kqk k≤≤-.设f(x)=ln(1)x xx>,则21ln()xf'xx-=.令()0f'x=,得x=e.列表如下:x(1,e)e(e,+∞) ()f'x+0–f(x)↗极大值↘因为ln2ln8ln9ln32663=<=,所以maxln3()(3)3f k f==.取q=k=1,2,3,4,5时,ln lnk qk≤,即kk q≤,经检验知1k q k-≤也成立.因此所求m的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5.【迁移】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)【选做题】本题包括21、22、23三小题,请选定其中两小题,并在相应的答题................区域内作答......若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==.(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.【解析】(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.【迁移】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(2)2.(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=.【迁移】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.23.设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.由题意结合不等式的性质零点分段即可求得不等式的解集.【解析】当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解;当x >12时,原不等式可化为x +2x –1>2,解得x >1.综上,原不等式的解集为1{|1}3x x x <->或.【迁移】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a +=+*,a b ∈N ,求223a b -的值.【答案】(1)5n =;(2)-32.(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值;(2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51的展开式,最后结合平方差公式即可确定223a b -的值.【解析】(1)因为0122(1)C C C C 4nnnn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n+=02233445555555C C C C C C =+++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++012233445555555C C C C C C =-+-+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【迁移】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈ 令n n n n M A B C = .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).【答案】(1)见解析;(2)见解析.(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【解析】(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点.因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第21-C 题图)
已知圆C :22
1x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22
194x y +=,求a ,b 的值.
解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',
则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦
,即,.x a x y b y '=⎧⎨'=⎩ …………………………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222
194a x b y +=. 由已知条件可知,221x y += ,所以 a 2=9,b 2=4.
因为 a >0 ,b >0,所以 a =3,b =2. ………………10分
C .选修4-4:坐标系与参数方程
在极坐标系中,求经过三点O (0,0),A (2,2π),B
(4
π) 的圆的极坐标方程.
解:设(,)P ρθ是所求圆上的任意一点,…………………3分 则cos()4
OP OB θπ=-,
故所求的圆的极坐标方程为)4ρθπ=-. …………10分
注
:cos()4ρθπ=-亦正确.
7. 变换T 是绕坐标原点逆时针旋转π2
的旋转变换,求曲线22221x xy y -+=在变换T 作用 下所得的曲线方程.
【解】变换T 所对应变换矩阵为0110-⎡⎤=⎢⎥⎣⎦M ,设x y ⎡⎤⎢⎥⎣⎦
是变换后图像上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦
,则00x x y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即00,,y x x y =-⎧⎨=⎩,代入220000221x x y y -+=, 即22221x xy y ++=,
所以变换后的曲线方程为22221x xy y ++=. ………………… 10分
(第21-C 题答图)。