高中数学归纳推理测试题(有答案)

合集下载

高中数学 2.1《合情推理与演绎推理》测试(1) 新人教B版选修2-2

高中数学 2.1《合情推理与演绎推理》测试(1) 新人教B版选修2-2

合情推理与演绎推理一、归纳推理 例1.(1)观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?变式1.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)变式2.在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么 (1)在圆内画四条线段,彼此最多分割成 条线段?同时将圆分割成 部分?(2)猜想:圆内两两相交的n (n ≥2)条线段,彼此最多分割成 条线段?同时将圆分割成 部分?强化训练1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是 .2.由107>85,119>108,2513>219,…若a >b >0,m >0,则m a m b ++与a b 之间的大小关系为 .3.下列推理是归纳推理的是 (填序号).①A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式 ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆2222b y a x +=1的面积S =πab④科学家利用鱼的沉浮原理制造潜艇4.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是 .二、类比推理(一)数列中的类比例1.在等差数列{}n a 中,若010=a ,则有等式n a a a +⋅⋅⋅++21),19(1921+-∈<+⋅⋅⋅++=N n n a a a n 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式 成立.强化练习1.定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1. 用数学归纳法证明1+2+3+ +n 2=,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C .D .(k 2+1)+(k 2+2)+ +(k +1)2【答案】D 【解析】当时,,当时,,所以时左端应在的基础上加上. 【考点】数学归纳法.2. 某地区为了绿化环境进行大面积植树造林,如图,在区域 内植树,第一棵 树在点A l (0,1),第二棵树在点.B 1(l , l ),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么(1)第n 棵树所在点坐标是(44,0),则n= .(2)第2014棵树所在点的坐标是 .【答案】(1);(2)【解析】(1)从图上可以看出:第3棵树在点,第4颗树在点,第15棵数在点,第16棵数在点,设第棵树在点,显然可以归纳出,∴;由图可知,以,为左右端点的正方形区域内共有棵树,而, ∴第2014的数应是,为左右端点的正方形区域内的依次种植的倒数第11棵树,∴第2014棵树的所在点的坐标为. 【考点】归纳推理.3. 用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++ 【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.4. 是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由. 【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)时,该命题成立,那么可6.某个命题与正整数有关,如果当n=k(k∈N+推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立【答案】C【解析】依题意,若n=4时该命题成立,则n=5时该命题成立;而n=5时该命题不成立,却无法判断n=6时该命题成立还是不成立,故选C.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推n=2k+1正确C.假使n=k时正确,再推n=k+1正确D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+)【答案】B【解析】因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.8.用数学归纳法证明等式时,第一步验证时,左边应取的项是A.1B.C.D.【答案】D【解析】根据题意,数学归纳法证明等式时,第一步验证时,坐标表示的为前4项的和,因为最后一项为4,且从1开始,因此可知左边为,选D.【考点】数学归纳法点评:主要是考查了数学归纳法的基本原理的运用,属于基础题。

高中数学选修1-2归纳推理同步练习.docx

高中数学选修1-2归纳推理同步练习.docx

高中数学学习材料马鸣风萧萧*整理制作归纳推理 同步练习【选择题】1、根据给出的数塔猜测79123456+⨯等于( ) 11291=+⨯ 1113912=+⨯ 111149123=+⨯ 11111591234=+⨯ 1111116912345=+⨯A 、1 111 110B 、1 111 111C 、1 111 112D 、1 111 1132、有一个奇数列1,3,5,7,9……,现在进行如下分组:第一组含一个数{1};第二组含二个数{3,5};第三组含三个数{7,9,11};第四组含四个数{13,15,17,19};等等,试观察每组内各数之和与其组的编号数n 有什么关系( )A 、等于2nB 、等于3nC 、等于4nD 、等于)1(+n n3、设数列}{n a 满足,2,...,3,2,1,1)1(121==+--=+a n a n a a n n n 通过求321,,a a a 猜想n a 的一个通项公式为 ( )A 、n+1B 、nC 、n+2D 、n-1 【填空题】4、从1=1,1-4= - (1+2),1-4+9=1+2+3,1-4+9-16= - (1+2+3+4)……概括出第n 个式子为了_____________.5、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表。

观察表中数据的特点,用适当的数填入表中( )内______,______.年龄(岁) 30 35 40 45 50 55 60 65 收缩压(水银柱/毫米) 110 115 120 125 130 135 ( ) 145 舒张压(水银柱/毫米) 70 73 75 78 80 83 ( ) 88【解答题】6、已知数列}{n a ,其中,62=a 且n a a a a n n n n =+--+++1111(1)求321,,a a a .(2)求数列}{n a 的通项公式.7、用推理的形式表示等差数列1,3,5,……,(2n-1),…的前n 项和n S 的归纳过程.8、设,,41)(2+∈++=N n n n n f 计算)10(),...,4(),3(),2(),1(f f f f f 的值,同时作出归纳推理,并用40=n 验证猜想的结论是否正确.参考答案1、B2、B3、A4、)...321()1()1(...16941121n n n n ++++-=-++-+-++5、140,856、(1) 28,15,1431===a a a(2)猜想)12(-=n n a n 7、2n S n = 8、解: 434111)1(2=++=f474122)2(2=++=f 534133)3(2=++=f 614144)4(2=++=f 714155)5(2=++=f 834166)6(2=++=f 974177)7(2=++=f 1134188)8(2=++=f 1314199)9(2=++=f 151411010)10(2=++=f由此猜想,n 为任何正整数时,+∈++=N n n n n f ,41)(2都是质数当n=40时,4141414040)40(2⨯=++=f ,所以)40(f 为合数,因此猜想的结论不正确。

【高二】高二数学数学归纳法综合测试题(带答案)

【高二】高二数学数学归纳法综合测试题(带答案)

【高二】高二数学数学归纳法综合测试题(带答案)选修2-2 2. 3 数学归纳法一、1.用数学归纳法证明1+12+13+…+12n-11)时,第一步应验证不等式( )A.1+12<2B.1+12+13<2C.1+12+13<3D.1+12+13+14<3[答案] B[解析] ∵n∈N*,n>1,∴n取第一个自然数为2,左端分母最大的项为122-1=13,故选B.2.用数学归纳法证明1+a+a2+…+an+1=1-an+21-a(n∈N*,a≠1),在验证n=1时,左边所得的项为( )A.1B.1+a+a2C.1+aD.1+a+a2+a3[答案] B[解析] 因为当n=1时,an+1=a2,所以此时式子左边=1+a+a2.故应选B.3.设f(n)=1n+1+1n+2+…+12n(n∈N*),那么f(n+1)-f(n)等于( )A.12n+1B.12n+2C.12n+1+12n+2D.12n+1-12n+2[答案] D[解析] f(n+1)-f(n)=1(n+1)+1+1(n+1)+2+…+12n+12n+1+12(n+1)-1n+1+1n+2+…+12n=12n+1+12(n+1)-1n+1=12n+1-12n+2.4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得( )A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析] 原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是( )A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析] ∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为( )A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析] 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证( )A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析] 假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2?2k>2(k2-2)由2(k2-2)≥(k-1)2-4?k2-2k-3≥0?(k+1)(k-3)≥0?k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f(n)=(2n+7)?3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( )A.30B.26C.36D.6[答案] C[解析] 因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.9.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2、a3、a4,猜想an=( )A.2(n+1)2B.2n(n+1)C.22n-1D.22n-1[答案] B[解析] 由Sn=n2an知Sn+1=(n+1)2an+1∴Sn+1-Sn=(n+1)2an+1-n2an∴an+1=(n+1)2an+1-n2an∴an+1=nn+2an (n≥2).当n=2时,S2=4a2,又S2=a1+a2,∴a2=a13=13a3=24a2=16,a4=35a3=110.由a1=1,a2=13,a3=16,a4=110猜想an=2n(n+1),故选B.10.对于不等式n2+n≤n+1(n∈N+),某学生的证明过程如下:(1)当n=1时,12+1≤1+1,不等式成立.(2)假设n=k(k∈N+)时,不等式成立,即k2+k∴当n=k+1时,不等式成立,上述证法( )A.过程全都正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析] n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、题11.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为________.[答案] 当n=1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n=1时,左≥右,不等式成立,∵n∈N*,∴第一步的验证为n=1的情形.12.已知数列11×2,12×3,13×4,…,1n(n+1),通过计算得S1=12,S2=23,S3=34,由此可猜测Sn=________.[答案] nn+1[解析] 解法1:通过计算易得答案.解法2:Sn=11×2+12×3+13×4+…+1n(n+1)=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.13.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.[答案] 5[解析] 当n=1时,36+a3能被14整除的数为a=3或5,当a=3时且n=3时,310+35不能被14整除,故a=5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.(1)当n0=________时,左边=____________,右边=______________________;当n=k时,等式左边共有________________项,第(k-1)项是__________________.(2)假设n=k时命题成立,即_____________________________________成立.(3)当n=k+1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k;(k-1)[3(k-1)+1](2)1×4+2×7+3×10+…+k(3k+1)=k(k+1)2(3)1×4+2×7+…+(k+1)[3(k+1)+1]=(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1][解析] 由数学归纳法的法则易知.三、解答题15.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).[证明] ①n=1时,左边=12-22=-3,右边=-3,等式成立.②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1时,等式也成立.由①②得,等式对任何n∈N*都成立.16.求证:12+13+14+…+12n-1>n-22(n≥2).[证明] ①当n=2时,左=12>0=右,∴不等式成立.②假设当n=k(k≥2,k∈N*)时,不等式成立.即12+13+…+12k-1>k-22成立.那么n=k+1时,12+13+…+12k-1+12k-1+1+…+12k-1+2k-1>k-22+12k-1+1+...+12k>k-22+12k+12k+ (12)=k-22+2k-12k=(k+1)-22,∴当n=k+1时,不等式成立.据①②可知,不等式对一切n∈N*且n≥2时成立.17.在平面内有n条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n条直线将它们所在的平面分成n2+n+22个区域.[证明] (1)n=2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n=k(k≥2)时,k条直线将平面分成k2+k+22块不同的区域,命题成立.当n=k+1时,设其中的一条直线为l,其余k条直线将平面分成k2+k+22块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k+1段,每段都将它所在的区域分成两部分,故新增区域k+1块.从而k+1条直线将平面分成k2+k+22+k+1=(k+1)2+(k+1)+22块区域.所以n=k+1时命题也成立.由(1)(2)可知,原命题成立.18.(2021?衡水高二检测)试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n+2与n2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n=1时,21+2=4>n2=1,当n=2时,22+2=6>n2=4,当n=3时,23+2=10>n2=9,当n=4时,24+2=18>n2=16,由此可以猜想,2n+2>n2(n∈N*)成立下面用数学归纳法证明:(1)当n=1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n=2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2?2k+2=2(2k+2)-2>2?k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.感谢您的阅读,祝您生活愉快。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。

【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。

精选最新版高中数学单元测试试题-推理与证明专题考核题库完整版(含参考答案)

精选最新版高中数学单元测试试题-推理与证明专题考核题库完整版(含参考答案)

2019年高中数学单元测试试题 推理与证明专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( ) (A )()f x (B)()f x - (C) ()g x (D)()g x - (2010山东文10)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖_________________块.3.在计算“1223(1)n n ⨯+⨯+⋅⋅⋅++”时,某同学学到了如下一种方法:先改写第k 项:1(1)[(1)(2)(1)(1)],3k k k k k k k k +=++--+由此得112(123012),3⨯=⨯⨯-⨯⨯123(234123),3⨯=⨯⨯-⨯⨯…1(1)[(1)(2)(1)(1)].3n n n n n n n n +=++--+相加,得11223(1)(1)(2).3n n n n n ⨯+⨯+⋅⋅⋅++=++类比上述方法,请你计算“123234(1)(2)n n n ⨯⨯+⨯⨯+⋅⋅⋅+++”,其结果为 ▲ .4.已知各项为正数的等比数列}{n b ,若m b a =,n b b =,)(n m >, 则m m n b +=,类比上述性质,得出在等差数列{}n a 中的相关性质,若s a m =,t a n =,)(n m >,则 .5.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为 .6.若ABC 的三边长分别为a, b, c ,其内切圆半径为r ,则S △ABC =12 (a+b+c )·r ,类比这一结论到空间,写出三棱锥中的一个正确结论为7.观察x x 2)(2=',344)(x x =',x x sin )(cos -=',由归纳推理可得:若定义在R 上的函数)(x f 满足)()(x f x f =-,记()g x 为)(x f 的导函数,则)(x g -与()g x 的关系是 ▲ .8.已知下列结论: ① 1x 、2x 都是正数⇔⎩⎨⎧>>+02121x x x x ,② 1x 、2x 、3x 都是正数⇔⎪⎩⎪⎨⎧>>++>++000321133221321x x x x x x x x x x x x ,则由①②猜想:1x 、2x 、3x 、4x 都是正数⇔9.下列不等式:121⋅≥2111⋅,⎪⎭⎫ ⎝⎛+⋅31131≥⎪⎭⎫⎝⎛+⋅412121 ,⎪⎭⎫ ⎝⎛++⋅5131141≥⎪⎭⎫⎝⎛++⋅61412131,…,由此猜测第1+n 个不等式为 ▲ (*n N ∈) 10.用反证法证明结论“a ,b ,c 至少有一个是正数”时,应假设 ▲ .11.二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W = ▲ .12.观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n ≥3,n ∈N *时,= (﹣)×.(3分)13.如图,将全体奇数排成一个三角形数阵,根据以上排列规律,数阵中第(4)n n ≥行的从左到右的第4个数是 ▲ .14.用反证法证明命题“三角形的内角中至少有一个角不大于60”时应假设 ▲ . 15.整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第61个数对是 ▲ .04321>+++x x x x434232413121>+++++x x x x x x x x x x x x12340.x x x x >▲13 5 7 9 11 13 15 17 19 ………………16.用数学归纳法证明“当n 为正奇数时,nn y x +能被y x +整除”的第二步是__________.17.若三角形内切圆半径为r,三边长分别为a,b,c,则三角形面积S=21r(a+b+c),根据类比推理方法,若一个四面体的内切球半径为R,四个面的面积分别为4321,,,S S S S ,则四面体的体积V=__________三、解答题18.(本小题满分10分)如图,圆周上有n 个固定点,分别为A 1,A 2,…,A n (n *∈N ,n ≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n . (1)写出a 2,a 3,a 4的值;(2)写出a n 的表达式,并用数学归纳法证明.19.已知n x x f )2()(+=, 其中*N n ∈.(1)若展开式中含3x 项的系数为14, 求n 的值;(2)当3=x 时, 求证:)(x f*)s N ∈的形式. (本小题满分15分)20.试用两种方法证明: (1);(2).(15分)21.设n ∈*N 且2n ≥,证明:()22221212n n a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+()1232n a a a a ⎡+++⋅⋅⋅+⎣()234n a a a a +++⋅⋅⋅++⋅⋅⋅]1n n a a -+.A A证明:(1)当2n =时,有()2221212122a a a a a a +=++,命题成立. ………2分 (2)假设当(2)n k k =≥时,命题成立,即()22221212k k a a a a a a ++⋅⋅⋅+=++⋅⋅⋅+()1232k a a a a ⎡+++⋅⋅⋅+⎣()234k a a a a +++⋅⋅⋅+ +⋅⋅⋅]1k k a a -+成立, ………4分 那么,当1n k =+时,有()2121k k a a a a +++⋅⋅⋅++ ()()221212112k k k k a a a a a a a a ++=++⋅⋅⋅++++⋅⋅⋅++22212k a a a =++⋅⋅⋅+()1232k a a a a ⎡+++⋅⋅⋅+⎣()234k a a a a +++⋅⋅⋅++⋅⋅⋅]1k k a a -+ (12a +2a ++⋅⋅⋅)211k k k a a a ++++.2222121k k a a a a +=++⋅⋅⋅++()12312k k a a a a a +⎡+++⋅⋅⋅++⎣+(234a a a ++⋅⋅⋅k a +)1k a ++ +⋅⋅⋅ ]1k k a a ++.所以当1n k =+时,命题也成立. ………8分根据(1)和(2),可知结论对任意的n ∈*N 且2n ≥都成立. ………10分22.在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立. 本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n nn a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n n n a n λ=-+.(Ⅱ)23.已知等比数列{}n a 的首项12a =,公比3q =,n S 是它的前n 项和.求证:131n n S n S n++≤.(江苏省南京市2011届高三第一次模拟考试) 24.观察下面运算结果:22393941641624,24,3,3,441122223333+=⨯=+=⨯=+=⨯=,,525525554444+=⨯=,,…,根据这些运算结果,归纳出一个关于正整数n 的等式,这个等式为________________25.已知,m n 是正数,证明:33m n n m+≥22m n +.26. 已知各项均为整数的等比数列{}n a ,公比q>1,且满足a 2a 4=64,a 3+2是a 2,a 4的等差中项。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。

高中数学推理与证明测试题及答案

高中数学推理与证明测试题及答案

高中数学推理与证明测试题及答案高二数学推理与证明苏教版【本讲教育信息】一. 教学内容:推理与证明二. 本周教学目标:1. 结合已经学过的数学实例和生活实例,了解合情推理,能利用归纳和类比等方法进行简单的推理,体会并认识合情推理在数学中的作用。

2. 结合已经学过的数学实例和生活实例,了解演绎推理的重要性,掌握演绎推理的模式,并能运用它们进行一些简单的推理。

3. 了解直接证明的两种基本方法分析法与综合法;了解间接证明的一种基本方法反证法。

三. 本周知识要点:(一)合情推理与演绎推理1. 归纳推理与类比推理(1)已知数列的通项公式,记,试通过计算的值,推测出的值。

(2)若数列为等差数列,且,则。

现已知数列为等比数列,且,类比以上结论,可得到什么结论?你能说明结论的正确性吗?【学生讨论:】(学生讨论结果预测如下)(1)由此猜想,(2)结论:证明:设等比数列的公比为,则,所以所以如(1)是从个别事实中推演出一般结论,像这样的推理通常称为归纳推理。

如(2)是根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理。

说明:(1)归纳推理是由部分到整体,从特殊到一般的推理。

通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。

(2)归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质。

②从已知的相同性质中推出一个明确表述的一般命题(猜想)。

(3)类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。

类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

(4)类比推理的一般步骤:①找出两类事物之间的相似性或者一致性。

②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。

2. 演绎推理现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它们的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树。

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。

通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。

在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。

下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。

练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。

假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。

然后,我们需要证明当n=k+1时,等式也成立。

即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。

根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。

我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。

将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。

由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。

化简该式子: k(k + 1) + 2(k+1)。

再进一步化简: (k+1)(k + 2) / 2。

可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。

因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。

练习题二:证明:对于任意正整数n,2^n > n^2。

答案二:同样使用数学归纳法进行证明。

首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。

假设当n=k时,2^k > k^2 成立。

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)

高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。

高中数学《数学归纳法》同步检测试卷与答案解析

高中数学《数学归纳法》同步检测试卷与答案解析

选择性必修二《4.4 数学归纳法》同步检测试卷注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+d 时,假设当n =k 时,公式成立,则S k =( ) A .a 1+(k -1)d B .C .ka 1+d D .(k +1)a 1+ d 2.已知f(n)=,则( ) A .f(n)中共有n 项,当n =2时,f(2)=+ B .f(n)中共有n +1项,当n =2时,f(2)=++ C .f(n)中共有n 2-n 项,当n =2时,f(2)=+ D .f(n)中共有n 2-n +1项,当n =2时,f(2)=++ 3.用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f(n)=n +(n +1)+(n +2)+…+(3n -2),则f(k +1)-f(k)等于( ) A .3k -1 B .3k +1 C .8k D .9k 4.证明等式12+22+32+…+n 2=(n ∈N *)时,某学生的证明过程如下:①当n =1时,12=,等式成立; ②假设n =k(k ∈N *)时,等式成立, 即12+22+32+…+k 2=,则当n =k +1时,12+22+32+…+k 2+(k +1)2(1)2n n -1()2k k a a +(1)2k k -(1)2k k +2111112n n n n +++++12131213141213121314(1)(21)6n n n ++1236⨯⨯(1)(21)6k k k ++=+(k +1)2===,所以当n =k +1时,等式也成立,故原式成立. 那么上述证明( ) A .过程全都正确 B .当n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 5.已知1+2×3+3×32+4×33+…+n×3n -1=3n (na -b)+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =,b =c =B .a =b =c =C .a =0,b =c =D .不存在这样的a ,b ,c 6.用数学归纳法证明3n ≥n3(n ≥3,n ∈N*),第一步验证 ( ) A.n=1 B.n=2 C.n=3 D.n =47.利用数学归纳法证明不等式1+12+13+…+12n −1<n(n ≥2,n ∈N*)的过程中,由n=k 变到n=k+1时,左边增加了( )A.1项B.k 项C.2k-1项D.2k 项 8.观察下列式子:,,,…,则可归纳出小于( ) A .B .C .D .二、多选题9.一个与正整数n 有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时(1)(21)6k k k ++[](1)(21)6(1)6k k k k ++++2(1)2766k k k ⎡⎤+++⎣⎦()[](1)112(1)16k k k +++++⎡⎤⎣⎦12141414213122+<221151233++<222111712344+++<()2221111231n +++⋅⋅⋅++1nn +211n n -+211n n ++21nn +命题也成立,则下列说法正确的是( ) A.该命题对于n=6时命题成立 B.该命题对于所有的正偶数都成立 C.该命题何时成立与k 取值无关 D.以上答案都不对10.在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知匹丈,丈尺,若这一个月有天,记该女子这一个月中的第天所织布的尺数为,,对于数列、,下列选项中正确的为( ) A . B .是等比数列C .D .11.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )A .B .C .D .514=1=1030n n a 2n an b ={}n a {}n b 1058b b ={}n b 130105a b =357246209193a a a a a a ++=++{}n a 11a =21a =()*123,n n n a a a n n N --=+≥∈n n S nc 2111n n n n S a a a +++=+⋅12321n n a a a a a +++++=-1352121n n a a a a a -++++=-()1214n n n n c c a a π--+-=⋅12.用数学归纳法证明对任意的自然数都成立,则以下满足条件的的值为( ) A . B . C . D .三、填空题13.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真. 14.用数学归纳法证明“当n ∈N *时,求证:1+2+22+23+…+25n -1是31的倍数”时,当n =1时,原式为__________,从n =k 到n =k +1时需增添的项是________________. 16.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f(n)部分,则f(n)=1+.”证明第二步归纳递推时,用到f(k +1)=f(k)+________. 16.用数学归纳法证明1-12+13−14+…+12n−1−12n=1n+1+1n+2+…+12n时,第一步应验证的等式是;从“n=k”到“n=k+1”左边需增加的等式是. 四、解答题 17.设f(n)=1+++…+(n ∈N *). 求证:f(1)+f(2)+…+f(n -1)=n[f(n)-1](n≥2,n ∈N *).18.已知数列{a n }中,a 1=1,a n +1=(n ∈N *).(1)计算a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明.19.已知数列{a n }的各项均为正数,且满足a 1=1,a n +1=a n (4-a n ),n ∈N *.证明a n <a n +1<2(n ∈N *).20.平面内有n(n≥2)个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,记这n 个圆的交点个数为f(n),猜想f(n)的表达式,并用数学归纳法证明.20.已知f(n)=1+++++,-,n∈N *. (1)当n =1,2,3时,试比较f(n)与g(n)的大小关系; (2)猜想f(n)与g(n)的大小关系,并给出证明. 21.已知数列中,是的前项和且是与的等差中项,其中是21121n n nn ->++(),n k n k N ≥∈k 1234(1)2n n +12131n1n na a +1231231331431n()g n =32212n {}n a n S {}n a n n S 2a 2n na -a不为的常数. (1)求.(2)猜想的表达式,并用数学归纳法进行证明. 22.观察下列等式:......按照以上式子的规律:(1)写出第5个等式,并猜想第个等式;(2)用数学归纳法证明上述所猜想的第个等式成立.答案解析 一、单选题1.用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+d 时,假设当n =k 时,公式成立,则S k =( ) A .a 1+(k -1)d B . C .ka 1+ d D .(k +1)a 1+ d 【答案】C【解析】假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+d. 2.已知f(n)=,则( ) A .f(n)中共有n 项,当n =2时,f(2)=+ B .f(n)中共有n +1项,当n =2时,f(2)=++ 0123,,a a a n a 11=2349++=3456725++++=4567891049++++++=()*n n N∈()*n n N ∈(1)2n n -1()2k k a a +(1)2k k -(1)2k k +(1)2k k -2111112n n n n +++++1213121314C .f(n)中共有n 2-n 项,当n =2时,f(2)=+ D .f(n)中共有n 2-n +1项,当n =2时,f(2)=++ 【解析】选D 由f(n)可知,f(n)中共有n 2-n +1项,且n =2时,f(2)=++3.用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f(n)=n +(n +1)+(n +2)+…+(3n -2),则f(k +1)-f(k)等于( ) A .3k -1 B .3k +1 C .8k D .9k 【答案】C【解析】因为f(k)=k +(k +1)+(k +2)+…+(3k -2),f(k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1),则f(k +1)-f(k)=3k -1+3k +3k +1-k =8k.4.证明等式12+22+32+…+n 2=(n ∈N *)时,某学生的证明过程如下:①当n =1时,12=,等式成立; ②假设n =k(k ∈N *)时,等式成立, 即12+22+32+…+k 2=,则当n =k +1时,12+22+32+…+k 2+(k +1)2=+(k +1)2===,所以当n =k +1时,等式也成立,故原式成立. 那么上述证明( ) A .过程全都正确 B .当n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确1213121314121314(1)(21)6n n n ++1236⨯⨯(1)(21)6k k k ++(1)(21)6k k k ++[](1)(21)6(1)6k k k k ++++2(1)2766k k k ⎡⎤+++⎣⎦()[](1)112(1)16k k k +++++⎡⎤⎣⎦【答案】A【解析】通过对上述证明的分析验证知全都正确,故选A. 5.已知1+2×3+3×32+4×33+…+n×3n -1=3n (na -b)+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( ) A .a =,b =c = B .a =b =c = C .a =0,b =c = D .不存在这样的a ,b ,c 【答案】A【解析】令n =1,2,3,得 即 解得a =,b =,c =. 6.用数学归纳法证明3n ≥n3(n ≥3,n ∈N*),第一步验证 ( ) A.n=1 B.n=2 C.n=3 D.n=4 【答案】C【解析】由题知,n 的最小值为3,所以第一步验证n=3时不等式是否成立.7.利用数学归纳法证明不等式1+12+13+…+12n −1<n(n ≥2,n ∈N*)的过程中,由n=k 变到n=k+1时,左边增加了( )A.1项B.k 项C.2k-1项D.2k 项 【答案】D【解析】当n=k 时,不等式左边的最后一项为12k −1,而当n=k+1时,最后一项为12k+1−1=12k −1+2k,并且不等式左边和式每一项分母的变化规律是每一项比前一项加1,故增加了2k项.8.观察下列式子:,,,…,则可归纳出小于( ) 1214141422313(),1233(2),123333(3),a b c a b c a b c =-+⎧⎪+⨯=-+⎨⎪+⨯+⨯=-+⎩331,1897,812734,a b c a b c a b c -+=⎧⎪-+=⎨⎪-+=⎩121414213122+<221151233++<222111712344+++<()2221111231n +++⋅⋅⋅++A .B .C .D .【答案】C【解析】由已知式子可知所猜测分式的分母为,分子第个正奇数,即,.故选:C. 二、多选题9.一个与正整数n 有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则下列说法正确的是( ) A.该命题对于n=6时命题成立 B.该命题对于所有的正偶数都成立 C.该命题何时成立与k 取值无关 D.以上答案都不对 【答案】AB【解析】由n=k 时命题成立可以推出n=k+2时命题也成立,且n=2时,命题成立,故对所有的正偶数都成立.故选AB.10.在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知匹丈,丈尺,若这一个月有天,记该女子这一个月中的第天所织布的尺数为,,对于数列、,下列选项中正确的为( ) A . B .是等比数列C .D .【答案】BD【解析】由题意可知,数列为等差数列,设数列的公差为,,1n n +211n n -+211n n ++21nn +1n +1n +21n ()2221112112311n n n ++++⋅⋅⋅+<++∴514=1=1030n n a 2n an b ={}n a {}n b 1058b b ={}n b 130105a b =357246209193a a a a a a ++=++{}n a {}n a d 15a =由题意可得,解得,,,(非零常数),则数列是等比数列,选项正确;,,,选项错误; ,,选项错误;,, 所以,,选项正确.故选:BD11.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )A .B .C .D .【答案】ABD130********da ⨯+=1629d =116129(1)29n n a a n d +∴=+-=2na nb =1112222n n n n a a a d n a n b b ++-+∴==={}n b B 16805532929d =⨯=≠()553105222dd b b ==≠1058b b ∴≠A 3012951621a a d =+=+=2113052105a b ∴=⨯>C 41161933532929a a d =+=+⨯=51162094542929a a d =+=+⨯=357552464432093193a a a a a a a a a a ++===++D {}n a 11a =21a =()*123,n n n a a a n n N --=+≥∈n n S nc 2111n n n n S a a a +++=+⋅12321n n a a a a a +++++=-1352121n n a a a a a -++++=-()1214n n n n c c a a π--+-=⋅【解析】对于A 选项,因为斐波那契数列总满足,所以,, ,类似的有,,累加得,由题知,故选项A 正确,对于B 选项,因为,,, 类似的有, 累加得,故选项B 正确,对于C 选项,因为,,, 类似的有, 累加得,故选项C 错误,对于D 选项,可知扇形面积,故,故选项D 正确,故选:ABD.12.用数学归纳法证明对任意的自然数都成立,则以下满足条件的的值为( ) A .B .C .D .()*123,n n n a a a n n N--=+≥∈2121a a a =()22222312321a a a a a a a a a a ==-=-()23333423432a a a a a a a a a a ==-=-()21111n n n n n n n n n n a a a a a a a a a a +-+-==-=-22221231n n n a a a a a a +++++=⋅222222112311211n n n n n n n n S a a a a a a a a a a ++++++=+++++=⋅=+⋅11a a =231a a a =-342a a a =-11n n n a a a +-=-123122++1n n n n a a a a a a a a ++++=+-=-11a a =342a a a =-564a a a =-21222n n n a a a --=-13211222++n n n a a a a a a a -+=+-=24nn a c π⋅=()()2222111124444n n n n n n n n c c a a a a a a ππππ+----⎛⎫-=-=-=⋅ ⎪⎝⎭⋅⋅21121n n nn ->++(),n k n k N ≥∈k 1234【答案】CD【解析】取,则,不成立; 取,则,不成立; 取,则,成立; 取,则,成立; 下证:当时,成立.当,则,成立; 设当时,有成立, 则当时,有, 令,则,因为,故,因为,所以, 所以当时,不等式也成立,由数学归纳法可知,对任意的都成立.故选:CD. 三、填空题13.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.1n =2111,21312n n n n -==++21121n n nn ->++2n =2132,21513n n n n -==++21121n n nn ->++3n =2173,21914n n n n -==++21121n n nn ->++4n =21154,211715n n n n -==++21121n n nn ->++3n ≥21121n n nn ->++3n =2173,21914n n n n -==++21121n n nn ->++()3n k k =≥21211k k kk ->++1n k =+11213121212121321k k k k k k ++-+-+=-+++2121k k t -=+1121318=32133k k t t t ++-+=-+++1k t k >+11218413214331k k k k k k ++-+>-=++++()()411210432432k k k k k k k ++--=>++++()1121112121+1k k k k k k ++-++>=+++1n k =+21121n n n n ->++3n ≥【答案】2k +1【解析】∵n 为正奇数,且与2k -1相邻的下一个奇数是2k +1,∴需证n =2k +1时,命题成立.14.用数学归纳法证明“当n ∈N *时,求证:1+2+22+23+…+25n -1是31的倍数”时,当n =1时,原式为__________,从n =k 到n =k +1时需增添的项是________________. 【答案】1+2+22+23+2425k+25k +1+25k +2+25k +3+25k +4【解析】当n =1时,原式应加到25×1-1=24,所以原式为1+2+22+23+24, 从n =k 到n =k +1时需添25k+25k +1+…+25(k +1)-1.16.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f(n)部分,则f(n)=1+.”证明第二步归纳递推时,用到f(k +1)=f(k)+________. 【答案】k +1 【解析】f(k)=1+, f(k +1)=1+,∴f(k +1)-f(k) = =k +1,∴f(k +1)=f(k)+(k +1). 16.用数学归纳法证明1-12+13−14+…+12n−1−12n=1n+1+1n+2+…+12n时,第一步应验证的等式是 ;从“n=k”到“n=k+1”左边需增加的等式是 . 【答案】1-12=1212k+1−12(k+1) 【解析】当n=1时,应当验证的第一个式子是1-12=12,从“n=k”到“n=k+1”左边需增加的式子是12k+1−12(k+1). 四、解答题 17.设f(n)=1+++…+(n ∈N *). 求证:f(1)+f(2)+…+f(n -1)=n[f(n)-1](n≥2,n ∈N *). 【解析】当n =2时,左边=f(1)=1,(1)2n n +(1)2k k +(1)(2)2k k ++(1)(2)(1)1122k k k k +++⎡⎤⎡⎤+-+⎢⎥⎢⎥⎣⎦⎣⎦12131n右边=2×=1,左边=右边,等式成立. 假设n =k(k≥2,k ∈N *)时,等式成立,即 f(1)+f(2)+…+f(k -1)=k[f(k)-1], 那么,当n =k +1时,f(1)+f(2)+…+f(k -1)+f(k) =k[f(k)-1]+f(k) =(k +1)f(k)-k =(k +1)-k =(k +1)f(k +1)-(k +1) =(k +1)[f(k +1)-1], ∴当n =k +1时等式仍然成立.∴f(1)+f(2)+…+f(n -1)=n[f(n)-1](n≥2,n ∈N *). 18.已知数列{a n }中,a 1=1,a n +1=(n ∈N *). (1)计算a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明. 【解析】 (1)a 1=1,a 2==, a 3==,a 4==. (2)由(1)的计算猜想a n =. 下面用数学归纳法进行证明. ①当n =1时,a 1=1,猜想成立. ②假设当n =k 时,猜想成立,即a k =, 那么a k +1=,即当n =k +1时,猜想也成立. 根据①②可知,对任意n ∈N *都有a n =. 1112⎛⎫+- ⎪⎝⎭1(1)1f k k ⎡⎤+-⎢⎥+⎣⎦1n na a +111a a +12221a a +13331a a +141n1k111111k k a k a k k==+++1n19.已知数列{a n }的各项均为正数,且满足a 1=1,a n +1=a n (4-a n ),n ∈N *.证明a n <a n +1<2(n ∈N *).【解析】①当n =1时,a 1=1,a 2=a 1(4-a 1)=, ∴a 1<a 2<2,命题正确.②假设n =k 时,有a k <a k +1<2,则n =k +1时,a k +1-a k +2=a k (4-a k )-a k +1(4-a k +1)=2(a k -a k +1)-(a k -a k +1)·(a k +a k +1) =(a k -a k +1)(4-a k -a k +1). 而a k -a k +1<0,4-a k -a k +1>0, ∴a k +1-a k +2<0. 又a k +2=a k +1(4-a k +1)=[4-(a k +1-2)2]<2, ∴n =k +1时命题正确.由①②知,对一切n ∈N *都有a k <a k +1<2.20.平面内有n(n≥2)个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,记这n 个圆的交点个数为f(n),猜想f(n)的表达式,并用数学归纳法证明. 【解析】n =2时,f(2)=2=1×2, n =3时,f(3)=2+4=6=2×3, n =4时,f(4)=6+6=12=3×4, n =5时,f(5)=12+8=20=4×5, 猜想f(n)=n(n -1)(n≥2). 下面用数学归纳法给出证明:①当n =2时,f(2)=2=2×(2-1),猜想成立.②假设当n =k(k≥2,k ∈N *),时猜想成立,即f(k)=k(k -1),则n =k +1时,其中圆O 与其余k 个圆各有两个交点,而由假设知这k 个圆有f(k)个交点,所以这k +1个圆的交点个数f(k +1)=f(k)+2k =k(k -1)+2k =k 2+k =(k +1)[(k +1)-1],即n =k +1时猜想也成立. 由①②知:f(n)=n(n -1)(n≥2).12123212121212121220.已知f(n)=1+++++,-,n∈N *. (1)当n =1,2,3时,试比较f(n)与g(n)的大小关系; (2)猜想f(n)与g(n)的大小关系,并给出证明.【解析】(1)当n =1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n =2时,f(2)=,g(2)=,所以f(2)<g(2);当n =3时,f(3)=,g(3)=,所以f(3)<g(3). (2)由(1)猜想: f(n)≤g(n),用数学归纳法证明. ①当n =1,不等式显然成立.②假设当n =k(k∈N *)时不等式成立,即1+++++-, 则当n =k +1时,f(k +1)=f(k)+-+, 因为-=-=<0, 所以f(k +1)<-=g(k +1). 由①②可知,对一切n∈N *,都有f(n)≤g(n)成立. 21.已知数列中,是的前项和且是与的等差中项,其中是不为的常数. (1)求.(2)猜想的表达式,并用数学归纳法进行证明. 【解析】(1)由题意知:31231331431n()g n =32212n 9811825121631221631231331431k ≤32212k 31(1)k +≤32212k 31(1)k +22233111122(1)2(1)2(1)k k k k =-+-++++212(1)k +23112(1)k k ++332(1)k k ++212k 32312(1)k k k --+32212(1)k +{}n a n S {}n a n n S 2a 2n na -a 0123,,a a a n a 222n n S a na =-即,当时,,解得. 当时,,解得. 当时,,解得. (2)猜想: 证明:①当时,由(1)知等式成立. ②假设当时等式成立,即,则当时,又 则,,∴, 即所以 ,即当时,等式成立. 结合①②得对任意均成立.22.观察下列等式:......n n S a na =-1n =111S a a a ==-12a a =2n =21222S a a a a =+=-26a a =3n =312333S a a a a a =++=-312a a =()()*1n aa n N n n =∈+1n =()*1,n k k k N =≥∈()1k aa k k =+1n k =+n n S a na =-k k S a ka =-11k k S a ka ++=-()()1111k k k k k a S S a k a a ka +++=-=-+--()()1211k k a ak a ka k k k k ++==⨯=++()()()()112111k aaa k k k k +==+++++⎡⎤⎣⎦1n k =+()1n aa n n =+*n N ∈11=2349++=3456725++++=4567891049++++++=按照以上式子的规律:(1)写出第5个等式,并猜想第个等式;(2)用数学归纳法证明上述所猜想的第个等式成立.【解析】(1)第5个等式为.第个等式为,.(2)证明:①当时,等式左边,等式右边,所以等式成立. ②假设时,命题成立,即,则当时,,即时等式成立.根据①和②,可知对任意等式都成立.()*n n N∈()*n n N∈256789101112139++++++++=n 2(1)(2)(32)(21)n n n n n ++++++-=-*n N ∈1n =1=2(21)1=-=n k =2(1)(2)(32)(21)k k k k k ++++++-=-1n k =+(1)[(1)1][(1)2][3(1)2](1)(2)(3)(31)k k k k k k k k ++++++++++-=++++++++(1)(2)(32)(31)3(31)k k k k k k k k =++++++-+-+++-2222(21)84418(21)[2(1)1]k k k k k k k =-+=-++=+=+-1n k =+*n N ∈。

精选高中数学单元测试试题-推理与证明专题模拟考试题库(含参考答案)

精选高中数学单元测试试题-推理与证明专题模拟考试题库(含参考答案)

2019年高中数学单元测试试题推理与证明专题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊆/平面α,直线a≠⊂平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2.把下面在平面内成立的结论类比地推广到空间,结论还正确的是-----------------------------------()(A) 如果一条直线与两条平行线中的一条相交,则比与另一条相交.(B) 如果一条直线与两条平行线中的一条垂直,则比与另一条垂直.(C) 如果两条直线同时与第三条直线相交,则这两条直线相交.(D) 如果两条直线同时与第三条直线垂直,则这两条直线平行.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题3.用数学归纳法证明:(31)(1)(2)()2n nn n n n+++++++=*()n N∈的第二步中,当1n k=+时等式左边与n k=时的等式左边的差等于▲.4.把1,3,6,10,15,21,这些数叫做三角形数,这是因为这些数目的点可以排成5.观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出第(1,)n n n N *≥∈个不等式是 ▲ .6.观察下列等式:311=,33129+=,33312336++=,33331234100+++=,……猜想:3333123n +++⋅⋅⋅+= ▲ (n ∈*N ).7.已知结论:“在三边长都相等的ABC ∆中,若D 是BC 的中点,G 是ABC ∆外接圆的圆心,则2AG GD=”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD 中,若M 是BCD ∆的三边中线的交点,O 为四面体ABCD 外接球的球心,则AO OM= ▲ 8.已知 0(1,2,,)i a i n >=,考察下列式子: 111()1i a a ⋅≥; 121211()()()4ii a a a a ++≥; 123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 ▲ .9.若点O 在三角形ABC 内,则有结论S OBC ∆·+ S OAC ∆· +S OAB∆·= ,把命题类比推广到空间,若点O 在四面体ABCD 内,则有结论: .10.用反证法证明命题“),(*∈⋅Z b a b a 是偶数,那么a ,b 中至少有一个是偶数.”那么 反设的内容是 ;11.设面积为S 的平面四边形的第i 条边的边长记为a i (i =1,2,3,4),P 是该四边形内任意一点,P 点到第i 条边的距离记为h i ,若31241234a a a a k ====, 则412()i i S ih k ==∑.类比上述结论,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),Q 是该三棱锥内的任意一点,Q 点到第i 个面的距离记为H i ,则相应的正确命题是:若31241234S S S S k ====,则 .12.请阅读下列材料:若两个正实数12,a a 满足22121a a +=,那么12a a +≤.证明:构造函数2221212()()()22()1f x x a x a x a a x =-+-=-++,因为对一切实数x ,恒有()0f x ≥,所以0∆≤,从而得2124()80a a +-≤,所以12a a +≤.根据上述证明方法,若n 个正实数满足222121n a a a ++⋅⋅⋅+=时,你能得到的结论为 ▲ .(不必证明)13.观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是____________;2条直线相交, 3条直线相交, 4条直线相交,最多有1个交点 最多有3个交点 最多6个交点14.已知各项为正数的等比数列}{n b ,若m b a =,n b b =,)(n m >, 则m n b +=,类比上述性质,得出在等差数列{}n a 中的相关性质,若s a m =,t a n =,)(n m >,则 .15.若定义在区间D 上的函数()x f 对D 上的任意n 个值1x ,2x ,…,n x ,总满足()()()[]n x f x f x f n ++211≤⎪⎭⎫ ⎝⎛++n x x x f n 21,则称()x f 为D 上的凸函数.已知函数x y sin =在区间()π,0上是“凸函数”,则在△ABC 中,C B A sin sin sin ++的最大值是三、解答题16.>本题满分14分)17.已知a i >0(i=1,2,…,n ),考查 ①; ②; ③.(15分)归纳出对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法加以证明.18.已知数列}{n a 满足21=a ,)1(11+-=++n a a n n n 。

最新版精编高中数学单元测试试题-推理与证明专题完整题库(含答案)

最新版精编高中数学单元测试试题-推理与证明专题完整题库(含答案)

2019年高中数学单元测试试题 推理与证明专题(含答案)学校:__________ 考号:__________一、填空题1.由“若直角三角形两直角边长分别为a 、b ,则其外接圆半径r ” 类比可得“若三棱锥三条侧棱两两垂直, 侧棱长分别为a 、b 、c ,则其外接球半径r =_____________” .2.用数学归纳法证明: (31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于 ▲ .3.用数学归纳法证明“当n 为正奇数时,nn y x +能被y x +整除”的第二步是__________.4.观察下列等式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…从中可归纳得出第n 个等式是 .5. 在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为 .1:86.观察下列等式:332333233332123,1236,123410+=++=+++=,。

根据上述规律,第5个等式为 ▲7.观察下列恒等式:∵ ααααtan 2)tan 1(2tan 1tan 22--=-,∴ ααα2tan 2tan 1tan -=-ααα4tan 22tan 12tan -=-ααα8tan 24tan 14tan -=-由此可知:128tan18tan1616tan832tan464tan2128tanππππππ-++++ = .8.五位同学围成一圈依次循环报数,规定,第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为 ▲ .4 (江苏省泰州中学2011年3月高三调研) 9.观察下列等式:11,358,791127,1315171964,2123252729125,=+=++=+++=++++=由此猜测第n 个等式为 ▲ .10.观察不等式:1111212⋅⋅≥,11111(1)()33224++≥, 1111111(1)(),4353246⋅++++≥,由此猜测第n 个不等式为 ▲ .11.一个与自然数有关的命题,若()n k k N =∈时命题成立可以推出1n k =+时命题也成立.现已知10n =时该命题不成立,那么下列结论正确的是: ▲ (填上所有正确命题的序号)①11n =时该命题一定不成立; ②11n =时该命题一定成立; ③1n =时该命题一定不成立;④至少存在一个自然数0n ,使0n n =时该命题成立; ⑤该命题可能对所有自然数都不成立.12. 已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第30个数对是 .13.在平面几何里,有勾股定理:“设ABC ∆的两边AB 、AC 互相垂直,则222BC AC AB =+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学归纳推理测试题(有答案)选修2-22.1.1第1课时归纳推理一、选择题1.关于归纳推理,下列说法正确的是()A.归纳推理是一般到一般的推理B.归纳推理是一般到个别的推理C.归纳推理的结论一定是正确的D.归纳推理的结论是或然性的[答案] D[解析]归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.2.下列推理是归纳推理的是()A.A,B为定点,动点P满足|PA|+|PB|=2a|AB|,得P的轨迹为椭圆B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式C.由圆x2+y2=r2的面积r2,猜出椭圆x2a2+y2b2=1的面积S=abD.科学家利用鱼的沉浮原理制造潜艇[答案] B[解析]由归纳推理的定义知B是归纳推理,故应选B. 3.数列{an}:2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27[答案] B[解析]因为5-2=31,11-5=6=32,20-11=9=33,猜测x-20=34,47-x=35,推知x=32.故应选B.4.在数列{an}中,a1=0,an+1=2an+2,则猜想an是() A.2n-2-12B.2n-2C.2n-1+1D.2n+1-4[答案] B[解析]∵a1=0=21-2,a2=2a1+2=2=22-2,a3=2a2+2=4+2=6=23-2,a4=2a3+2=12+2=14=24-2,猜想an=2n-2.故应选B.5.某人为了观看2019年奥运会,从2019年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2019年将所有的存款及利息全部取回,则可取回的钱的总数(元)为()A.a(1+p)7B.a(1+p)8C.ap[(1+p)7-(1+p)]D.ap[(1+p)8-(1+p)][答案] D[解析]到2019年5月10日存款及利息为a(1+p).到2019年5月10日存款及利息为a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]到2019年5月10日存款及利息为a[(1+p)2+(1+p)](1+p)+a(1+p)=a[(1+p)3+(1+p)2+(1+p)]所以到2019年5月10日存款及利息为a[(1+p)7+(1+p)6+…+(1+p)]=a(1+p)[1-(1+p)7]1-(1+p)=ap[(1+p)8-(1+p)].故应选D.6.已知数列{an}的前n项和Sn=n2an(n2),而a1=1,通过计算a2,a3,a4,猜想an等于()A.2(n+1)2B.2n(n+1)C.22n-1D.22n-1[答案] B[解析]因为Sn=n2an,a1=1,所以S2=4a2=a1+a2a2=13=232,S3=9a3=a1+a2+a3a3=a1+a28=16=243,S4=16a4=a1+a2+a3+a4a4=a1+a2+a315=110=254.所以猜想an=2n(n+1),故应选B.7.n个连续自然数按规律排列下表:根据规律,从2019到2019箭头的方向依次为()A.B.C.D.[答案] C[解析]观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2019到2019为,故应选C. 8.(2019山东文,10)观察(x2)=2x,(x4)=4x3,(cosx)=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)[答案] D[解析]本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理的能力的考查.9.根据给出的数塔猜测1234569+7等于()19+2=11129+3=1111239+4=111112349+5=11111123459+6=111111A.1111110B.1111111C.1111112D.1111113[答案] B[解析]根据规律应为7个1,故应选B.10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是()A.27B.28C.29D.30[答案] B[解析]观察归纳可知第n个三角形数共有点数:1+2+3+4+…+n=n(n+1)2个,第七个三角形数为7(7+1)2=28.二、填空题11.观察下列由火柴杆拼成的一列图形中,第n个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.[答案]13,3n+1[解析]第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n +1根.12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.[答案]n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2[解析]第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:n+(n+1)+(n+2)+…+{n+[(2n-1)-1]}=(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.13.观察下图中各正方形图案,每条边上有n(n2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.[答案]S=4(n-1)(n2)[解析]每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S =12个.可见每条边上增加一个点,则S增加4,S与n的关系为S=4(n-1)(n2).14.(2009浙江理,15)观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,由以上等式推测到一个一般的结论:对于nN*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=__________________.[答案]24n-1+(-1)n22n-1[解析]本小题主要考查归纳推理的能力等式右端第一项指数3,7,11,15,…构成的数列通项公式为an =4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,右端=24n-1+(-1)n22n-1.三、解答题15.在△ABC中,不等式1A+1B+1C成立,在四边形ABCD中,不等式1A+1B+1C+1D成立,在五边形ABCDE中,不等式1A+1B+1C+1D+1E成立,猜想在n边形A1A2…An中,有怎样的不等式成立?[解析]根据已知特殊的数值:9、162、253,…,总结归纳出一般性的规律:n2(n-2)3).在n边形A1A2…An中:1A1+1A2+…+1Ann2(n-2)3).16.下图中(1)、(2)、(3)、(4)为四个平面图.数一数每个平面图各有多少个顶点?多少条边?它们围成了多少个区域?并将结果填入下表中.平面区域顶点数边数区域数(1)(2)(3)(4)(1)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?(2)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?[解析]各平面图形的顶点数、边数、区域数如下表:平面区域顶点数边数区域数关系(1) 3 3 2 3+2-3=2(2) 8 12 6 8+6-12=2(3) 6 9 5 6+5-9=2(4) 10 15 7 10+7-15=2结论V E F V+F-E=2推广999 E 999 E=999+999-2=2019其顶点数V,边数E,平面区域数F满足关系式V+F-E=2.故可猜想此平面图可能有2019条边.17.在一容器内装有浓度为r%的溶液a升,注入浓度为p%的溶液14a升,搅匀后再倒出溶液14a升,这叫一次操作,设第n次操作后容器内溶液的浓度为bn(每次注入的溶液浓度都是p%),计算b1、b2、b3,并归纳出bn的计算公式.[解析]b1=ar100+a4p100a+a4=110045r+15p,b2=ab1+a4p100a+a4=1100452r+15p+452p.b3=ab2+a4p100a+a4=1100453r+15p+452p+4253P,归纳得bn=110045nr+15p+452p+…+4n-15nP.18.设f(n)=n2+n+41,nN+,计算f(1),f(2),f(3),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想是否正确.[解析]f(1)=12+1+41=43,f(2)=22+2+41=47,f(3)=32+3+41=53,f(4)=42+4+41=61,f(5)=52+5+41=71,f(6)=62+6+41=83,f(7)=72+7+41=97,f(8)=82+8+41=113,f(9)=92+9+41=131,f(10)=102+10+41=151.由于43、47、53、61、71、83、97、113、131、151都为质数.即:当n取任何非负整数时f(n)=n2+n+41的值为质数.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

但是当n=40时,f(40)=402+40+41=1681为合数.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

相关文档
最新文档