广东省深圳市七年级下数学期末考试
深圳市七年级下学期期末数学试题及答案
深圳市七年级下学期期末数学试题及答案一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 3.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 94.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .5.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩ 6.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 4 7.计算28+(-2)8所得的结果是( ) A .0B .216C .48D .29 8.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 9.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252710.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m > 二、填空题 11.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________.12.计算:312-⎛⎫ ⎪⎝⎭= . 13.已知2m+5n ﹣3=0,则4m ×32n 的值为____ 14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.18.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.三、解答题21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )24.解方程组:41325x y x y +=⎧⎨-=⎩. 25.(类比学习) 小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .27.已知有理数,x y 满足:1x y -=,且221xy ,求22x xy y ++的值. 28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.3.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.4.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.6.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.7.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.8.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A 、a 8÷a 2=a 4不正确;B 、(-m )2·(-m 3)=-m 5 正确;C 、x 3+x 3=x 6合并得2x 3,故本选项错误;D 、(a 3)3=a 9,不正确.故选B .【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.A 解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①② 解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题11.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.13.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.14.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°,∴∠BAD =60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.18.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.19.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.23.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-;(3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.24.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.25.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----,∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.28.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。
广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)
广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×1083.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a54.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是次多项式.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.若a+b=3,ab=2,则a2+b2=.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有.(填序号)三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1534亿有12位,所以可以确定n=12﹣1=11.【解答】解:1534亿=1543 0000 0000=1.534×1011,故选:B.3.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a3+a2无法计算,故此选项错误;B、a8÷a4=a4,故此选项错误;C、(a4)2=a8,正确;D、(﹣a)3(﹣a)2=﹣a5,故此选项错误;故选:C.4.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.【考点】整式的除法;零指数幂;负整数指数幂.【分析】分别利用整式的除法运算法则以及零指数幂的性质和负整数指数的幂的性质分别化简求出答案.【解答】解:A、3a3÷2a=a2,故此选项错误;B、﹣0.00010=﹣1,(﹣9999)0=1,故此选项错误;C、3.14×10﹣3=0.00314,故此选项错误;D、(﹣)﹣2=9,正确.故选:D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°【考点】平行线的性质.【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【解答】解:如图,由题意可知BD∥CE,∴∠3=∠2=45°,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∴∠1=60°﹣∠3=15°,故选D.7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故选C.10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到5<AB<25,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选B.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.=AC•DF=×3×2=3,∴S△ACD故选A.12.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高【考点】函数的图象.【分析】根据景点门票价格情况图容易得出选项A、B、D错误,选项C正确;即可得出结论.【解答】解:根据题意得:当旅游人数不超过50人时,则门票价格为80元/人;当旅游人数为50﹣100时,门票价格都是70元/人;若两个班级都是40名学生,则两个班联合起来购票为70元/人,比分别购票要便宜;∵99×70>101×60,∴当人数增多时,虽然门票价格越来越低,但是购票总费用也不会越来越高;∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【考点】单项式乘多项式;多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.15.若a+b=3,ab=2,则a2+b2=5.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab,代入计算即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有①③④.(填序号)【考点】概率的意义.【分析】正十二面每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:没有6的面,所以①”6”朝上的概率是0,正确;②“5”朝上的概率=概率小,故②错误;③“0”朝上的概率=和“1”朝上的概率=一样大,正确;④“4”朝上的概率是.正确;故答案为:①③④三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=8x6y3÷6x3y2=x3y;(2)原式=1232﹣×=1232﹣1232+1=1;(3)原式=x2﹣3xy+4x2﹣y2﹣2x2+2xy+xy﹣y2=3x2﹣2y2,当x=﹣2,y=﹣时,原式=12﹣=11.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.【考点】平行线的判定与性质.【分析】求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.【解答】证明:∵BE、DF分别平分∠ABC、∠ADC,∴∠1=∠ABC,∠3=∠ADC(角平分线的定义),∵∠ABC=∠ADC,∴∠1=∠3(等量的代换),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥DC(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补)∴∠A=∠C(等量代换).20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?【考点】全等三角形的判定与性质.【分析】先求出AF=CE,再由平行线的性质得出∠A=∠C,由AAS证明△ADF≌△CBE,得出对应边相等即可.【解答】解:AD=BC,理由如下:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AD=BC.21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?【考点】函数关系式;函数值.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填空即可;(2)x张白纸黏合,需黏合(x﹣1)次,重叠5(x﹣1)cm,所以总长可以表示出来;(3)解当y=2016时得到的方程,若x为自变量取值范围内的值则能,反之不能.【解答】解:(1)75,180;(2)根据题意和所给图形可得出:y=40x﹣5(x﹣1)=35x+5.(3)不能.把y=2016代入y=35x+5,解得,不是整数,所以不能.22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.【考点】配方法的应用.【分析】(1)利用配方法把原式变形,根据非负数的性质解答;(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)m2+m+1==,所以m2+m+1的最小值是(2)4﹣x2+2x=﹣x2+2x﹣1+5=﹣(x﹣1)2+5≤5所以4﹣x2+2x的最大值是5.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)首先延长AD,与CG相交于点O、与BC的延长线相交于点Q,由(1)可证得∠ADG=∠BCG,继而可求得∠Q的度数,【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.第21页(共21页)。
深圳市七年级下学期期末数学试题题
深圳市七年级下学期期末数学试题题一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1072.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .44.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.-2的倒数是( ) A .-2B .12-C .12D .26.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-=7.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =18.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+59.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④10.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°11.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 12.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 13.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,214.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离15.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.已知方程22x a ax +=+的解为3x =,则a 的值为__________.18.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.19.已知单项式245225n m xy x y ++与是同类项,则m n =______.20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.21.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.22.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.23.如图,若12l l //,1x ∠=︒,则2∠=______.24.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 25.将520000用科学记数法表示为_____.26.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.27.A 学校有m 个学生,其中女生占45%,则男生人数为________. 28.4是_____的算术平方根. 29.3.6=_____________________′30.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.33.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数36.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动. 设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.37.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.4.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握6.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.7.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.8.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.解析:A【解析】【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.11.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A 、两边都加上3,等式仍成立,故本选项不符合题意.B 、两边都减去3,等式仍成立,故本选项不符合题意.C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意.故选:D .【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.12.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 13.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.14.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.15.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.二、填空题16.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.19.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.20.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.【详解】解:由题意可得,当n =26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.【详解】解:由题意可得,当n =26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C 运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 22.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.23.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.24.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.25.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.26.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.27.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】-,乘以总人数就是男生的人数.将男生占的比例:145%【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.28.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.29.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.30.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒ 72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.33.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动, ∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.34.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.。
深圳市人教版七年级下册数学期末测试题
深圳市人教版七年级下册数学期末测试题一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm2.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯3.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=105.下列式子是完全平方式的是( )A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣16.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CD D .若AD ∥BC ,则∠1=∠B7.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,98.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x aax +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是() A .1 B .3 C .4 D .69.若25a =,23b =,则232a b -等于( )A .2725 B .109 C .35 D .252710.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =()A .115°B .130°C .135°D .150°二、填空题11.若x +3y -4=0,则2x •8y =_________.12.如果9-mx +x 2是一个完全平方式,则m 的值为__________.13.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.14.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.15.计算:2m·3m=______. 16.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 17.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.18.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.22.先化简,再求值:(a -1)(2a +1)+(1+a )(1-a ),其中a =2.23.计算:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+(3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---24.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.25.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?26.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.27.因式分解:(1)3a x y y x ;(2)()222416x x +-.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A 、C 、D 不能构成三角形,错误B 中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B .【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110⨯;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误. 故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选B.【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.6.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.7.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C .【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.8.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.A 解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.二、填空题11.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y -4=0∴x+3y=4∴2x•8y=2x•(23)y =2x+3y =24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.12.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.13.15或22.5【分析】先由题意得出a,b的值,再推出射线AM绕点A顺时针先转动18秒后,AM转动至AM的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.14.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a ﹣b =2,∴4a2﹣b2=(2a+b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a +b =﹣3,2a ﹣b =2,∴4a 2﹣b 2=(2a +b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键. 15.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 16.6【分析】把代入已知方程可得关于a 的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a -2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12x y =⎧⎨=-⎩代入已知方程可得关于a 的方程,解方程即得答案. 【详解】解:把12x y =⎧⎨=-⎩代入方程ax +y =4,得a -2=4,解得:a =6. 故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.17.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键.18.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.19.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,∵245=2025,∴第2025个点在x 轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.三、解答题21.(1)m=﹣3,n=﹣5;(2)x3+5x2+8x+4=(x+1)(x+2)2.【解析】【分析】(1)根据x3﹣5x2+x+10=(x﹣2)(x2+mx+n),得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a =4,b =4,所以x 3+5x 2+8x+4=(x+1)(x 2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.22.a 2-a ,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a 的值代入化简后的式子计算即可.【详解】解:(a -1)(2a +1)+(1+a )(1-a )=2a 2-a -1+1-a 2= a 2-a ,当a =2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.23.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b ---()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.24.见解析【分析】由DF ∥AC ,得到∠BFD=∠A,再结合∠BFD=∠CED ,有等量代换得到∠A=∠CED ,从而可得DE ∥AB ,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF ∥AC ,∴∠BFD=∠A.∵∠BFD=∠CED ,∴∠A=∠CED.∴DE ∥AB ,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.25.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.26.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.27.(1)3xy a ;(2)()()2222x x -+.【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a xy x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.。
2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析
2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列四个实数中,是无理数的为()A.0B.C.﹣D.﹣22.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(3分)一粒米的质量约0.000022千克,数据0.000022用科学记数法表示为()A.0.22×10﹣4B.2.2×10﹣5C.22×10﹣4D.2.2×10﹣44.(3分)下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是05.(3分)△ABC中,∠A、∠B、∠C的对边分别记为a、b、c,由下列条件不能判定△ABC为直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a2:b2:c2=3:4:56.(3分)如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD7.(3分)已知长方形的周长为16cm,其中一边长为x cm,面积为y cm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)8.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为()A.20°B.25°C.22.5°D.30°9.(3分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.(3分)如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°二、填空题(本题共5小题,每小题3分,共15分)11.(3分).(填“>”、“<”或“=”)12.(3分)若a+b=3,ab=1,则a2+b2=.13.(3分)一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.14.(3分)如图,∠ABC=∠CAD=90°,AC=AD,若AB=2,则△BAD的面积为.15.(3分)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是cm.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2).17.(6分)先化简,再求值:(a﹣b)(a+b)﹣b(2a﹣b),其中a=2,b=3.18.(6分)如图,在方格纸中,△PQR的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(7分)如图,现有一个可以自由转动的转盘(转盘被等分成8个扇形),每个扇形区域内分别标有1,2,3,4,5,6,7,8这八个数字,转动转盘,停止转动后,指针指向的数字即为转出的数字,请回答下列问题:(1)转出的数字是1是,转出的数字是9是;(从“随机事件”,“必然事件”,“不可能事件”中选一个填空)(2)转动转盘,转出的数字是奇数的概率是.(3)现有两张分别写有2和5的卡片,随机转动转盘,转盘停止转动后,记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是.20.(8分)图中所示的是空军某部一架空中加油机给另一架正在飞行的战斗机进行空中加油的场景(加油机飞行不会消耗自身加油箱内的油),在加油过程中,设战斗机的油箱中的油量为Q1吨,加油机的加油箱中的油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油机的加油油箱中装载了吨油;这些油全部加给战斗机需分钟;(2)战斗机每分钟的飞行油耗是多少?(3)战斗机加完油后,加速飞行,加速后每分钟油耗为加油时的三倍,请问战斗机最多还能飞行多少分钟?21.(10分)如图,在△ABC中,点D是边AB上一点,点E是边AC的中点,作CF∥AB交DE延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠ABC=∠ACB,CE=3,CF=4,求DB的长.22.(10分)在四边形ABDE中,点C是BD边的中点,AB=2,ED=5,BD=6,AC平分∠BAE,EC平分∠AED.(1)如图1,若∠ACE=90°,则线段AE的长度为;(2)如图2,若∠ACE=120°,则线段AE的长度是多少?写出结论并证明;(3)若∠ACE=135°,其他条件不变,则线段AE的长度为.2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A.0是整数,属于有理数,故本选项不符合题意;B.是分数,属于有理数,故本选项不符合题意;C.﹣是分数,属于有理数,故本选项不合题意;D.﹣2是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、B、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据科学记数法的方法进行解题即可.【解答】解:0.000022=2.2×10﹣5.故选:B.【点评】本题主要考查了科学记数法,科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数.4.【分析】根据平方根的定义对A选项和C选项进行判断;根据算术平方根的定义对B选项进行判断;根据0的平方根为0和算术平方根为0对D选项进行判断.【解答】解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.【点评】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.也考查了平方根.5.【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A﹣∠B=∠C,∠A=90°,是直角三角形,不符合题意;B、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,是直角三角形,不符合题意;C、a2=c2﹣b2,a2+b2=c2,是直角三角形,不符合题意;D、∵设a2=3x,b2=4x,c2=5x,3x+4x≠5x,∴a2+b2≠c2,不是直角三角形,符合题意;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b 的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于180°.6.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选:D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为x cm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.8.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB,再根据等边对等角可得∠A=∠DBA,然后在Rt△ABC中,根据三角形的内角和列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,以及直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.9.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选:C.【点评】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.【分析】作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',推出四边形DEMN的周长最小时,点M与M'重合,点N与点N'重合,再求出∠DN'M+∠EM'N即可解决问题.【解答】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN=∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E =2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.【点评】本题考查轴对称﹣最短路线问题,解答中涉及两点之间线段最短,三角形内角和定理,三角形外角性质,等腰三角形的性质,能用一条线段表示出三条线段的和的最小值,并确定最小时M,N的位置是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.【分析】求出>2,不等式的两边都减1得出﹣1>1,不等式的两边都除以2即可得出答案.【解答】解:∵>2,∴﹣1>2﹣1,∴﹣1>1∴>.故答案为:>.【点评】本题考查了不等式的性质和实数的大小比较的应用,解此题的关键是求出的范围,题目比较好,难度不大.12.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=9﹣2=7.故答案为:7.【点评】本题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.13.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】过点D作DE⊥BA交BA的延长线于E,证△ABC和△DEA全等得AB=DE=2,再根据三角形的面积公式即可求出△BAD的面积.【解答】解:过点D作DE⊥BA交BA的延长线于E,如图所示:∵∠ABC=∠CAD=90°,∴∠ABC=∠DEA=90°,∠1+∠2=90°,∠C+∠2=90°,∴∠C=∠1,在△ABC和△DEA中,,∴△ABC≌△DEA(AAS),∴AB=DE=2,=AB•DE=×2×2=2.∴S△BAD故答案为:2.【点评】此题主要考查了全等三角形的判定和性质,三角形的面积,熟练掌握全等三角形的判定和性质是解决问题的关键,正确地作出辅助线构造全等三角形是解决问题的难点.15.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB===15cm,故答案为:15.【点评】本题考查了三棱柱的侧面展开图,两点之间线段最短,勾股定理,画出三棱柱的侧面展开图,运用勾股定理是解题关键.三、解答题(本大题共7小题,共55分)16.【分析】(1)利用同底数幂乘法及除法法则,幂的乘方与积的乘方法则计算即可;(2)利用零指数幂及二次根式的运算法则计算即可.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8;(2)原式=2﹣+1=+1.【点评】本题考查实数的运算及整式的混合运算,熟练掌握相关运算法则是解题的关键.17.【分析】利用整式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:(a+b)(a﹣b)﹣b(2a﹣b)=a2﹣b2﹣2ab+b2=a2﹣2ab,当a=2,b=3时,原式=22﹣2×2×3=4﹣12=﹣8.【点评】本题主要考查整式的混合运算—化简求值,解答的关键是对相应的运算法则的掌握.18.【分析】(1)过A作AE∥PQ,过E作EB∥PR,再顺次连接A、E、B,此题答案不唯一,符合要求即可;(2)△PQR面积是:×QR×PQ=6,连接BA,BA长为3,再连接AD、BD,三角形的面积也是6,但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:【点评】此题主要考查了作图,关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】(1)根据确定性事件和不确定性事件的概念判断可得;(2)转盘共有8种可能结果,奇数的结果有4种,由概率公式解答即可;(3)先求出第三条线段取值范围,再判断即可.【解答】解:(1)转出的数字是1是随机事件,转出的数字是9是不可能事件;故答案为:随机事件;不可能事件;(2)∵转盘转到每个数字的可能性相等,共有8种可能结果,奇数的结果有4种,∴转出的数字是奇数的概率是=,故答案为:;(3)①5﹣2=3,5+2=7,∴第三条线段可以是4,5,6,转动转盘停止后,指针指向的数字有8种情况,其中能构成三角形的有3种,所以这三条线段能构成三角形的概率是,故答案为:.【点评】本题主要考查了概率公式,随机事件,解题的关键是熟练掌握概率公式,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A 发生的概率为P(A)=且0≤P(A)≤1.20.【分析】(1)根据自变量的值求函数值,根据函数值求自变量值;(2)根据“耗油量÷时间=单位时间耗油量”计算;(3)根据“时间=油量÷单位时间耗油量”求解.【解答】解:(1)当t=0时,Q2=50,Q2=0时,t=20,故答案为:50,20;(2)∵战斗机在20分钟时间内,加油69﹣20=49吨,但加油飞机消耗了50吨,所以说20分钟内战斗机耗油量为1吨,∴战斗机每分钟耗油量为1÷20=0.05吨;(3)由(2)知战斗机每小时耗油量为0.05×3=0.15吨,∴69÷0.15=460(分钟),答:战斗机最多还能飞行460分钟.【点评】本题考查了一次函数的应用,理解数形结合思想是解题的关键.21.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵△ADE≌△CFE,CF=4,∴CF=AD=4,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=3,∴AC=2CE=6.∴AB=6,∴DB=AB﹣AD=6﹣4=2.【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)在AE上取一点F,使AF=AB,连接CF,即可以得出△ACB≌△ACF,就可以得出BC =FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等边三角形,就有FG=CF=3,进而得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等腰直角三角形,就有FG=CG=,进而得出结论.【解答】解:(1)如图1,在AE上取一点F,使AF=AB=2,连接CF,∵AC平分∠BAE,∴∠BAC=∠FAC,在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF,∵C是BD边的中点,∴BC=CD,∴CF=CD,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,∴∠ECF=∠ECD,在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED=5,∵AE=AF+EF,∴AE=2+5=7,故答案为:7;(2)AE=11,理由如下:如图2,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=120°,∴∠ACB+∠DCE=180°﹣120°=60°,∴∠ACF+∠ECG=60°,∴∠FCG=60°,∴△CFG是等边三角形,∴FG=CF=3,∴AE=2+3+5=10;(3)如图3,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=135°,∴∠ACB+∠DCE=180°﹣135°=45°,∴∠ACF+∠ECG=45°,∴∠FCG=90°,∴△CFG是等腰直角三角形,∴FG=CG=,∴AE=2++5=7+3.故答案为:7+3.【点评】本题考查了角平分线的定义的运用,全等三角形的判定及性质的运用,等边三角形的判定与性质的运用和等腰直角三角形的判定与性质的运用,解答时证明三角形全等是关键。
广东省深圳市2022-2023学年七年级下学期期末数学试题(A卷)(含答案)
2022—2023学年第二学期七年级学科素养测试数学(A 卷)说明:1.答卷前,请将学校、班级、姓名填写在答题卡指定位置上;请将试卷类型填涂在答题卡指定位置上;并核对条形码上自己的学校、姓名和考号,核对无误后,将条形码正向、准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。
2.全卷共8页,共24题。
考试时间100分钟,满分120分。
素养题选做,分值12分。
3.作答选择题时,选出每题答案后,用2B 铅笔把答案涂在答题卡上对应题目选项的相应的位置,务必涂黑,涂满格。
如有改动,请用橡皮擦干净后,再选涂其他答案;作答非选择题时,用黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
所有题目写在本试卷或者是草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中,计算结果为32的是( )A .B .C .D .2.在科幻小说《三体》中,制造太空电梯的材料是由科学家汪淼发明的一种超高强度纳米丝——“飞刃”,已知“飞刃”的直径为,用科学记数法表示为( )A .B .C .D .3.树的高度随时间的变化而变化,下列说法正确的是( )A .,都是常量B .是自变量,是因变量C .,都是自变量D .是自变量,是因变量4.如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.那么,图中的对顶角是()A .B .C .D .都不是5.如图,,,则()4(2)-5(2)-42520.0009dm 3910dm -⨯4910dm -⨯5910dm -⨯6910dm-⨯h t h t t h h t h t 1∠AOB ∠BOC ∠AOC ∠//AB DE 76E ∠=︒B C ∠+∠=A .B .C .D .6.如图所示,将长为8的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等.若要将其围成如图2所示的三棱柱形物体.则图中的值可以是()图1图2A .1B .2C .3D .47.下列计算正确的是()A .B .C .D .8.如图,为了测量学校的教学楼AB 的高度,在旗杆CD 与楼之间选定一点.测得视线PC 与地面夹角,测得视线PA 与地面夹角,量得米,米,则AB 的高度为()米.A .36B .46C .56D .109.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.那么水的高度是如何随时间变化的,请选择分别与①、②、③、④匹配的图象()图1图2A .(3)(2)(4)(1)B .(2)(3)(1)(4)C .(2)(3)(4)(1)D .(3)(2)(1)(4)10.已知,点是的重心,过顶点作一条直线平行于BC ,连接CD 并延长,交AB 于点,交直线于点,连接BD 并延长交AC 于点,则的面积与四边形AGDE 的面积之比为()114︒44︒38︒76︒a 2(32)32x x x +=+()23(2)12x y x x y ++=+5232824x y x y x y -÷=-()32226332x y x yxy x y xy-÷=-P 42DPC ∠=︒48APB ∠=︒10PB CD ==46DB =D ABC △A l E l F G AEF △A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)11.已知,则的余角的度数为_______°.12.已知变量x ,y 满足下面的关系x …012…y…36…则x 、y 之间用关系式表示为________.13.若,,则________.14.如图,在中,和的角平分线交于点,延长BO 与的外角平分线交于点,若,则________.15.如图,中,,,以点为圆心,BC 长为半径作弧;以点为圆心,AC 长为半径作弧,两弧相交于点,则的度数为_______.三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1);(2).17.先化简,再求值:,其中,.18.如图,已知,,.求证:.证明:∵,(已知),又∵______(______),∴______(______).∴______(______).∴(______).1:23:22:14:345A ∠=︒A ∠2-1-6-3-y =5m a =2n a =2m n a -=ABC △ABC ∠ACB ∠O ACB ∠D BOC x ∠=D ∠=ABC △23A ∠=︒57B ∠=︒A B D DBC ∠223(2023)1π-+--()324282a a a a a ⋅+-÷2()()()42x y y x x y y y ⎡⎤+-++-÷⎣⎦1x =-2y =12∠=∠34∠=∠B D ∠=∠//AD BC 12∠=∠34∠=∠2∠=1∠=//AB B DCG ∠=∠∵,(已知)∴.∴(______).四、解答题(二)(共3小题,每题9分,共27分)19.小明坐车到地游玩,他从家出发0.8小时后到达地,逗留一段时间后继续坐车到B 地.小明离家一段时间后,爸爸驾车沿相同的路线前往B 地.如图是他们离家路程与小明离家时间的关系图,请根据图象回答下列问题:(1)图中自变量是_______,因变量是_______;(2)小明出发_______小时后爸爸驾车出发;(3)小明从家到地的平均速度为_______,小明爸爸驾车的平均速度为_______;(4)小明爸爸出发多久后追上了小明?20.(1)若,,求的值.根据上面的解题思路与方法解决下列问题:(2)已知中,,分别以AC 、BC 边向外侧作正方形.如图所示,设,两正方形的面积和为20,求的面积.(3)若,求的值.21.如图,在中,是CA 延长线上的一点,点是AB 的中点.(1)利用尺规作图,在的内部作,使得,并在AM 上取一点,使B D ∠=∠DCG D ∠=∠//AD BC B A (km)s (h)t A km /h km /h 2a b -=1ab =22a b +ABC △90C ∠=︒6AD =ABC △(6)(2)1x x -+=22(6)(2)x x -++ABC △D E BAD ∠BAM ∠BAM B ∠=∠F,分别连接CE 、EF .(要求:在图中标明相应字母,保留作图痕迹,不写作法,写出作图小结)【温聚提醒:请考生在答题卡上作图后,用黑色水笔将作图痕迹描黑.】(2)求证:点C 、E 、F 三点在同一直线上.五、解答题(三)(共2小题,每题12分,共24分)22.已知关于的三次三项式及关于的二次三项式(,均为非零常数).(1)当为关于的三次三项式时,_______.(2)当多项式与的乘积中不含项时,________.(3)若写成(其中a ,b ,c ,d 均为常数),求的值.(4)若能被整除,求的值.23.【数学概念】平移,翻折,旋转是初中数学几何的三大全等变换,无论哪种变换都不会改变图形的形状和大小.【概念探索】在生活中,我们常用实物体验图形变换的过程.小明同学利用一块四边形纸片完成了如下的操作:如图1,已知四边形,,.图1图2图3(1)操作一:沿AC 所在的直线对折.(如图2)你认为左右两侧对折后能完全重合吗?如果能,请证明.如果不能,请说明理由.(2)操作二:对折后,将纸片撕成两个三角形(和),先固定,再将绕点顺时针旋转一定的角度(如图3所示)得到,连接、.求证:.【应用拓展】(3)如图4,在中,,,点在边BC 上,,点E ,F 在线段AD 上,,,若的面积为,求与的面积之和.图4AF BC =x 3221A x x =-+x 2B x mx n =++m n A B +x n =A B 4x m =3221A x x =-+32(1)(1)(1)A a x b x c x d =-+-+-+a b c ++B 1x -m n +ABCD AB AD =BC CD =ACB △ACD △ACB △ACD △A 'AC D △CD 'C B 'CD C B =ABC △AB AC =AB BC >D BD mCD =130AEB AFC ∠=∠=︒50BAC ∠=︒ABC △n ABE △CDF △六、素养题(选做题,共12分)假如你有12根手指在小时候,我们做加法运算会用手指一个一个掰着算.但是计算“”会发现手指不够用了,于是畅想自己如果有12根手指就好了.在中国文化中,“12”有广泛的应用.古代设有12地支,与一天的12个时辰对应.一个地支还对应两个节气,从而表示一年的二十四节气.同时,将地支与12种动物对应,成为十二生肖,来表示12年为周期的循环.我们发现,将各国的数字构造进行比较,与12也有一定关系.比如英文中,一到十二,这十二个数字是独立的,十三以后又有一个构成法,但与二十以后的数又不同.而法文与英文的构成法略有不同.数字123456789101112中文一二三四五六七八九十十一十二英文one two three four five six seven eight nine ten eleven twelve 法文un deux trois quatre cinqsixsepthuitneuf dix onzedouze数字131415161718192021中文十三十四十五十六十七十八十九二十二十一英文thirteen fourteenfifteen sixteenseventeen eighteen nineteen twenty Twenty-one 法文treizequatorze quinzeseizedix-septdix-huitdix-neufvingtvingt-un(1)(3分)请你观察表格的规律,并用三种语言表示数字28.中文英文法文28(2)(6分)英国人计数经常使用十二进制.十二进制数通常使用数字0—9以及字母t,e表示,其中即数字10,e 即数字11.我们熟知“九九乘法表”,现在我们帮助英国人设计一个与十二进制有关的“依依乘法表”(如下图表示部分)请试着填一填:=_______,=_______,=_______.123456789t e 1123456789t e 22468101214181t 33691013161920232629448101418202428303438551318212634394247…(3)(3分)爱尔兰小说《格列佛游记》里,有格列佛在小人国一顿吃了1728份小人饭的叙述,作者为什么要使用这么复杂的数字呢?许多研究者认为这与十二进制有关.对于右面的程序框图,若输入,,则输出的结果为________.57+t 1728a =12k =2022—2023学年第二学期七年级学科素养测试数学答案一、选择题(共10题,每题3分,共计30分)题号1题2题3题4题5题6题7题8题9题10题答案DBBADCCAAB二、填空题(共5题,每题3分,共计15分)11. 12. 13. 14. 15.或(答错或未答完整均不得分)三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1)解:原式 3分 4分(2)解:原式3分4分17.化简求值解:原式3分4分6分当,时 7分原式 8分18.(每空1分)如图,已知,,.求证:.45︒3x 252-90x -︒34︒80︒1119=+-19=666a a a =+-6a =()2222242y x x xy y y y =-+++-÷()22242xy y y y =+-÷2x y =+-1x =-2y =1=-12∠=∠34∠=∠B D ∠=∠//AD BC证明:∵,(已知),又∵(对顶角相等),∴(等量代换).∴(内错角相等,两直线平行).∴(两直线平行,同位角相等).∵,(已知)∴.∴(内错角相等,两直线平行).19.(1)自变量是小明离家的时间t1分因变量是离家的路程s 2分(2)2.53分(3) 7分(4)9分答:小明爸爸出发后追上了小明.20.(1)∵,,∴1分∴ 2分∴3分(2)设正方形ACGF 与正方形BCDE 的边长分别为,.由题意可得,4分∴ 6分(3)令,由题可知,7分12∠=∠34∠=∠24∠=∠13∠=∠//()AB CD CF 或B DCG ∠=∠B D ∠=∠DCG D ∠=∠//AD BC 15km /h 30km /h (3012) 1.512-÷=122h 30123=-2h 32a b -=1ab =2()4a b -=22ab =2224a b ab +-=226a b +=x y 6x y AD +==2220x y +=()222111()4222ABC S xy x y x y ⎡⎤==⨯+-+=⎣⎦△6x a -=2x b+=1ab =8a b +=,8分∴ 9分21.(1)如图所示3分如图所示即为所求 4分(2)证明:∵点是AB 的中点,∴, 5分∴在和中∴(SAS ) 7分∴,∵∴,∴点C 、E 、F 三点在同一直线上 9分22.(1) 2分(2)4分(3)当时,6分当时,∴ 8分(4)令∴∴,∴ 12分(其他方法酌情给分)23.(1)能够完全重合 1分证明:在与中∵,,∴(SSS)2()64a b +=22ab =22222(6)(2)()262x x a b a b ab -++=+=+-=E AE BE =AEF △BEC △AF BC FAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩AEF BEC ≌△△AEF BEC ∠=∠180BEC AEC ∠+∠=︒180AEF AEC ∠+∠=︒1-1x =1210d =-+=2x =1a b c d +++=1a b c ++=2(1)()x x a x mx n -+=++22(1)x a x a x mx n +--=++1m a =-n a =-1m n +=-ABC △ADC △AB AD =BC CD =AC AC =ABC ADC ≌△△所以对折后可以完全重合 4分(2)∵∴∴ 6分∵, ∴(SAS )∴8分(3)∵∴ 9分∴∵ ∴又∵,∴ ∴ 10分∴∵∴ 11分12分素养题:(1)二十八,twenty-eight ,vingt-huit 每空1分,3分(2)=t,=16,= 2e 每空2分,9分(3)100012分'C AD CAB∠=∠'C AD BAD CAB BAD ∠+∠=∠+∠'C AB CAD ∠=∠'C A CA =AB AD ='C AB CAD ≌△△'CD C B =130AFC ∠=︒18050CFD AFC ∠=-∠=︒50CAD ACF ∠+∠=︒50BAC BAD CAD ∠=∠+∠=︒BAD ACF∠=∠AEB AFC ∠=∠AB AC=(AAS)ABE CAF ≌△△ABE CAF S S =△△ABE CDF CAF CDF CAD S S S S S +=+=△△△△△BD mCD =:1:(1)CD BC m =+::1:(1)CAD ABC S S CD BC m ==+△△ABC S n=△1ABE CDF nS S m +=+△△。
广东省深圳市七年级下学期数学期末考试试卷
广东省深圳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共4题;共8分)1. (2分)(2020·甘肃) 下列各式中计算结果为的是()A .B .C .D .2. (2分) (2019七下·南县期末) 是下列哪个二元一次方程的解()A .B .C .D .3. (2分) (2016八上·东营期中) 若(x﹣5)(x+3)=x2+mx﹣15,则()A . m=8B . m=﹣8C . m=2D . m=﹣24. (2分) (2018八上·桐乡月考) 能够说明命题“若,则”是假命题的反例是()A .B .C .D .二、填空题 (共10题;共11分)5. (1分)(2019·婺城模拟) 某桑蚕丝的直径约为0.000016,将“0.000016米”用科学记数法可表示为________米.6. (1分)计算:4x(2x﹣y)=________.7. (1分) (2020八下·扬州期中) 使得关于x的不等式组有解,且使得关于y的分式方程有非负整数解的所有的m的和是________.8. (1分)若关于x的不等式(1﹣a)x>2可化为x>,则a的取值范围是________.9. (1分) (2019七下·富宁期中) 如图所示,AB交CD于O点,OA=OB,请你添加一个条件,使得△AOC≌△BOD,你添加的条件是________。
10. (1分)(2020·和平模拟) 计算的结果等于________.11. (1分)(2020·宜宾) 在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.12. (2分)已知甲、乙两人从相距18千米的两地同时出发,相向而行,1.8小时相遇.如果甲比乙先走小时,那么在乙出发后小时两人相遇.设甲、乙两人速度分别为每小时x千米和y千米,则x=________,y=________.13. (1分) (2020七下·阳信期末) 不等式组的解为________ 。
深圳市七年级下册数学全册单元期末试卷及答案-百度文库
深圳市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .22.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 3.下列图形可由平移得到的是( )A .B .C .D .4.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b5.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 36.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm7.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或15 9.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .10.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .二、填空题11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .12.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.13.若多项式x 2-kx +25是一个完全平方式,则k 的值是______. 14.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 15.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 16.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.17.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.18.分解因式:x 2﹣4x=__.19.已知2x +3y -5=0,则9x •27y 的值为______.20.计算:2m·3m=______. 三、解答题21.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .24.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --26.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.27.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.28.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 2.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D . 3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误. 故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.5.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.6.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.7.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.8.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.9.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.10.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.二、填空题【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.12.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.13.±10【解析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 14.9【分析】根据题意直接将 代入方程mx ﹣y =7得到关于m 的方程,解之可得答案.【详解】解:将 代入方程mx ﹣y =7,得:m ﹣2=7,解得m =9,故答案为:9.【点睛】本题主要考查二元解析:9【分析】根据题意直接将12x y =⎧⎨=⎩代入方程mx ﹣y =7得到关于m 的方程,解之可得答案. 【详解】解:将12x y =⎧⎨=⎩ 代入方程mx ﹣y =7,得:m ﹣2=7, 解得m =9,故答案为:9.【点睛】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.15.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.17.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,541403276x y x y +=⎧⎨+=⎩, 故答案为:541403276x y x y +=⎧⎨+=⎩.此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.18.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).19.243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.22.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.23.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.24.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.27.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+= ()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.28.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)84788(1)4n n n n +--⎧⎨+--≥⎩< ①②由①得:12 n>19由②得:1202 n≤∴不等式组的解集是:11 1922≤<n20n为正整数,20,n∴=478158,m n∴=+=15820638.∴-⨯=答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.。
2023-2024学年广东省深圳市罗湖区七年级下学期期末数学试题
2023-2024学年广东省深圳市罗湖区七年级下学期期末数学试题1.我国古代数学的发展历史源远流长,在历代数学家的不懈探索中,诞生了很多伟大的数学发现.下列有关我国古代数学发现的图示中,不是..轴对称图形的是()A.B.C.D.2.下列图形中,和互为余角的是()A .B.C.D .3.下列计算正确的是()A.B .C.D .4.清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为米,用科学记数法表示为()米A.B.C.D .5.数学来源于生活,又服务于生活.以下四幅图中用数学原理解释不正确的是()A .图(1)两钉子就能固定木条这样做的道理是利用了两点确定一条直线B .图(2)人字梯中间一般会设计一根“拉杆”,这样做的道理是利用了三角形的稳定性C .图(3)体育课堂测量跳远的成绩是利用了垂线段最短D .图(4)一块三角形模具打碎为三块,只带编号为③的那一块碎片到商店去,就能配一块与原来一样的三角形模具是利用了三角形全等中的判别方法6.如图,在下面的四个盒子中,每个盒子里都有两根小棒,把其中的一根小棒用剪刀按图中所示的位置剪成两段,这两段小棒再与另一根小棒首尾相接,能够围成一个三角形的是()A.B.C.D.7.“6.18”购物狂欢节期间,深圳本土品牌“布先生”天猫旗舰店在平台推出优惠活动,对于标价超过500元的服饰先按标价减免50元再打六折,小张在该平台购买了标价元的服饰(),则应付款(元)与商品标价(元)的关系式为()A.B.C.D.8.在中,.用无刻度的直尺和圆规任内部作一个角,下列作法中不等于的是()A.B.C.D.9.如图,烧杯内液体表面与烧杯下底部平行,光线从液体中射向空气时发生折射,光线变成,点在射线上.若,,则的度数为()A.B.C.D.10.如图1,,,点P以每秒的速度从B点出发,沿路线运动,到D停止.如图2,反映的是的面积与点P运动时间x(秒)两个变量之间的关系,则梯形的面积为().A.72B.64C.48D.3611.计算:__________________.12.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么:(1+2i)(1﹣2i)=___.13.如图,是某公园的进口,是不同的出口,若小贤从处进入公园,随机选择出口离开公园,则恰好从北面的出口出来的概率为______.14.如图是某家具店出售的木椅的侧面图,其中,,,则的度数为______.15.如图,两个正方形边长分别为m,n,已知,,则阴影部分的面积为_______________.16.()计算()计算:17.先化简,再求值:其中.18.在一个不透明的盒子里装有黑、白两种颜色的球,这些球除颜色外都相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的部分统计数据:摸球的次数n10205010020040050010002000摸到白球的次数m4710284597127252498摸到白球的频率m0.4000.3500.2000.2800.2250.2430.2540.2520.249(1)小颖从盒子里随机摸出一只蓝球是(填序号)①必然事件②不可能事件③随机事件(2)摸到白球的概率的估计值是(精确到0.01);(3)某小组进行“用频率估计概率”的试验,符合问题(2)中结果的试验最有可能的是(填序号).①投掷一枚均匀的硬币,落到桌面上恰好是正面朝上.②在甲、乙、丙、丁四人中用抽签的方式产生一名幸运观众,正好抽到甲.③掷一个质地均匀的正方体骰子(面的点数分别为1到6),落地时面朝上点数“小于3”.(4)受上述摸球实验的启发,小刚为了估计边长为10的正方形二维码上黑色阴影部分的面积,他在纸片内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.65左右,则据此估计此二维码黑色阴影部分的面积为.19.如图①、图②、图③均是正方形网格,每个小正方形的顶点叫格点,图①、图②、图③的的顶点均在格点上.只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.以下所画图形的顶点均在格点上,且用实线涂描.(1)在图①中画出的边上的中线.(2)在图②中,画出一个与关于直线成轴对称的格点三角形.(3)在图③中,请在格点上找一点E,作,使得中一个角等于.20.填空,并在括号里注明理由:如图,已知,分别是射线,上的点.连接,,,其中平分,.(1)试说明;解:如图,∵(已知),∴()∵平分(已知),∴()∴()∴()(2)若,,直接写出的度数.解:°.21.阅读下列材料,根据材料回答下列问题材料一夏欢全家端午期间从井冈山出发自驾游匀速..行驶返回深圳(中途在一个服务区停留),右图是汽车行驶过程中距离深圳的路程y (千米)与汽车行驶的时间x (小时)之间的关系图.材料二课本67面排碳计算公式家居用电的二氧化碳排放量耗电量开私家车的二氧化碳排放量耗油量耗油量124n1011私家车二氧化碳排放量m27材料三一般情况下,新能源电动汽车的百公里耗电量左右一般情况下,燃油汽车的百公里耗油量左右根据以上材料解决下列问题(1)井冈山与深圳之间的距离为千米,返回途中在服务区逗留了小时.(2)表格中,;(3)若同样行驶x (百公里),记新能源电动汽车的二氧化碳排放量为(千克)、燃油汽车的二氧化碳排放量为(千克),直接写出与x (百公里)之间的关系式:,.(4)从井冈山驾车返回深圳时,新能源电动汽车比燃油车少减排千克碳排放.(备注:新能源电动汽车的碳排放量计算公式可参照材料二家居用电的二氧化碳排放量)22.在学习七下课本121页“三线合一”时罗老师在课堂上进行了探究式教学.(1)【问题原型】定理:等腰三角形顶角的角平分线、底边上的中线、底边上的高重合.如图,在中,平分.根据图形1用几何语言写出该定理①∵,平分,∴,;②在中,的周长为32,的周长为23,则的长为.(2)【问题提出】罗老师提出:当三角形的一条角平分线恰好也是这个三角形的中线时,这个三角形是等腰三角形吗?经过小组合作探究后罗老师发现了同学们有以下两种解题思路,请任选其中一种......,完成命题的证明.已知:在中,平分,且点D是的中点.求证:.方法一:如图2,延长到点E,使,连接.方法二:如图3,过点D分别作的垂线,垂足分别为E,F.(3)【拓展延伸】如图4,在中,平分,点E为中点,与相交于点F,过点B作交延长线于点H,设的面积分别为,若,试求的最大值.。
2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷及答案解析
2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.(3分)一个企业的log o(标志)代表着一种精神,一种企业文化.以下是深圳市四个公司的log o,其中是轴对称图形的是()A.B.C.D.2.(3分)华为近年来一直在努力自主研发核心领域,3月下旬,华为轮值董事长徐直军宣布完成了芯片14nm以上EDA工具国产化,年内将完成对其全面验证.14nm芯片即0.000000014m用科学记数法表示是()A.1.4×10﹣8m B.0.14×10﹣7m C.1.4×10﹣9m D.14×10﹣8m 3.(3分)某气象台预报“本市明天下雨的概率为90%”对此信息,下列说法正确的是()A.明天一定会下雨B.明天全市90%的地方在下雨C.明天90%的时间在下雨D.明天下雨的可能性比较大4.(3分)下列图形能够直观地解释(3b)2=9b2的是()A.B.C.D.5.(3分)如图,将两根同样的钢条AC和BD的中点O固定在一起,使其可以绕着O点自由转动,就做成了一个测量工件内径的工具.这时根据△OAB≌△OCD,CD的长就等于工件内槽的宽AB,这里判定△OAB≌△OCD的依据是()A.SAS B.ASA C.SSS D.AAS6.(3分)如图,以下条件不能判断AB∥CD的是()A.∠2=∠3B.∠1=∠2C.∠4=∠1+∠3D.∠ABC+∠BCD=180°7.(3分)下表是不同的海拔高度对应的大气压强的值,仔细分析表格中数据,下列说法中正确的是()海拔高度/m010002000300040005000600070008000大气压强/kpa101.290.780.070.761.353.947.241.336.0 A.当海拔高度为2000m时,大气压强为70.7kpaB.随着海拔高度的增加,大气压强越来越大C.海拔高度每增加1000m,大气压强减小的值是变化的D.珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强约为45kpa8.(3分)某同学做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.则下列结论不一定正确的是()A.EH=FH B.∠DEH=∠DFHC.EF垂直平分DH D.点E与点F关于直线DH对称9.(3分)如图,折线A﹣B﹣C﹣D是一条灌溉水渠,水渠从A村沿北偏东65°方向到B 村,从B村沿北偏西35°方向到C村,若从C村修建的水渠CD与AB方向一致,则∠DCB的大小为()A.30°B.65°C.80°D.100°10.(3分)如图,在正方形ABCD中,点E,F,G,H分别是正方形各边的中点,则下列结论不正确的是()A.△ABF≌△BCG B.AF∥CHC.AR=DQ D.阴影部分面积为正方形ABCD面积的二、填空题(本大题共7小题,每小题3分,共21分.)11.(3分)计算:=.12.(3分)如图,△ABC≌△DEF,则x+y=.13.(3分)若a m=2,a n=8,则a m+n=.14.(3分)如图,假设可以随意在两个完全相同的正方形拼成的图案中取点,那么这个点取在阴影部分的概率是.15.(3分)把两个同样大小的含30°角的三角尺像如图所示那样放置,其中M是AD与BC 的交点,若CM=4,则点M到AB的距离为.16.(3分)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,也被誉为“东方魔板”.如图把正方形ABCD木板分为7块,制作成七巧板,若正方形ABCD的边长为4,那么该七巧板中第④块图形的面积为.17.(3分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BD为△ABC的角平分线,过点C作CE⊥BD交BD的延长线于点E,若,则BD的长为.三、解答题(本大题共8小题,共69分.)18.(8分)计算:3a•a5+(2a2)3﹣a11÷a5.19.(8分)先化简,再求值:[(2x+y)2﹣(x﹣y)2]÷(﹣3x),其中x=2023,y=﹣1.20.(7分)某商场进行“6•18”促销活动,设计了如下两种摇奖方式:方式一:如图1,有一枚均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这个骰子掷出后,“6”朝上则获奖;方式二:如图2,一个均匀的转盘被等分成12份,分别标有1,2,3,4,5,6,7,8,9,10,11,12这12个数字.转动转盘,当转盘停止后,指针指向的数字为3的倍数则获奖.(1)若采用方式一,骰子掷出后,“5”朝上的概率为;(2)若采用方式二,当转盘停止后,指针指向的数字为“5”的概率为;(3)小明想增加获奖机会,应选择哪种摇奖方式?请通过相关计算,应用概率相关知识说明理由.21.(6分)如图,△ABC的三个顶点都在每个小正方形的边长为1个单位长度的网格格点上,请用无刻度直尺作图,并保留作图痕迹.(1)请以直线l为对称轴,画出与△ABC成轴对称的图形;(2)请在直线l上画出一个点P,使得PA+PB的值最小;(3)请画出边AC的垂直平分线.22.(8分)周末,小明与小杰相约到市图书馆参加阅读活动.他们同时从同一地点出发,小明先骑自行车行完部分路程然后再步行,小杰一直步行,结果他们同时到达图书馆.已知他们所走的路程s(km)与时间t(h)之间的关系图象如图所示.根据图象,回答如下问题:(1)点A表示的实际意义是;(2)小明骑自行车的速度是km/h;(3)小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是;(4)小明步行的路程是km.23.(10分)如图1,l1∥l2,直线l3分别交直线l1,l2于点A,B,点C,D分别为直线l1,l2上的点,且AC=BD,E,F是直线l3上不与点A,B重合的点,连接CE,DF.(1)请在图1中画出一个你设计的图形,并添加一个适当的条件:,使得△ACE 与△BDF全等,并说明理由;(2)如图2,连接AD,若AC=AD,∠CAB=55°,则∠ADB=.24.(10分)在学习《完全平方公式》时,某数学学习小组发现:已知a+b=5,ab=3,可以在不求a、b的值的情况下,求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab﹣2ab=(a+b)2﹣2ab=52﹣2×3=19.(1)若a+b=7,ab=6,则a2+b2=;(2)若m满足(8﹣m)(m﹣3)=3,求(8﹣m)2+(m﹣3)2的值,同样可以应用上述方法解决问题.具体操作如下:解:设8﹣m=a,m﹣3=b,则a+b=(8﹣m)+(m﹣3)=5,ab=(8﹣m)(m﹣3)=3,所以(8﹣m)2+(m﹣3)2=a2+b2=(a+b)2﹣2ab=52﹣2×3=19.请参照上述方法解决下列问题:若(3x﹣2)(10﹣3x)=6,求(3x﹣2)2+(10﹣3x)2的值;(3)如图,某校“园艺”社团在三面靠墙的空地上,用长12米的篱笆(不含墙AM,AD,DN)围成一个长方形花圃ABCD,花圃ABCD的面积为20平方米,其中墙AD足够长,墙AM⊥墙AD,墙DN⊥墙AD,AM=DN=1米.随着学校“园艺”社团成员的增加,学校在花圃ABCD旁分别以AB,CD边向外各扩建两个正方形花圃,以BC边向外扩建一个正方形花圃(如图所示虚线区域部分),请问新扩建花圃的总面积为_______平方米.25.(12分)【问题背景】△ABC中,∠ABC=90°,AB=BC,点D为直线BC上一点.【初步探究】(1)如图1,当点D在线段BC上时,连接AD,过点A作AE⊥AD于点A,且AD=AE,过点E作EH⊥AC于H点,交AB于F点.求证:EF=AC.请将证明过程补充完整:证明:∵AE⊥AD,∴∠EAD=90°即∠EAH+∠CAD=90°∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(),∴∠AEH=().∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°.在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°.在△AEF与△DAC中,∴△AEF≌△DAC,∴EF=AC().【推广探究】(2)如图2,若点D为边BC延长线上一点,其他条件不变,则(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.【拓展应用】(3)若AC=6,AH=2,其它条件不变时,EH=.2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.【分析】根据轴对称图形的定义(如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形)对四个选项进行分析.【解答】解:A、C、D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题主要考查了轴对称图形的定义,掌握定义是解答的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.000000014m=1.4×10﹣8m.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据概率的意义,即可解答.【解答】解:某气象台预报“本市明天下雨的概率为90%”,意思是:明天下雨的可能性比较大,故选:D.【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.4.【分析】利用正方形的面积求解方法证得即可.【解答】解:∵3b=b+b+b,∴(3b)2可看作是边长为3b的正方形的面积.故选:A.【点评】此题考查了积的乘方的实际意义.此题比较新颖,注意抓住面积的不同表示方法是解题的关键.5.【分析】已知两边和夹角相等,利用SAS可证两个三角形全等.【解答】解:在△OAB与△OCD中,,∴△OAB≌△ODC(SAS).故选:A.【点评】本题考查了三角形全等的应用;根据题目给出的条件,观察图中有哪些相等的边和角,然后判断所选方法是解决问题的关键.6.【分析】由平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可判断.【解答】解:A、∠2=∠3,由内错角相等,两直线平行,能判定AB∥CD,故A不符合题意;B、∠1=∠2,不能判定AB∥CD,故B符合题意;C、∠4=∠1+∠3,由同位角相等,两直线平行,能判定AB∥CD,故C不符合题意;D、∠ABC+∠BCD=180°,由同旁内角互补,两直线平行,能判定AB∥CD,故D不符合题意.故选:B.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法.7.【分析】根据表格中数据分别判断即可得出答案.【解答】解:A、当海拔高度为2000m时,大气压强为80.0kpa,故A选项不符合题意;B、随着海拔高度的增加,大气压强越来越小,故B选项不符合题意;C、海拔高度每增加1000m,大气压强减小的值是变化的,故C选项符合题意;D、珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强应该低于36.0kpa,故D选项不符合题意;故选:C.【点评】本题主要考查了函数的表示方法,以及正确读表,正确理解表中的变量的意义是解题的关键.8.【分析】证△DEH≌△DFH(SAS),得EH=FH,∠DEH=∠DFH,再由等腰三角形的性质得DH垂直平分EF,则点E与点F关于直线DH对称,即可得出结论.【解答】解:在△DEH和△DFH中,,∴△DEH≌△DFH(SAS),∴EH=FH,∠DEH=∠DFH,故选项A、B不符合题意;∵ED=FD,∠EDH=∠FDH,∴DH垂直平分EF,∴点E与点F关于直线DH对称,故选项C符合题意,选项D不符合题意;故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质以及轴对称等知识,熟练掌握全等三角形的判定与性质是解题的关键.9.【分析】根据方向角的定义以及平行线的性质进行计算即可.【解答】解:如图,由题意可知AB∥CD,AE∥BF,∴∠EAB+∠ABF=180°,∠DCB=∠ABC,∴∠DCB=∠ABC=180°﹣65°﹣35°=80°,故选:C.【点评】本题考查方向角,理解方向角的定义以及平行线的性质是正确解答的前提.10.【分析】根据正方形的性质得到AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD =90°,根据全等三角形的判定定理得到△ABF≌△BCG(SAS),故A正确;根据平行四边形的性质得到AF∥CH,故B正确;根据全等三角形的性质得到∠AED=∠DHC,得到∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,根据全等三角形的性质得到AR=DQ,故C正确,根据全等三角形的判定定理得到Rt△ADR≌Rt△DCQ(HL),求得DR=CQ,同理DQ=CP,得到QR=PQ,推出四边形ROPQ是正方形,设RQ=AR =DQ=a,得到DR=2a,根据勾股定理得到AD=a,根据正方形的面积公式得到阴影部分面积为正方形ABCD面积的,故D错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD=90°,∵点E,F,G,H分别是正方形各边的中点,∴,∴BF=CG,∴△ABF≌△BCG(SAS),故A正确;∵,∴AH=CF,∴四边形AFCH是平行四边形,∴AF∥CH,故B正确;∵点E,F,G,H分别是正方形各边的中点,∴AE=DH,∴△ADE≌△DCH(SAS),∴∠AED=∠DHC,∵∠AED+∠ADE=90°,∴∠DEC+∠ADE=90°,∴∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,∴△AER≌△DHQ(AAS),∴AR=DQ,故C正确,∴Rt△ADR≌Rt△DCQ(HL),∴DR=CQ,同理DQ=CP,∴QR=PQ,∵OR∥PQ,RQ∥OP,∴四边形ROPQ是正方形,设RQ=AR=DQ=a,∴DR=2a,∴AD=a,∴正方形ABCD的面积为5a2,正方形ROPQ的面积为a2,∴阴影部分面积为正方形ABCD面积的,故D错误,故选:D.【点评】本题考查了中点四边形,正方形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,正确地识别图形是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分.)11.【分析】先计算零指数幂、负整数指数幂,然后计算加法.【解答】解:=1+2=3.故答案为:3.【点评】本题主要考查了零指数幂、负整数指数幂,属于基础题,熟记运算法则即可.12.【分析】由全等三角形的性质,得到x=5,y=4,即可求出x+y的值.【解答】解:∵△ABC≌△DEF,∴BC=FE=5,DF=AC=4,∴x=5,y=4,∴x+y=5+4=9.故答案为:9.【点评】本题考查全等三角形的性质,关键是掌握全等三角形的性质:全等三角形的对应边相等.13.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.14.【分析】先设小正方形边长为a,求出阴影部分面积,再根据几何概率的求法即可得出答案.【解答】解:设小正方形边长为a,则阴影部分面积为2a2,图案总面积8a2﹣a2=7a2,因此这个点取在阴影部分的概率是=.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.【分析】先利用直角三角板性质求得∠CAM=∠DAB,根据角平分线性质可得点M到AB的距离等于点M到AC的距离,则可得结果.【解答】解:∵∠CAM=∠CAB﹣∠BAD=60°﹣30°,∴∠CAM=∠DAB=30°,∴点M到AB的距离等于点M到AC的距离,即点M到AB的距离等于CM的长为4.故答案为:4.【点评】此题主要是考查了角平分线的性质,能够熟练掌握角平分线上的点到角的两边距离相等是解答此题的关键.16.【分析】连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为1,即得答案.【解答】解:如图:连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为S正方形ABCD=×42=1,∴④块图形之一的正方形面积为2cm2.故答案为:2.【点评】本题考查了正方形的性质,将正方形分成16个面积相等的等腰直角三角形是解题的关键.17.【分析】延长CE交BA的延长线于点F,证△BAD≌△CAF(ASA),得BD=CF,再证∠BFC=∠BCF,得BC=BF,然后由等腰三角形的性质得FE=CE=,即可得出结论.【解答】解:如图,延长CE交BA的延长线于点F,∵∠BAC=90°,CE⊥BD,∴∠BAC=∠DEC,∵∠ADB=∠CDE,∴∠ABD=∠ACF,在△BAD和△CAF中,,∴△BAD≌△CAF(ASA),∴BD=CF,∵CE⊥DB,∴∠BEF=∠BEC=90°,∵BD平分∠ABC,∴∠FBE=∠CBE,∴∠BFC=∠BCF,∴BC=BF,∴FE=CE=,∴BD=CF=2CE=,故答案为:.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题(本大题共8小题,共69分.)18.【分析】先算单项式乘单项式,积的乘方,同底数幂的除法,再合并同类项即可.【解答】解:3a•a5+(2a2)3﹣a11÷a5=3a6+8a6﹣a6=10a6.【点评】本题主要考查单项式乘单项式,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握.19.【分析】先利用完全平方公式计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算,即可解答.【解答】解:[(2x+y)2﹣(x﹣y)2]÷(﹣3x)=(4x2+4xy+y2﹣x2+2xy﹣y2)÷(﹣3x)=(3x2+6xy)÷(﹣3x)=﹣x﹣2y,当x=2023,y=﹣1时,原式=﹣2023﹣2×(﹣1)=﹣2023+2=﹣2021.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)用数字5的面的个数除以总个数即可得;(2)根据概率公式即可得到结论;(3)分别计算两种方式获奖的概率,然后通过比较概率的大小进行判断.【解答】解:(1)“5”朝上的概率是;故答案为:;(2)指针指向的数字为“5”的概率为,故答案为:;(3)选择摇奖方式二.理由如下:标有数字5和6的都有5个面,面最多,选择摇奖方式一获奖的概率为,选择摇奖方式二获奖的概率为=,因为>,所以摇奖方式二获奖的机会大,选择摇奖方式二.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数21.【分析】(1)根据轴对称变换的性质找出对应点即可求解;(2)连接AB'交直线l于点P,则点P即为所求;(3)根据线段垂直平分线的性质结合网格,连接BD,则直线BD即为所求.【解答】解:(1)如图所示,△A'B'C即为所求;(2)如图所示,点P即为所求;(3)如图所示,直线BD即为所求.【点评】本题考查了轴对称变换的性质,线段垂直平分线的性质,熟练掌握轴对称变换的性质,线段垂直平分线的性质是解题的关键.22.【分析】(1)结合图象可得点A表示的实际意义;(2)根据小明骑自行车行0.2小时行驶3km可得答案;(3)根据小杰0.2小时步行1.2km可得答案;(4)根据“路程=速度×时间”可得答案.【解答】解:(1)由题意得,点A表示的实际意义是小明先骑自行车行行驶了0.2小时,路程为3千米.故答案为:小明先骑自行车行行驶了0.2小时,路程为3千米;(2)小明骑自行车的速度是:3÷0.2=15(km/h),故答案为:15;(3)小杰步行的速度为:1.2÷0.2=6(km/h),所以小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是s=6x(0<x ≤0.8),故答案为:s=6x(0<x≤0.8);(4)0.8×6﹣3=1.8(km),即小明步行的路程是1.8km.故答案为:1.8.【点评】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.23.【分析】(1)根据平行线的性质得到∠CAE=∠DBF,根据全等三角形的判定定理即可得到结论;(2)如图2,连接BC,根据平行四边形的判定和性质以及菱形的判定和性质定理即可得到结论.【解答】解:(1)添加一个适当的条件:AE=BF,理由:如图1,∵l1∥l2,∴∠CAE=∠DBF,在△ACE与△BDF中,,∴△ACE≌△BDF(SAS);故答案为:AE=BF;(2)如图2,连接BC,∵l1∥l2,即AC∥BD,∵AC=BD,∴四边形ACBD是平行四边形,∵AC=AD,∴四边形ACBD是菱形,∴∠DAB=∠CAB=∠ABD=55°,∴∠ADB=180°﹣55°﹣55°=70°.解法2:∵l1∥l2,∴∠CAB=∠ABD,∠CAD+∠BDA=180°,∵AC=BD,AC=AD,∴BD=AD,∴∠DAB=∠ABD,∵∠CAB=55°,∴∠ABD=∠BAD=55°,∴∠ADB=180°﹣110°=70°,故答案为:70°.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.24.【分析】(1)利用完全平方公式进行转化后代入计算可求解;(2)仿照题目中的例子利用完全平方公式计算可求解;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,结合长方形ABCD的面积可求出(2m+2)(12﹣2m)=40平方米,由(2m+2)+(12﹣2m)=14米,根据题干中的解决方法计算可求解.【解答】解:(1)∵a+b=7,ab=6,∴(a+b)2=49,∴a2+b2=(a+b)2﹣2ab=49﹣2×6=37,故答案为:37;(2)设3x﹣2=a,10﹣3x=b,则a+b=(3x﹣2)+(10﹣3x)=8,ab=(3x﹣2)(10﹣3x)=6,所以(3x﹣2)2+(10﹣3x)2=a2+b2=(a+b)2﹣2ab=82﹣2×6=52;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,=AB•BC=(m+1)(12﹣2m)=20平方米,∵S长方形ABCD∴(2m+2)(12﹣2m)=40平方米,∵(2m+2)+(12﹣2m)=14米,∴新扩建花圃的总面积为:4AB2+BC2=4(m+1)2+(12﹣2m)2=(2m+2)2+(12﹣2m)2=[(2m+2)+(12﹣2m)]2﹣2(2m+2)(12﹣2m)=142﹣2×40=116(平方米),故答案为:116.【点评】本题主要考查因式分解的应用,完全平方公式的几何背景,整式的运算,理解题目中的解题方法是解题的关键.25.【分析】【初步探究】(1)由直角三角形的性质及全等三角形的性质可得出结论;【推广探究】(2)证明△AEF≌△DAC(AAS),由全等三角形的性质得出EF=AC;【拓展应用】(3)分三种情况,由等腰直角三角形的性质可得出答案.【解答】解:【初步探究】(1)∵AE⊥AD,即∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(直角三角形的两锐角互余),∴∠AEH=∠CAD(同角的余角相等),∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°,在△AEF与△DAC中,,∴△AEF≌△DAC(AAS),∴EF=AC(全等三角形的对应边相等);故答案为:直角三角形的两锐角互余;∠CAD;同角的余角相等;AD=AE;全等三角形的对应边相等;【推广探究】(2)(1)中的结论仍然成立,证明如下:∵AE⊥AD,∴∠EAD=90°,∴∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°,∴∠AEH=∠CAD,∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,∴∠ACD=180°﹣∠ACB=180°﹣45°=135°,∵∠HAF=∠BAC=45°,∴∠AFE=∠H+∠HAF=90°+45°=135°,∴∠AFE=∠DCA=135°,在△AEF与△DAC 中,,∴△AEF≌△DAC(AAS),∴EF=AC.(3)当点D在线段BC上时,∵△ABC为等腰直角三角形,且EH⊥AC,∠HAF=∠HFA=45°,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边CB延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边BC延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF+HF=6+2=8;故答案为:4或8.【点评】本题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定与性质是解本题的关键。
广东省深圳市七年级下学期数学期末考试试卷
(2) 经统计,班内还需购买两种计算器共40个,设购买A型计算器t个,所需总费用w元,请求出w关于t的函数关系式;
(3) 要求:B型计算器的数量不少于A型计数器的2倍,请设计一种购买方案,使所需总费用最低.
25. (10分) (2016八上·无锡期末) 如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
3. (2分) (2018七下·昆明期末) 用加减法将方程组 中的未知数 消去后,得到的方程是( . )。
A .
B .
C .
D .
4. (2分) (2018·苏州模拟) 如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于( )
(1) A点的坐标为________; B点的坐标为________;C点的坐标为________.
(2) 将点A、B、C的横坐标保持不变,纵坐标分别乘以-1,分别得点A'、B'、C',并连接A'、B'、C'得△A' B' C',请画出△A' B' C'.
(3) △A' B' C'与△ABC的位置关系是________.
12. (1分) (2018八上·紫金期中) 如图是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成________。”
13. (1分) (2019·西安模拟) 不等式 的解集为________.
14. (1分) (2017·吴中模拟) 如图,直线l1∥l2 , 直线l3与l1、l2分别交于A、B两点,若∠1=70°,则∠2=________.
2022-2023学年广东省深圳中学初中部七年级(下)期末数学试卷答案解析
2022-2023学年广东省深圳中学初中部七年级(下)期末数学试卷一.选择题(每小题只有一个选项是正确的,共10小题,每题3分,共30分)1.(3分)下列运算正确的是()A.a2•a3=a5B.a+2a=3a2C.(ab)3=ab3D.(﹣a3)2=﹣a6 2.(3分)清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10﹣5B.8.4×10﹣6C.8.4×10﹣7D.8.4×106 3.(3分)下列徽章中,是轴对称图形的是()A.B.C.D.4.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.5.(3分)下列说法中,正确的是()A.同位角相等B.三角形的三条高线交于一点C.两边及一角分别相等的两个三角形全等D.线段的垂直平分线上的点到这条线段两个端点的距离相等6.(3分)如图,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的概率是()A.B.C.D.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的度数是()A.40°B.60°C.70°D.80°8.(3分)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2B.3C.4D.59.(3分)如图,用五个螺丝将五条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为1、2、3、4、5,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.6B.7C.8D.910.(3分)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,F,连接EM.则下列结论中:①BF=CE;②AE﹣BF=EF;③连接FM、CM,得△CME≌△BMF;④∠FEM=45°,其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共5小题,每题3分,共15分)11.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.12.(3分)若a+b=4,ab=3,则a2+b2=.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD、CD.若∠B=65°,则∠ADC的大小为_________度.14.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线相交于点O,OD ⊥OA交AC于D,OE⊥OB交BC于E,AC=6,AB=10,则△CDE的周长为.15.(3分)如图,在Rt△ABC中,∠BAC=90°,分别以AB、BC、AC为边向上作正方形AGFB、正方形BCDE、正方形ACMN,点E在FG上,若AC=3,BC=5,则图中阴影的面积为.三.解答题(共7小题,其中16题6分,17题7分,18题8分,19题8分,20题9分,21题7分,22题10分,共55分)16.(6分)计算:(2023﹣π)0﹣(﹣1)2023+(﹣)﹣3+311÷3917.(7分)先化简,再求值:[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y,其中x=1,y=2.18.(8分)如图,在边长为单位1的正方形网格中有△ABC.(1)在图中画出△ABC关于直线MN成轴对称的图形△A1B1C1;(2)求△ABC的面积;(3)在直线MN上有一点P使得PA+PB的值最小,请在图中标出点P的位置.19.(8分)已知:如图,点A、F、C、D在同一直线上,AF=DC,AB=DE,AB∥DE,连接BC,BF,CE.求证:(1)△ABC≌△DEF;(2)BC∥EF.20.(9分)快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地,快慢两车距各自出发地的路程y(km)与所用的时间x(h)的关系如图所示.(1)图中表示的自变量是,因变量是.(2)甲乙两地之间的路程为km:快车的速度为km/h:慢车的速度为_______km/h.(3)出发小时,快慢两车距各自出发地的路程相等.(4)快慢两车出发小时相距150km.21.(7分)如图,点O是等边△ABC内一点,将△BOC绕点C按顺时针方向旋转60°得△ADC,使得△BOC≌△ADC连接OD.已知∠AOB=110°,设∠BOC=α.(1)发现问题:发现∠OAD的大小不变为°(2)分析问题:当a=150°时,分析判断△AOD的形状是三角形.(3)解决问题:请直接写出当α为度时,△AOD是等腰三角形.22.(10分)如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.2022-2023学年广东省深圳中学初中部七年级(下)期末数学试卷参考答案与试题解析一.选择题(每小题只有一个选项是正确的,共10小题,每题3分,共30分)1.【分析】先根据合并同类项法则,同底数幂的乘法和幂的乘方与积的乘方进行计算,再判断即可.【解答】解:A.a2•a3=a5,故本选项符合题意;B.a+2a=3a,故本选项不符合题意;C.(ab)3=a3b3,故本选项不符合题意;D.(﹣a3)2=a6,故本选项不符合题意;故选:A.【点评】本题考查了合并同类项法则,同底数幂的乘法和幂的乘方与积的乘方等知识点,能熟记合并同类项法则、同底数幂的乘法和幂的乘方与积的乘方法则是解此题的关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000084=8.4×10﹣6.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.【分析】根据题意可以写出火车行驶的各个阶段中y与x的函数关系,从而可以解答本题.【解答】解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,写出各段过程中与x的函数关系.5.【分析】根据同位角定义判断A;根据三角形的高的定义判断B;根据全等三角形的判定定理判断C;根据线段垂直平分线的性质判断D.【解答】解:A、同位角不一定相等,故本选项说法错误,不符合题意;B、钝角三角形的三条高线不相交,但是它们所在的直线相交于三角形外的一点,故本选项说法错误,不符合题意;C、两边及一角分别相等的两个三角形不一定全等,故本选项说法错误,不符合题意;D、线段的垂直平分线上的点到这条线段两个端点的距离相等,故本选项说法正确,符合题意;故选:D.【点评】本题考查了全等三角形的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,也考查了同位角,三角形的高,线段垂直平分线的性质.6.【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【解答】解:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的黑块时,不会是轴对称图形,其余的4种情况均可以,故其概率为=;故选:D.【点评】此题考查几何概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.7.【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.【分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【点评】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.【分析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条线段的长来判断三角形的最长边时的组合,然后分别找出这些三角形的最长边即可.【解答】解:相邻两螺丝的距离依次为1、2、3、4、5;①选4+5作为三角形的一边、另外的线段构成三角形另外两边,而1+2+3=6<4+5,不能构成三角形;②选3+4作为三角形的一边,另外的线段构成三角形另外两边为2和6或3和5,而1+2+5=8>3+4,6﹣2<7,5﹣3<7,三角形均成立,此时最大边长为7;综上所述,任两螺丝的距离之最大值为7.故选:B.【点评】此题实际考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.10.【分析】①证明△BCF≌△CAE即可得出;②由①可得BF=CE,AE=CF,所以EF =CF﹣CE=AE﹣BF;③M是AB的中点,可得CM=BM=AM,根据题意可得∠CBA=∠CAB=45°,由①可得∠CBF=∠ECA即可得出∠FBM=∠ECM即可得出正确;④由③即可得出∠EMF=90°,EM=FM,所以∠FEM=45°.【解答】解:∵AE⊥CD,BF⊥CD,∴∠BFC=∠CEA,∵∠BCA=90°,∴∠BCF=∠CAE,∵CA=CB,∴△BCF≌△CAE(SAS),∴BF=CE,故①正确;由①知BF=CE,AE=CF,∴EF=CF﹣CE=AE﹣BF,故②正确;∵M是AB的中点,∴CM=BM=AM,∴∠CBA=∠CAB=45°,∠FBC=∠ECA,∴∠FBM=∠ECM,∵BF=CE,∴△CME≌△BMF(SAS),故③正确;由③即可得∠BMF=∠EMC,EM=FM,∴∠EMF=90°,∴∠FEM=45°.故④正确.故选:D.【点评】本题考查正方形的性质和全等三角形的性质与判定,掌握全等三角形的判定是解题是关键.二.填空题(共5小题,每题3分,共15分)11.【分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.12.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:∵a+b=4,ab=3,∴a2+b2=(a+b)2﹣2ab,=42﹣2×3,=16﹣6,=10.故答案为:10.【点评】本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用.13.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA 全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.【点评】本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.14.【分析】延长DO交AB于点M,延长EO交AB于点N,根据ASA定理可得△BOE≌△BON,△AOD≌△AOM,再由SAS定理得出△EOD≌△NOM,由全等三角形的对应边相等可得出结论.【解答】解:延长DO交AB于点M,延长EO交AB于点N,∵OB是∠ABC的平分线,∴∠OBE=∠OBN.∵OE⊥OB,∴∠BOE=∠BON=90°.在△BOE与△BON中,,∴△BOE≌△BON(ASA).同理可得,△AOD≌△AOM,∴OE=ON,OD=OM,BE=BN,AD=AM.在△EOD与△NOM中,,∴△EOD≌△NOM(SAS),∴DE=MN.∴CE+CD+DE=BC﹣BE+AC﹣AD+MN=BC﹣(BM+MN)+AC﹣(AN+MN)+MN=BC﹣BM﹣MN+AC﹣AN﹣MN+MN=BC﹣BM﹣MN+AC﹣AN=BC﹣(BM+MN+AN)+AC=BC+AC﹣AB,在Rt△ABC中,AC=6,AB=10,∴BC==8,∴CE+CD+DE=8+6﹣10=4.故答案为:4.【点评】本题考查的是角平分线的性质,根据题意作出辅助线,构造出全等三角形是解题的关键.15.【分析】由勾股定理得AB2+AC2=BC2,AB=4,再证△BCP≌△CDQ(ASA),得S△BCP ,则S四边形APDQ=S△ABC=6,即可解决问题.=S△CDQ【解答】解:∵∠BAC=90°,AC=3,BC=5,∴AB2+AC2=BC2,AB==4,=AC•AB=×3×4=6,∴S△ABC∵四边形BCDE是正方形,∴BC=CD,∠BCP=∠D=90°,∵∠BAC=∠CAP=90°,∴∠DCQ+∠CQD=∠DCA+∠BPC=90°,∴∠CQD=∠BPC,∴△BCP≌△CDQ(ASA),=S△CDQ,∴S△BCP﹣S△CAP=S△BCP﹣S△CAP,∴S△CDQ=S△ABC=6,即S四边形APDQ∴图中阴影部分面积之和=AB2+AC2+S△ABC+S四边形APDQ﹣BC2=6+6=12,故答案为:12.【点评】本题考查了勾股定理、正方形的性质、全等三角形的判定与性质等知识,熟练掌握勾股定理,证明三角形全等是解题的关键.三.解答题(共7小题,其中16题6分,17题7分,18题8分,19题8分,20题9分,21题7分,22题10分,共55分)16.【分析】先计算乘方、零次幂、负整数指数幂和同底数幂的除法,再计算加减.【解答】解:(2023﹣π)0﹣(﹣1)2023+(﹣)﹣3+311÷39=1﹣(﹣1)+(﹣8)+32=1+1﹣8+9=3.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序,并能进行正确地计算.17.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x﹣y)2﹣(2x+y)(2x﹣y)]÷y=[4x2﹣4xy+y2﹣4x2+y2]÷y=[﹣4xy+2y2]÷y=﹣4x+2y,当x=1,y=2时,原式=﹣4+4=0.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【分析】(1)利用网格特点和对称的性质,分别画出A、B、C关于直线MN的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)连接AB1交MN于P点,利用PB=PB1,PA+PB=PA+PB1=AB1,根据两点之间线段最短可判断P点满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)△ABC的面积=3×3﹣×3×1﹣×2×1﹣×2×3=3.5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.19.【分析】(1)由AF=CD,可求得AC=DF,由AB∥DE,可得∠A=∠D,利用SAS可证明△ABC≌△DEF;(2)由全等三角形的性质可得∠ACB=∠DFE,再利用平行线的判定可证明BC=EF.【解答】证明:(1)∵AF=CD,∴AF﹣FC=CD﹣FC即AC=DF.∵AB∥DE,∴∠A=∠D.在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF(已证),∴∠ACB=∠DFE,∴∠BCF=∠EFC,∴BC∥EF.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.20.【分析】(1)根据函数的定义解答即可;(2)根据函数图象中的数据,可以解答本题;(3)根据题意和函数图象中的数据,可以计算出出发几小时后,快慢两车距各自出发地的路程相等;(4)根据题意,利用分类讨论的方法,可以求得出发几小时快慢两车相距150km.【解答】解:(1)图中表示的自变量是时间,因变量是路程,故答案为:时间,路程;(2)甲乙两地之间的路程为420km;快车的速度为420÷(4﹣1)=140(km/h);慢车的速度为420÷[4+(4﹣1)﹣1]=70(km/h);故答案为:420,140,70;(3)由图象和(1)可得,A点坐标为(3,420),B点坐标为(4,420),由图可知:快车返程时,两车距各自出发地的路程相等,设出发x小时,两车距各自出发地的路程相等,70x=2×420﹣140(x﹣1),解得x=,故出发小时后,快慢两车距各自出发地的路程相等;故答案为:;(4)由题意可得,第一种情形:没有相遇前,相距150km,则140x+70x+150=420,解得x=,第二种情形:相遇后而快车没到乙地前,相距150km,140x+70x﹣420=150,解得x=,第三种情形:快车从乙往甲返回,相距150km,70x﹣140(x﹣4)=150,解得x=,综上所述,出发h或h或h快慢两车相距150km.故答案为:h或h或h.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】此题有一定的开放性,要找到变化中的不变量才能有效解决问题.【解答】解:(1)∵CO=CD,∠OCD=60°,∴△COD是等边三角形,∴∠CDO=∠COD=∠OCD=60°,∵△BOC≌△ADC,∴∠BOC=∠ADC=α,∴∠AOD=360°﹣60°﹣110°﹣α=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(190°﹣α)﹣(α﹣60°)=50°.故答案为:50;(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形.故答案为:直角;(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO =α﹣60°,∴190°﹣α=α﹣60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°﹣α=50°∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.故答案为:125或110或140.【点评】本题考查了等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等知识,试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.22.【分析】(1)如图1中,延长AE交BD于H.只要证明△ACE≌△BCD即可;(2)结论不变.如图2中,延长AE交BD于H,交BC于O.只要证明△ACE≌△BCD 即可;(3)分两种情形分别求解即可解决问题;【解答】解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的射线思考问题,属于中考压轴题。
广东省深圳市七年级下学期数学期末考试试卷
广东省深圳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,若直线a∥直线b,∠1=40°,则∠2的度数为()A . 40°B . 50°C . 140°D . 160°2. (2分) (2017·满洲里模拟) 关于一组数据的平均数、中位数、众数,下列说法中正确的是()A . 平均数一定是这组数中的某个数B . 中位数一定是这组数中的某个数C . 众数一定是这组数中的某个数D . 以上说法都不对3. (2分)(2019七下·潜江月考) 如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5.其中不能判定AB∥CD的条件是()A . ①B . ②C . ③D . ④4. (2分)在平面直角坐标系中,位于第四象限的点是()A . (-1,-3)B . (2,1)C . (-2,1)D . (1,-2)5. (2分) (2017七上·灵武期末) 在下列调查中,适宜采用普查的是()A . 了解我省中学生的视力情况B . 了解九(1)班学生校服的尺码情况C . 检测一批电灯泡的使用寿命D . 调查台州《600全民新闻》栏目的收视率6. (2分)如图,下列条件中不能判直线a∥b的是()A . ∠1=∠2B . ∠3=∠4C . ∠2=∠3D . ∠5+∠6=180°7. (2分) (2016八上·萧山月考) 如果 >, >0,那么下列不等式不成立的是()A . >B . >C . >D . >8. (2分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A . 认为依情况而定的占27%B . 认为该扶的在统计图中所对应的圆心角是234°C . 认为不该扶的占8%D . 认为该扶的占92%9. (2分)(2020·通州模拟) 若二元一次方程组的解为则a+b的值为()A . 0B . 1C . 2D . 410. (2分)坐标平面内下列各点中,在第三象限的点是()A . ( 1,3 )B . (﹣3,0 )C . (﹣1,3 )D . (﹣1,﹣3 )11. (2分)命题“垂直于同一条直线的两条直线互相平行”的假设是()A . 垂直B . 两条直线C . 同一条直线D . 两条直线垂直于同一条直线12. (2分)甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多,如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个.甲、乙两人每天分别做多少个?设甲每天做x个,乙每天做y 个,列出的方程组是()A .B .C .D .二、填空题 (共6题;共8分)13. (1分) (2017七下·巨野期中) 已知二元一次方程2x+3y=27,用含x的代数式表示y为________.14. (3分) (2017七下·东城期中) 的倒数为________;的算术平方根为________;比较实数的大小: ________ .15. (1分)某中学七年级(1)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息可知a的值为________.16. (1分)不等式组的整数解是________ .17. (1分) (2017八上·孝义期末) 如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为________.18. (1分)小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为________千克.三、解答题 (共8题;共69分)19. (5分)(2011·常州) ①解分式方程;②解不等式组.20. (5分)证明:若a>b>0,则an>bn(n∈N,n≥1).21. (15分) (2019七下·浦城期中) 如图,在平面直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,, .(1)写出点的坐标;(2)当的面积是的面积的3倍时,求点的坐标;(3)设,,,判断、、之间的数量关系,并说明理由.22. (12分) (2017八下·桂林期末) 某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?23. (5分)关于x的不等式组,解集为x<2,求k的取值范围.24. (5分) (2019九上·宁波期中) 在平面直角坐标系中,已知A(2,0),B(3,1),C(1,3)①将△ABC沿x轴负方向平移2个单位至△ ,画图并写出的C1坐标。
广东省深圳市百合外国语学校2022-2023学年七年级下学期期末数学试题(含答案)
深圳市百合外国语学校2022~2023学年度第二学期期末考试七年级数学试卷(时间:90分钟满分:100分)一、选择题(每题3分,共30分)1.在每一个深圳初中学子心中都有一个心仪的高中,很多高中的校徽设计也会融入数学元素,下列几所深圳高中的校徽图案是轴对称图形的是()A .[深圳外国语学校]B .[深圳中学]C .[深圳高级中学]D .[深圳宝安中学]2.随着北斗系统全球组网的步伐,国产北斗芯片的研发生产技术也在逐步成熟,支持北斗三号信号的22nm (即0.000000022m )工艺射频基带一体化导航定位芯片已实现规模化应用,其中0.000000022用科学记数法表示为( )A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.气象台预报“本市明天降水概率是90%”,对此信息,下面的几种说法正确的是( )A .本市明天将有90%的地区降水B .本市明天将有90%的时间降水C .明天肯定下雨D .明天降水的可能性比较大5.如果恰好是一个整式的平方,那么常数k 的值为( )A .B .3C .D .66.如图是雨伞在开合过程中某时刻的截面图,伞骨,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且,已知弹簧M 在向上滑动的过程中,总有,其判定依据是()70.2210-⨯82.210-⨯92210-⨯72.210-⨯321mn mn -=()22346m nm n =()34m m m -⋅=()222m n m n +=+29x kx ++3±6±AB AC =DM EM =ADM AEM ≌△△A .ASAB .AASC .SSSD .SAS7.游乐园里的大摆锤如图1所示,它的简化模型如图2,当摆锤第一次到达左侧最高点A 点时开始计时,摆锤相对地面的高度y 随时间t 变化的图象如图3所示.摆锤从A 点出发再次回到A 点需要()秒.A .2B .4C .6D .88.将一直角三角板与两边平行的纸条如图放置.下列结论:(1);(2),(3);(4),(5),其中正确的共有()A .5个B .4个C .3个D .2个9.如图,在△ABC 中,,,△ABC 的面积是24,AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则△PBF 周长的最小值为()A .7B .9C .11D .1410.如图所示,在△ABC 中,,点M 是BC 的中点,AD 是∠BAC 的平分线,作交AC 于点F ,已知,则AC 的长为()12∠=∠o 2490∠+∠=34∠=∠o 45180∠+∠=o 1390∠+∠=AB AC =6BC =7AB =MF AD ∥11CF =A .15B .14C .13D .12二、填空题(每题3分,共15分)11.已知,,则的值为______.12.如图,,,,那么______°.13.某家长应邀参加孩子就读中学举行的教学开放日活动,他打算在该天上午去1~6班随机听一节课.如表是当天上午的课表,如果每一个班级的每一节课被听的可能性是一样的,则他听数学课的概率是______.节次1班2班3班4班5班6班第1节英语语文英语数学数学英语第2节生物历史数学美术英语地理第3节数学音乐道法英语形体历史第4节语文英语日语语文语文数学第13题表14.如图,AD 是△ABC 的高,AE 平分∠BAC .若,,则∠DAE 的度数为______°.15.如图,已知在四边形ABCD 中,,,,,则______°.32m=34n=3m n+o 137∠=o 237∠=o 54D ∠=BAE ∠=o 60B ∠=o 40C ∠=DB DC =o 45DCA ∠=o 80DAC ∠=o 20CAB ∠=ACB ∠=三、解答题(共55分)16.(每题5分,共10分)计算题(1)(2)17.(6分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC (三角形的顶点都在网格格点上)(1)在图中画出关于直线l 对称的(要求:点A 与点,点B 与点,点C 与点相对应)(2)在(1)的结果下,顺次连接A ,,B ,,求四边形的面积.18.(6分)数学课上,老师和同学们用2张A 型卡片、2张B 型卡片和1张C 型卡片拼成了如图所示的长方形.其中A 型卡片是边长为a 的正方形;B 型卡片是长方形;C 型卡片是边长为c 的正方形.(1)请用含a 、c 的代数式分别表示出B 型卡片的长x 和宽y ,以及B 型卡片的面积S ;(2)如果,,请求出他们用5张卡片拼出的这个长方形的面积.19.(7分)如图,在△ABC 中,DM ,EN 分别垂直平分边AC 和边BC ,交边AB 于M ,N 两点,DM 与EN 相交于点F .(1)若,求的周长;()()()22214a a a -+-+()()()234222963a b a b a b a b a b+-+-÷ABC △A B C '''△A 'B 'C 'A 'B 'A BB A ''10a =3c =S 长方形10AB cm =CMN △(2)若,则的度数为______°.20.(8分)2022年3月23日,“天宫课堂”第二课在中国空间站正式开讲,王亚平、叶光富、翟志刚三位“太空教师”为学生们上了一堂豪华的太空课,引发了学生了解科学知识的新热潮.七(1)班同学通过查阅资料发现,声音在空气中传播的速度和气温存在如下的关系:气温/℃0510152025声音在空气中的传播速度/(m/s )331334337340343346(1)在这个变化过程中,______是自变量,______是因变量;(2)若声音在空气中的传播速度为y m/s ,气温为x ℃,则y 与x 之间的关系式为______;(3)当日气温为22℃,小明看到烟花燃放5s 后才听到声响,那么小明与燃放烟花所在地大约相距多远?21.(8分)如图,在中,,.点D 在边BC 上运动(D 不与B 、C 重合),连结AD 作.DE 交边AC 于点E .(1)当DC 等于多少时,,请说明理由:(2)在点D 的运动过程中,当是等腰三角形时,请直接写出∠ADB 的度数.22.(10分)已知:如图所示,直线,∠MAB 与∠NBA 的平分线交于点C ,过点C 作一条直线l 与两条直线MA 、NB 分别相交于点D 、E .(1)如图1,当直线l 与直线MA 垂直时,猜想线段AD 、BE 、AB 之间的数量关系,请直接写出结论,不用证明;(2)当直线l 与直线MA 不垂直,且交点D 、E 在AB 的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD 、BE 、AB 之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系;o 65MFN ∠=MCN ∠ABC △4AB AC ==o 30B ∠=o 30ADE ∠=ABD DCE ≌△△ADE △MA NB ∥(3)如图2,当直线MA 与直线NB 相交于点F 时,延长AC ,BC ,分别交BN ,AM 于点E ,D ,直线MA 与直线NB 所夹的锐角为多少度时,线段AD 、BE 、AB 之间仍满足(1)间中的数量关系?请说明理由.2022-2023学年百外七下期末试卷解析一、选择题(共10小题,每小题3分,共30分)题号12345678910答案BBBDCCDACA二、填空题(共5小题,每小题3分,共15分)题号1112131415答案8三、解答题(共7小题,)16.(1)解:原式(2)解:原式17.解:(1)如图,即为所求图形(2)18.(1)解:,,(2)当,时,原式o54524o 10o352244284a a a a a =-+++--233a a =+2222432a b b a =-+-22a b =--A B C '''△()112851052522A BB A S ''=⨯+⨯=⨯⨯=四x a c =+y a c =-()()22S a c a c a c=+-=-()()()()22224S a a c a a c a c a c a c =+++-=+-=-长方形10a =3c =224103391=⨯-=19.解:(1)∵DM ,EN 分别是AC ,BC 的中垂线∴,∴(2)20.解:(1)气温、声音在空气中的传播速度(2)(3)当时,∴距离为21.解:(1)当时.证明:∵∴∴∴∵∴∴当时在△ABD 和△DCE 中,∵∴()(2)或22.解:(1)(2)不成立,或MA MC =NB NC=CMN C CM MN CN =++△AM MN BN =++AB =10cm=o50MCN ∠=33315y x =+o 22x =3331225y =+⨯344.2=344.251721m⨯=4DC =ABD DCE≌△△AB AC =o 30B C ∠=∠=ADC B BAD ∠=∠+∠ADE EDC B BAD ∠+∠=∠+∠30ADE B ∠=∠=︒EDC BAD ∠=∠4DC AB ==BAD EDC AB CD B C ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD DCE ≌△△ASA o 105o60AD BE AB+=BE AD AB -=AD BE AB-=(3)当MA 与NB 夹角为60°时.证明:∵,AE 、BD 分别平分、∴∴在AB 上截取点G .使.连接CG在和中,∵∴()∴∵∴∵∴在和中,∵∴()∴∴AD BE AB +=o 60AFB ∠=FAB ∠FBA ∠o 120ACB ∠=o 60ACD BCE ∠=∠=AG AD =CDA △CGA △DA GA DAC GAC AC AC =⎧⎪∠=∠⎨⎪=⎩CDA CGA ≌△△SAS 60GCA DCA ∠=∠=︒120ACB ∠=︒60GCB ∠=︒60ECB ∠=︒GCB ECB∠=∠GCB △ECB △GBC EBC CB CB GCB ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩GCB ECB ≌△△ASA GB EB =AB AD BE=+。
广东省深圳市2023年七年级下学期数学期末考试试卷A卷
广东省深圳市2023年七年级下学期数学期末考试试卷A卷第一部分:选择题(共15题,每题2分,共30分)1. 以下哪个数是素数?A. 25B. 31C. 40D. 502. 如图所示,求AB的长度。
A. 5cmB. 10cmC. 15cmD. 20cm3. (简答题)请写出等边三角形的定义。
4. 下面哪个角是锐角?A. 45度B. 90度C. 120度D. 180度5. 解方程:2x + 5 = 15。
求x的值。
...第二部分:填空题(共10题,每题3分,共30分)1. 一元二次方程的一般形式是:______。
2. 一年有______个月。
3. 两个互质的数的最小公倍数是______。
4. 27的立方根是______。
5. 设a=5,b=7,则a² + b² = ______。
...第三部分:简答题(共5题,每题10分,共50分)1. 请解释什么是平行线。
2. 请计算三角形的面积公式。
3. 请列举一些常见的几何图形。
4. 请解释什么是直角三角形。
5. 请计算矩形的周长公式。
...第四部分:解答题(共3题,每题20分,共60分)1. 一个正方形的周长为40cm,求它的面积。
2. 已知一个三角形的底边长为12cm,高为8cm,求它的面积。
3. 一根绳子长30cm被分成了三段,第一段比第二段多3cm,第二段比第三段多5cm,求每段绳子的长度。
...总分:150分您可以根据需要修改试题的数量、分值和具体内容。
以上是一个示例,希望能对您有所帮助。
深圳市七年级下册期末数学试卷及答案
深圳市七年级下册期末数学试卷一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.52.(3分)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b25.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC 11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=.14.(3分)已知a2+b2=5,a+b=3,则ab=.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×202018.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(),∴∠E=∠C(),又∵∠1=∠2,∴+∠DAC=+∠DAC(),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE()∴AC=AE()23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.深圳市七年级下册期末数学试卷答案一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.5【分析】根据有理数的乘方意义计算即可得出正确选项.【解答】解:32=3×3=9.故选:B.【点评】本题主要考查了有理数的乘方,a n表示有n个a相乘.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、C、D中的图形都不是轴对称图形,B中图形是轴对称图形,故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000043=4.3×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2【分析】利用两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.5.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,正在播放体育节目是随机事件;B、三角形内角和为180°是必然事件;C、同位角相等是随机事件;D、掷一次骰子,向上一面是5点是随机事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【分析】根据三角形的三边关系定理得到8<AB<48,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.故选:B.【点评】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④【分析】根据角平分线的定义和性质判断①;根据三角形面积公式即可判断②:根据等腰三角形的性质判断③:根据线段垂直平分线的性质判断④.【解答】解:①角平分线上任意一点到角两边的距离相等是正确的.②根据三角形面积公式即可得到等腰三角形两腰上的高相等,说法是正确;③等腰三角形的中线不一定是它的高,说法是错误;④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.故选:C.【点评】本题考查了角平分线、线段垂直平分线的性质,等腰三角形的性质,是基础知识,需熟练掌握.9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.【分析】由随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,共有6种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:在序号①②③④⑤中的一个小正方形涂黑,有6种等可能结果,其中与图中的阴影部分构成轴对称图形的有②③④这3种结果,所以与图中的阴影部分构成轴对称图形的概率为=,故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC【分析】根据需要满足的判定定理来添加条件即可.【解答】解:在△ABC与△CDA中,AD=CB,AC=CA,A、添加AB=CD,由全等三角形的判定定理SSS可以使△ABC≌△CDA,故本选项不符合题意.B、添加∠B=∠D,由全等三角形的判定定理SSA不可以使△ABC≌△CDA,故本选项符合题意.C、添加∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.D、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.【分析】根据题意可以写出火车行驶的各个阶段中y与x的函数关系,从而可以解答本题.【解答】解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,写出各段过程中与x的函数关系.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4【分析】由等边三角形的性质得出AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB =∠EAC=60°,则∠DAC=∠BAE,由SAS证得△DAC≌△BAE得出BE=DC,∠ADC =∠ABE,则∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=60°,即①正确;②正确;∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,则∠BDO=∠CEO错误,即③错误;由平行线的性质得出∠DAB=∠ABC=60°,推出∠ACB=30°,则BC⊥CE,④正确.【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA∥BC,∴∠DAB=∠ABC=60°,∵∠BAC=90°,∴∠ACB=30°,∵∠ACE=60°,∴∠ECB=90°,∴BC⊥CE,④正确,综上所述,①②④正确,故选:C.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质、直角三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=4.【分析】根据同底数幂的除法法则:底数不变,指数相减,可得9﹣n=5,解方程即可得到答案.【解答】解:∵a9÷a n=a5,∴9﹣n=5,n=4.故答案为:4.【点评】此题主要考查了同底数幂的除法,关键是把握同底数幂的除法法则.14.(3分)已知a2+b2=5,a+b=3,则ab=2.【分析】把a+b=3两边平方,再与a2+b2=5相减即可.【解答】解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∵a2+b2=5,∴5+2ab=9,解得ab=2.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为15.【分析】因为3和6不知道那个是底那个是腰,所以要分不同的情况讨论,当3是腰时,当6是腰时等.【解答】解:当3是腰时,边长为3,3,6,但3+3=6,故不能构成三角形,这种情况不可以.当6是腰时,边长为6,6,3,且3+6>6,能构成三角形故周长为6+6+3=15.故答案为:15.【点评】本题考查等腰三角形的性质,等腰三角形的两边相等,以及三角形的三边关系,两个小边的和必须大于大边才能组成三角形.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=75°.【分析】由等边三角形的性质得出∠A=∠EBC=60°,AB=BC,由SAS证得△ABD≌△BCE得出∠BCE=∠ABD=15°,则∠BDC=∠A+∠ABD=75°.【解答】解:∵△ABC是等边三角形,∴∠A=∠EBC=60°,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BCE=∠ABD=15°,∴∠BDC=∠A+∠ABD=60°+15°=75°,故答案为:75°.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×2020【分析】(1)根据乘方的运算法则,零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据平方差公式即可求出答案.【解答】解:(1)原式=1+4﹣1=4;(2)原式=20192﹣(2019﹣1)(2019+1)=20192﹣(20192﹣1)=1.【点评】本题考查学生的运算能力,解题额关键是熟练运用运算法则,本题属于基础题型.18.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2xy+y2﹣3x2+9xy+2x2﹣8y2=7xy﹣7y2,当x=﹣,y=2时,原式=﹣2﹣28=﹣30.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.【分析】(1)设口袋里有x个黄球,根据概率公式列出算式,再进行求解即可;(2)用红球的个数除以总球的个数,即可得出摸出一个球是红色的概率.【解答】解:(1)设口袋里有x个黄球,根据题意得:=,解得:x=3,经检验,x=3是分式方程的解;答:口袋里黄球的个数有3个;(2))∵红球有4个,一共有4+5+3=12个,∴P(红球)==.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是4;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.【分析】(1)依据轴对称的性质,即可得到△ABC关于直线l对称的△A1B1C1;(2)依据三角形面积公式即可得出结论;(3)连接B1C,与l的交点即为所求的点P.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△A1BB1面积是×2×4=4,故答案为:4;(3)如图所示,点P即为所求.【点评】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为18千米/小时;汽车的速度为45千米/小时;(2)汽车比摩托车早1小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.【分析】(1)根据题意和函数图象中的数据可以解答本题;(2)根据函数图象中的数据可以求得汽车比摩托车早多长时间到达B地;(3)根据题意和(1)中的答案可以解答本题.【解答】解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)【分析】由内错角相等得出∠AFE=∠DFC,由三角形内角和定理得出∠E=∠C,由等量代换得出∠1+∠DAC=∠2+∠DAC,由AAS证得△ABC≌△ADE,由全等三角形对应边相等得出AC=AE.【解答】证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)故答案为:对顶角相等,三角形内角和定理,∠1,∠2,等量代换,AAS,全等三角形对应边相等.【点评】本题考查了全等三角形的判定与性质、三角形内角和定理、等量代换等知识,熟练掌握全等三角形的判定是解题的关键.23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.【分析】(1)根据题中所给条件证明△ABE≌△ADF即可.(2)如图2,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合,证明△EAF≌△E'AF(SAS),得EF=E'F,可得结论;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,通过角的计算可得出∠EAF′=∠EAF,结合AF=AF′、AE=AE即可证出△EAF≌△EAF′(SAS),进而得出EF=EF′,即可得出结论.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE =∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.【点评】本题是四边形的综合题,考查了全等三角形的判定与性质以及正方形的性质,熟练掌握全等三角形的判定与性质是解题的关键,在正方形中可利用旋转作辅助线构建三角形全等.。
广东省深圳市七年级下学期数学期末考试试卷
广东省深圳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·宿豫期中) 年月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为米,这个数据用科学记数法表示为()A .B .C .D .2. (2分) (2016七上·瑞安期中) 可以表示为()A .B .C .D .3. (2分) (2019七下·海淀期中) 在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A . 内错角相等,两直线平行B . 同位角相等,两直线平行C . 两直线平行,内错角相等D . 两直线平行,同位角相等4. (2分)下列命题是真命题的是()A . 同旁内角互补B . 直角三角形的两锐角互余C . 三角形的一个外角等于它的两个内角之和D . 三角形的一个外角大于内角5. (2分)如图,AB∥CD,BE交CD于点F,若∠B=50°,则∠DFE的度数为()A . 40°B . 50°C . 130°D . 150°6. (2分) (2019七下·北京期中) 若a>b ,则下列不等式中错误的是().A . a-1>b-1B . a+1>b+1C . 2a>2bD . -2a>-2b7. (2分)用加减法将方程组中的未知数x消去后,得到的方程是()A . 2y=6B . 8y=16C . ﹣2y=6D . ﹣8y=168. (2分)如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A . 4B . 2C . -2D . ±29. (2分)(2017·深圳模拟) 下列运算正确的是()A . 8a﹣a=8B . (﹣a)4=a4C . a3 a2=a6D . (a-b)²=a²-b²10. (2分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A .B .C .D .11. (2分)初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的多2.则同时参加这两个小组的人数是A . 12B . 10C . 8D . 712. (2分)在矩形ABCD中,AB=1,AD=, AF平分∠DAB,过C点作CE BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2018·滨州模拟) 计算:()﹣2﹣|1﹣ |﹣(π﹣2015)0﹣2sin60°+ =________.14. (1分)如图,直线EF分别交AB,CD于点E,F,且AB∥CD.若∠1=60°,则∠2=________.15. (1分) (2017七下·南通期中) 已知x=1,y=8是方程3mx-y=-1的解,则m的值为________.16. (1分) (2017八下·容县期末) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=- x上,则点B与其对应点B′间的距离为________.17. (1分) (2019八下·广东月考) 某商场店庆活动中,商家准备对某种进价为800元、标价为1200元的商品进行打折销售,但要保证利润率不低于5%,则最多打________折.18. (1分)(2019·沈阳模拟) 如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM= HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为________.三、解答题 (共9题;共59分)19. (5分) (2017八下·姜堰期末) 计算:(1)(2)20. (5分)(1)计算:4cos245°-|-2| + tan45°;(2)分解因式:21. (5分)已知:|2x+y+3|+ =0,求3x﹣4y.22. (5分)解不等式组.23. (1分)如图,已知∠1=60°,∠2=120°,∠BAC=50°,求∠C的度数.24. (6分) (2019八上·道外期末) “江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最少可购进多少件甲种礼品?25. (7分) (2017七下·邗江期中) 探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)请用两种不同的方法,求图b中阴影部分的面积:方法1:________;方法2:________;(2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系,并通过计算验证;(3)根据(2)题中的等量关系,解决如下问题:若2a+b=5,ab=2,求(2a﹣b)2的值.26. (10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?27. (15分)(2017·郴州) 如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△B CE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共59分)19-1、19-2、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、第11 页共12 页第12 页共12 页。
深圳市七年级下册末数学试卷及答案
一、解答题1.在平面直角坐标系中,点A ,B 的坐标分别为()2,0,()2,0-,现将线段AB 先向上平移3个单位,再向右平移1个单位,得到线段DC ,连接AD ,BC .(1)如图1,求点C ,D 的坐标及四边形ABCD 的面积;图1(2)如图1,在y 轴上是否存在点P ,连接PA ,PB ,使PAB ABCD S S =△四边形?若存在这样的点,求出点P 的坐标;若不存在,试说明理由;(3)如图2,在直线CD 上是否存在点Q ,连接QB ,使14QCB ABCD S S =△四边形?若存在这样的点,直接写出点Q 的坐标;若不存在,试说明理由.图2(4)在坐标平面内是否存在点M ,使23MAB ABCDS S =△四边形?若存在这样的点M ,直接写出点M 的坐标的规律;若不存在,请说明理由.解析:(1)()1,3C -,()3,3D ,12ABCD S =四边形;(2)存在,()0,6P -或()0,6P ;(3)存在,()1,3Q 或()3,3Q -;(4)存在,M 的纵坐标总是4或4-.或者:点M 在平行于x 轴且与x 轴的距离等于4的两条直线上;或者:点M 在直线4y =或直线4y =-上 【分析】(1)根据点的平移规律,即可得到对应点坐标;(2)由PAB ABCD SS =四边形,可以得到6OP =,即可得到P 点坐标; (3)由14QCB ABCD SS =四边形,可以得到2CQ =,结合点C 坐标,就可以求得点Q 坐标; (4)由23MABABCD SS =四边形,可以AB 边上的高的长度,从而得到点M 的坐标规律. 【详解】(1)∵点()2,0A ,点(2,0)B -∴向上平移3个单位,再向右平移1个单位之后对应点坐标为(3,3)D ,点(1,3)C - ∴2(2)4AB =--=∴=43=12ABCD S ⨯四边形(2)存在,理由如下:∵=12PAB ABCD S S =△四边形 即:12AB OP =12 ∴6OP =∴()0,6P -或()0,6P(3)存在,理由如下: ∵14QCB ABCDS S =△四边形 即:11234QCB S =⨯=△ ∵1322QCB S CQ OE CQ ==△ ∴2CQ =∵(1,3)C -∴()1,3Q 或()3,3Q -(4)存在:理由如下:∵23MAB ABCDS S =△四边形 ∴212=83MAB S =⨯△ 设MAB △中,AB 边上的高为h则:182AB h = ∴4h =∴点M 在直线4y =或直线4y =-上【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键.2.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE +∠CDE =2∠ABF +2∠CDF =2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BED =∠ABE +∠CDE ,∠BFD =∠ABF +∠CDF ,所以∠BED =2∠BFD .(3)∠BED =360°-2∠BFD .图3中,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,所以∠BEG +∠DEG =360°-(∠ABE +∠CDE ),即∠BED =360°-(∠ABE +∠CDE ),因为BF 平分∠ABE ,所以∠ABE =2∠ABF ,因为DF 平分∠CDE ,所以∠CDE =2∠CDF ,∠BED =360°-2(∠ABF +∠CDF ),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.3.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性质即可求得答案;(3)如图3,分别过点F 、H 作FL ∥MN ,HR ∥PQ ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A =DF ,DD′=EE′=AF =5cm ,再结合DE +EF +DF =35cm ,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.4.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.5.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+1(HND+∠BMH)=130°.2∠MEN=130°.∴∠ENQ+12∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.6.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.7.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB ∥CD ,∴AB ∥EM ∥FN ∥GH ∥CD ,∴∠B =∠BEM ,∠MEF =∠EFN ,∠NFG =∠FGH ,∠HGD =∠D ,∴∠BEF +∠FGD =∠BEM +∠MEF +∠FGH +∠HGD =∠B +∠EFN +∠NFG +∠D =∠B +∠EFG +∠D , 即∠E +∠G =∠B +∠F +∠D .由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E 1+∠E 2+…∠En =∠B +∠F 1+∠F 2+…∠F n -1+∠D . 故答案为:∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D . (3)如图,过点M 作EF ∥AB ,过点N 作GH ∥AB ,∴∠APM +∠PME =180°, ∵EF ∥AB ,GH ∥AB , ∴EF ∥GH ,∴∠EMN +∠MNG =180°, ∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n -1+∠n =(n -1)•180°. 故答案为:(n -1)•180°. 【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E 点作AB (或CD )的平行线,把复杂的图形化归为基本图形.8.如图,平面直角坐标系中,点B 的坐标是()6,0-,点A 在y 轴的正半轴上,AOB 的面积等于18.(1)求点A 的坐标;(2)如图,点P 从点O 出发,沿y 轴正方向运动,点P 运动至点A 停止,同时点Q 从B 点出发,沿x 轴正方向运动,点Q 运动至点O 停止,点P 、点Q 的速度都为每秒1个单位,设运动时间为t 秒,QBP △的面积为S ,求用含t 的式子表示S ,并直接写出t 的取值范围; (3)在(2)的条件下,过A 点作//AD BO ,连接BP 并延长BP 交AD 于E ,连接EQ 交PO 于点F ,若3AE =,求t 值及点F 的坐标.解析:(1)()0,6A ;(2)212S t =(06t <≤);(3)t 的值为4,点F 的坐标是120,5⎛⎫ ⎪⎝⎭. 【分析】(1)根据△AOB 的面积可求得OA 的长,即可求得点A 的坐标;(2)由题意可分别得PO BQ t ==,由三角形面积公式即可得结果,由点Q 只在线段OB 上运动,从而可得t 的取值范围; (3)利用割补方法,由ABE APBAPES S S=+△则可求得t 的值;连接OE ,由QO E FEOFOQ SS S=+△可求得OF 的长,从而求得点F 的坐标.【详解】 (1)∵B (-6,0), ∴OB =6, ∵1182AOBS OA OB ==, ∴16182OA ⨯⨯=, ∴OA =6 , ∴()0,6A .(2)∵PO BQ t ==,6QO AP t ==-, ∴21122PBQ PO S BQ t =⋅=△, ∴212S t =(06t <≤)(3)∵PO BQ t ==,6QO AP t ==-,∴()1122ABE APB APES AE AO S SAE BO AP =⋅=+=+⋅△, ∴()()113636622t ⨯⨯=+⨯-, 解得4t =,则62t -=, ∴2AP OQ ==, 连接OE ,如图∵12EOQ S QO AO =⋅△,()12QOFEOFEOQ S OQ A SE SOF =+⋅=+△ ∴()11263222OF ⨯⨯=⨯+⋅ ∴125OF =∴F 点坐标为120,5⎛⎫⎪⎝⎭综上所述:t 的值为4,点F 的坐标是120,5⎛⎫⎪⎝⎭.【点睛】本题考查了代数式,三角形面积,用到了割补方法,也是本题的关键和难点. 9.在平面直角坐标系中,点(,1)A a ,(,3)B b 满足关系式2(1)|2|0++-=a b .(1)求a ,b 的值;(2)若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)线段AB 与y 轴交于点C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-M 出发,以每秒2个单位长度的速度向右运动,问t 为何值时有2ABEABFSS=,请直接写出t 的值.解析:(1)1a =-,2b =;(2)233或13-;(3)2215或2【分析】(1)根据一个数的平方与绝对值均非负,且其和为0,则可得它们都为0,从而可求得a 和b 的值;(2)过点P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a ,过A 作AH l ⊥交直线l 于点H ,根据面积关系求出Q 点坐标,再求出PQ 的长度,即可求出n 的值;(3)先根据AGOC CONB AGNB S S S +=梯形梯形梯形求出C 点坐标,再根据ADGDNBAGNB S S S+=梯形求出D 点坐标,根据题意可得F 点坐标,由2ABEABFS S=得关于t 的方程,求出t 值即可.【详解】(1)2(1)0a +≥,|2|0-≥b ,且2(1)|2|0++-=a b 2(1)0∴+=a ,|2|0b -=a 1∴=-,b 2=(2)过P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设点Q 坐标为(3,)a , 过A 作AH l ⊥交直线l 于点H ,如图所示∵AHQ ABH BQH S S S =+△△△ ∴1114(1)42(1)1222a a ⨯-=⨯⨯+-⨯ 解得113a =,Q 点坐标为113,3⎫⎛ ⎪⎝⎭∵11341222ABP AQP BPQ S S S PQ PQ PQ =-=⨯-⨯=△△△ ∴313162n -= 解得:233n =或13-(3)当2215t =或2时,有2ABEABFS S=.如图,延长BA 交x 轴于点D ,过A 点作AG ⊥x 轴于点G ,过B 点作BN ⊥x 轴于点N ,∵AGOC CONB AGNB S S S +=梯形梯形梯形 ∴111(1)1(3)2(13)3222OC OC +⨯++⨯=⨯+⨯ 解得:53OC =∴50,3C ⎛⎫ ⎪⎝⎭∵ADGDNBAGNB S S S+=梯形∴1111(13)3(3)3222DG DG ⨯+⨯+⨯=+⨯ 解得:32DG = ∵(1,0)G -∴5,02D ⎛⎫- ⎪⎝⎭当运动t 秒时,(82,0)F t -+∴51182222DF t t ⎛⎫=-+--=- ⎪⎝⎭∵CE =t ∴13=[2(1)]22ABE S CE t ⨯--=,111(31)222ABFBDFDAFS SSDF t =-=⨯-=- ∵2ABEABFS S=∴3112222t t =- 解得:2215t =或2.【点睛】本题主要考查三角形的面积,含绝对值方程解法,熟练掌握直角坐标系的知识,三角形的面积,梯形的面积等知识是解题的关键,难点在于对图形进行割补转化为易求面积的图形.10.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”; (2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由. 解析:(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值. 【详解】解:(1)不等式A :x +2>1的解集为1x >-, ∵:3B x >∴A 与B 存在“雅含”关系,B 是A 的“子式”; (2)不等式:C 1123x a -+<,解得:253a x +<, 不等式D :()233x x --<,解得:2x <, ∵C 与D 存在“雅含”关系,且C 是D 的“子式”, ∴2523a +≤,解得:12a ≤,(3)存在;由23m n k m n +=⎧⎨-=⎩解得:3363k m k n +⎧=⎪⎪⎨-⎪=⎪⎩,∵12m ≥,1n <-,即:3132613k k +⎧≥⎪⎪⎨-⎪<-⎪⎩,解得:332k -≤<,∵k 为整数,∴k 的值为10,1,2-,, 解不等式:64P kx x +>+得:()12k x ->-, 解不等式():62142Q x x -≤+得:1x ≤, ∵P 与Q 存在“雅含”关系,且Q 是P 的“子式”, ∴不等式:64P kx x +>+的解集为:21x k -<-, ∴10k -<,且211k ->-, 解得:11k -<<, ∴0k =. 【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解. 11.(阅读感悟)一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题的常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.(解决问题)(1)已知二元一次方程组34312x y x y +=⎧⎨+=⎩,则x y -= ,x y += .(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c =++※,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知1416=※,1521=※,求11※的值.解析:(1)-4,4;(2)购买20支铅笔、20块橡皮、20本日记本共需120元;(3)1 【分析】(1)由①-②得2x -2y =-8,则x -y =-4,再由①+②得4x +4y =16,则x +y =4; (2)设1支铅笔x 元,1块橡皮y 元,1本日记本z 元,由题意:买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,列出方程组,再由整体思想”求出x +y +z =6,即可求解;(3)由定义新运算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【详解】解:(1)34312x yx y+=⎧⎨+=⎩①②,①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案为:-4,4;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意得:53232 95358x y zx y z++=⎧⎨++=⎩①②,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即购买20支铅笔、20块橡皮、20本日记本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【点睛】本题考查了二元一次方程组的应用、整体思想以及新运算等知识;熟练掌握整体思想和新运算,找准等量关系,列出方程组是解题的关键.12.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.解析:(1)1.56ac=⎧⎨=⎩;0≤x≤6时,y=1.5x; x>6时,y=6x-27;(2)该户5月份水费是21元.【分析】(1)根据3、4两个月的用水量和相应水费列方程组求解可得a 、c 的值;当0≤x≤6时,水费=用水量×此时单价;当x >6时,水费=前6立方水费+超出部分水费,据此列式即可; (2)x=8代入x >6时y 与x 的函数关系式求解即可. 【详解】解:(1)根据题意,得:()57.56a 96c 27a =⎧⎨+-=⎩,解得: 1.56a c =⎧⎨=⎩;当0≤x≤6时,y=1.5x ;当x >6时,y=1.5×6+6(x-6)=6x-27; (2)当x=8时,y=6x-27=6×8-27=21.答:若某户5月份的用水量为8米3,该户5月份水费是21元. 【点睛】本题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.13.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标. 解析:(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P -- 【解析】 【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标. 【详解】 解:(1)40a -≥ 60b +≥,∴460a b -++=,40a ∴-=,60b +=,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆= ∴ABO DOM S S ∆∆=, ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=,如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+,即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩,()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯,()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB , ∴20PAB EAB S S ∆∆==, ∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴, 12GE =, 8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=,83OF ∴=,80,3F ⎛⎫∴- ⎪⎝⎭,PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.14.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h ++=,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.解析:(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析 【分析】(1)利用非负数的性质求出a ,b 的值,可得结论. (2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可. 【详解】解:(1)|3|10a b +++, 又|3|0a +10b +,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴. 理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点, ∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=, p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠, 0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.15.在平面直角坐标系xOy 中,已知点M (a ,b ).如果存在点N (a ′,b ′),满足a ′=|a +b |,b ′=|a ﹣b |,则称点N 为点M 的“控变点”. (1)点A (﹣1,2)的“控变点”B 的坐标为 ;(2)已知点C (m ,﹣1)的“控变点”D 的坐标为(4,n ),求m ,n 的值;(3)长方形EFGH 的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P (x ,﹣2x )的“控变点”Q 在长方形EFGH 的内部,直接写出x 的取值范围.解析:(1)(1,3);(2)5,6m n ==或3,2m n =-=;(3)413x -<<-或413x <<.【分析】(1)根据“控变点”的定义、绝对值运算法则即可得;(2)根据“控变点”的定义、绝对值运算建立方程,解绝对值方程即可得;(3)先根据“控变点”的定义求出点Q 的坐标,再根据“点Q 在长方形EFGH 的内部”建立不等式组,解不等式组、化简绝对值即可得. 【详解】 解:(1)121-+=,123--=,(1,2)A ∴-的“控变点”B 的坐标为(1,3),故答案为:(1,3);(2)由题意得:141m m n ⎧-=⎪⎨+=⎪⎩,解得56m n =⎧⎨=⎩或32m n =-⎧⎨=⎩,即5,6m n ==或3,2m n =-=;(3)在平面直角坐标系中,画出长方形EFGH 如下所示:由题意得:(2,2)Q x x x x -+,即(,3)Q x x , 要使点Q 在长方形EFGH 的内部, 则15134x x ⎧<<⎪⎨<<⎪⎩, 解得413x <<, 即413x -<<-或413x <<.【点睛】本题考查了坐标与图形、绝对值运算、一元一次不等式组的应用,掌握理解“控变点”的定义是解题关键.16.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.(1)若小语用长40cm ,宽34cm 的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒200元购进一批茶叶,按进价增加18%作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了6元,售价仍不变,已知在整个买卖过程中共盈利1800元,求这批茶叶共进了多少盒? 解析:(1)12803()cm ;(2) 【分析】(1)根据题意设盒底边长,接口的宽度,分别为acm ,bcm ,根据题意列方程组,再根据长宽高求得体积;(2)分别设第一个月和第二个月的销售量为,x y 盒,根据题意列出方程和不等式组,根据不等式确定二元一次方程的解,两个月的销售总量为()x y +盒 【详解】(1)设设盒底边长为acm ,接口的宽度为bcm ,则盒高是2.5acm ,根据题意得:2.52240434a a b a b ++=⎧⎨+=⎩ 解得:82a b =⎧⎨=⎩ 茶叶盒的容积是:332.5 2.5 2.581280a a a a ⨯⨯=⨯=⨯=3()cm 答:该茶叶盒的容积是12803()cm(2)设第一个月销售了x 盒,第二个月销售了y 盒,根据题意得:20018%(20018%6)1800x y ⨯⨯+⨯-⨯= 化简得:65300x y +=①第一个月只售出不到一半但超过三分之一的量32x y x y x ++∴<< 即2x y x <<由①得:6605y x =- ∴660566025x x x x ⎧->⎪⎪⎨⎪-<⎪⎩解得:231627311x <<,x y 是整数,所以x 为5的倍数2036x y =⎧∴⎨=⎩或者2530x y =⎧⎨=⎩x y ∴+56=或者55答:这批茶叶共进了56或者55盒.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的求解,理解题意列出方程组和不等式组是解题的关键.17.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.23=,[]55=,[]2.13-=-,那么,[]x x a =+,其中01a ≤<.例如,[]3.2 3.20.2=+,[]550=+,[]2.1 2.10.9-=-+.请你解决下列问题:(1)[]4.8=__________,[]6.5-=__________;(2)如果[]5x =,那么x 的取值范围是__________;(3)如果[]5231x x -=+,那么x 的值是__________;(4)如果[]x x a =+,其中01a ≤<,且[]41a x =+,求x 的值.解析:(1)4,-7;(2)56x ≤<;(3)53;(4)1x =-或14或112或324 【分析】(1)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(2)根据[]x 表示不超过x 的最大整数的定义及例子直接求解即可;(3)由材料中“[]x x a =+,其中01a ≤<”得出315232x x x +-<+,解不等式,再根据3x +1为整数,即可计算出具体的值;(4)由材料中的条件[]41a x =+可得[]14x a +=,由01a <,可求得[]x 的范围,根据[]x 为整数,分情况讨论即可求得x 的值.【详解】(1)[]4.84=,[]6.57-=-.故答案为:4,-7.(2)如果[]5x =. 那么x 的取值范围是56x <.故答案为:56x <.(3)如果[]5231x x -=+,那么315232x x x +-<+. 解得:322x < ∵31x +是整数. ∴53x =. 故答案为:53. (4)∵[]x x a =+,其中01a <,∴[]x x a =-,∵[]41a x =+,∴[]14x a +=. ∵01a <,∴[]1014x +<, ∴[]13x -<,∴[]1x =-,0,1,2.当[]1x =-时,0a =,1x =-;当[]0x =时,14a =,14x =; 当[]1x =时,12a =,112x =; 当[]2x =时,34a =,324x =; ∴1x =-或14或112或324. 【点睛】本题考查了新定义下的不等式的应用,关键是理解题中[]x 的意义,列出不等式求解;最后一问要注意不要漏了情况.18.学校准备购进一批篮球和足球,已知2个篮球和6个足球共需480元;3个篮球和4个足球共需470元.(1)求一个篮球和一个足球的售价各是多少元;(2)学校准备购进两种球共50个,并且篮球的数量不少于足球数量的2倍,请设计出最。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省深圳市七年级下数学期末考试
注意事项:
1.答卷前,考生首先检查答题卡是否整洁无缺损,之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上,不按要求填涂的,答案无效.
3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排,如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液,不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁,不折叠,不破损.考试结束后,将答题卡交回. 5.允许使用计算器.
一、选择题
1.下面有4个汽车标志图案,其中是轴对称图形的有( )
A .1个
B .2个
C .3个
D .4个
2.据广东省卫计委通报,5月27日广东出现首例中东呼吸综合症(MERS )疑似病例,MERS 属于冠状病毒,病毒粒子成球形,直径约为140纳米(1米=1000000000纳米),用科学记数法表示为( ) A .1.4×1011米
B .140×109米
C .1.4×10﹣11米
D .1.4×10﹣7米
3、下列条件中,能判定两个直角三角形全等的是( ) A 、一锐角对应相等 B 、两锐角对应相等 C 、一条边对应相等 D 、两条直角边对应相等
4、下列运算正确的是
A .623a a a ÷=
B .33333a a a a =⋅⋅
C .()
4
312a
a = D .()2
2224a b a b +=+
5、下列计算正确的是 ( )
(A )229)3)(3(y x y x y x -=+- (B )9)9)(9(2
-=+-x x x (C )2
2()()x y x y x y --+=- (D )4
1
)21(22-=-x x
6、已知m+n=2,mn=﹣2,则(1﹣m )(1﹣n )的值为( ) A .﹣1 B .1 C .﹣3 D .5
7、下列判断正确的个数是
(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等; (3)两角和一边对应相等的两个三角形全等,(4)全等三角形对应边相等. A .1 个 B .2 个 C .3个 D .4个 8、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )
(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.
A 、1个
B 、2个
C 、3个
D 、4个 9、下列关于概率的描述属于“等可能性事件”的是( ) A .交通信号灯有“红、绿、黄”三种颜色,它们发生的概率 B .掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率
C .小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率
D .小明用随机抽签的方式选择以上三种答案,则A 、B 、C 被选中的概率
10、如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( ) A .三角形的稳定性
B .两点之间线段最短
C .两点确定一条直线
D .垂线段最短
11、如图,在ABC Rt ∆中,
90=∠C ,AD 平分BAC ∠,交
BC 于D ,若1
2
CD BD =,点D 到边AB 的距离为6,则BC
的长是
A .6
B .12
C .18
D .24
A
B
C D
20
40
8060510152025303540
速度
时间
12、如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是( ) A .60° B .70° C .80°
D .90°
二、填空题
13、若x 2+mx+9是一个完全平方式,则m 的值是 .
14.如图,有一小球在如图所示的地板上面自由滚动,则小球在地板上最终停留在黑色区域的概率为 .
15.如图,把一张长方形纸条ABCD 沿EF 折叠,若 561=∠,则EGF ∠应为 .
16.如图,直线l 是四边形ABCD 的对称轴.若AD ∥BC ,则下列结论:(1)AB ∥CD ; (2)BC AB =;(3)BD 平分ABC ∠;(4)CO AO =.其中正确的有 (填序号). 三、解答题
17、计算:()
2014
20201422()0.253
-++-⨯ 已知a m =3,a n =9,则a m+n = _____________
18、先化简,再求值:22
(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12
x =-,1y =
19、(1)如图,方格纸中的每个小方格都是边长
为1个单位的正方形,△ABC的顶点均在格点上,
直线a为对称轴,A和C都在对称轴上.
1、△ABC以直线a为对称轴作△AB1C;
2、若∠BAC=30°,则∠BAB1= _________
3、求△ABB1的面积等于_________
(2)“西气东输”是造福子孙后代的创世纪工程。
现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置。
B
公路
20、一个不透明口袋中装有5个白球和6个红球,这些球除颜色外完全相同,充分搅匀后随机摸球.
(1)如果先摸出一白球,将这个白球放回,再摸出一球,那么它是白球的概率是多少?(2)如果先摸出一白球,这个白球不放回,再摸出一球,那么它是白球的概率是多少?(3)如果先摸出一红球,这个红球不放回,再摸出一球,那么它是白球的概率是多少?
21、如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?
(2)汽车在点A的速度是多少?在点C呢?
(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.
22、如图,已知:点B、E、F、C在同一直线上,∠A=∠D,BE=CF,且AB∥CD.求证:AF∥ED
证明:∵BE=FC
∴BE+EF=FC+EF()
即:∵AB∥CD
∴∠B=∠C()
在△ABF和△DCE中
∠A=∠D
∠B=∠C
BF=CE
∴△ABF≌△DCE()
∴∠AFB=∠DEC()
∴AF∥ED()
23、(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,
∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.
(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?。