高考数学总复习教案:基本不等式

合集下载

基本不等式教案范文

基本不等式教案范文

基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。

2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。

3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。

二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。

三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。

四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。

五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。

请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。

2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。

b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。

d.分组展示结果,学生进行交流与讨论。

e.教师总结不等式的加减和乘除性质。

3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。

b.通过案例讲解不等式证明的具体步骤和技巧。

c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。

(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。

4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。

高考基本不等式求最值教案

高考基本不等式求最值教案

高考基本不等式求最值教案一、教学目标1.理解基本不等式的定义和性质。

2.熟练掌握常见的基本不等式及其证明方法。

3.学会灵活运用基本不等式求解最值的方法。

二、教学内容1.基本不等式的概念和性质。

2.常见的基本不等式及其证明方法。

3.利用基本不等式求解最值问题。

三、教学步骤第一步:导入新知1.通过举例子或是提问的方式,引发学生对不等式最值问题的思考。

2.提出问题:如何通过基础不等式求解最值问题?第二步:学习基本不等式的定义和性质1.讲解基本不等式的定义和性质。

2.写出常见的基本不等式的形式,并讲解其证明方法。

第三步:实例分析1.分析并讲解一些常见的基础不等式的实例。

2.引导学生思考如何通过基础不等式求解最值问题。

第四步:练习和巩固1.教师出示一些基础不等式的练习题,可以分组抢答或是个人作答。

2.针对不同的题型,提供不同的解题思路和方法。

第五步:拓展1.提供一些拓展题目,要求学生通过灵活运用基础不等式来求解最值问题。

2.鼓励学生多思考、多尝试,加强解题的技巧和策略。

第六步:总结与归纳1.和学生一起总结基本不等式的性质和求最值的方法。

2.强调对基础不等式的熟练掌握和灵活运用的重要性。

四、教学重难点1.教学重点:基本不等式的定义和性质。

2.教学难点:灵活运用基本不等式求解最值问题。

五、教学方法1.演示法:通过例子的演示,引导学生掌握基本不等式的性质和求解最值的方法。

2.提问法:通过提问的方式,激发学生的思考和解题的兴趣。

六、教学工具1.教学PPT。

2.黑板、粉笔。

七、教学评价1.教师可以通过观察学生的课堂表现和解题情况来进行评价。

2.学生可以通过课堂练习和作业完成情况来进行自我评价。

通过以上教学设计,学生可以在课堂上系统地学习和巩固基本不等式的概念、性质和求解最值的方法。

在教学过程中,充分发挥学生的主体性,通过提问和解题活动,激发学生的思考和兴趣,确保学生能够真正理解和掌握基本不等式的相关知识,并能够熟练运用解题技巧解决最值问题。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

高三一轮复习基本不等式及其应用的教学设计

高三一轮复习基本不等式及其应用的教学设计

高三数学一轮复习——基本不等式一、教学背景分析1.高考考纲要求:①理解基本不等式及成立条件②能应用基本不等式判断大小和求最值③应用基本不等式解决实际问题和综合问题二.教学目标1.知识与技能(1)通过本节课的学习,能掌握基本不等式并能理解等号成立的条件及几何意义(2)通过基本不等式的复习,能灵活比较大小、求有关最值等应用2.过程与方法(1)通过本节课的学习,能体会基本不等式应用的条件:一正二定三相等(2)通过本节课的学习,能体会应用基本不等式求最值问题解题策略的构建过程(3)能体会例题的变式改变过程,达到灵活应用的能力3.情感态度与价值观(1)通过变式教学,逐步培养学生的探索研究精神(2)通过解题后的反思,逐步培养学生养成解题反思的习惯(3)通过高考试题与教材例题对比教学,培养学生重视基础,勿好高骛远的习惯三.教学重难点:1.重点:正确应用基本不等式进行判断和计算。

2.难点:基本不等式的变形应用。

四、教学方法:以启发引导,探索发现为主导,讲解练习为主线,用一题多解,一题多变突出重点、突破难点,以综合应用提高分析解决问题的能力,培养创新能力。

五、教学过程(二)基本不等式的应用 (,0)a x b y a b x y 、已知=(,1),=(,-1)且⊥> 的最小值为__ 的最小值为__ 2y 的最小值为__ 的最小值为___ 12129,23,______.e e e y e 例3(月基础测试卷已知两单位向量的夹角为的取值范围是+=六、课后备注本堂课是在高三第一轮复习中关于“基本不等式”的一节复习课。

通过递进式的问题设置,让学生对基本不等式的掌握能达到灵活应用的程度。

高中数学教案 第5讲 基本不等式

高中数学教案 第5讲 基本不等式

第5讲基本不等式1.了解基本不等式的证明过程.2.能用基本不等式解决简单的最值问题.3.掌握基本不等式在生活实际中的应用.1.基本不等式ab ≤a +b2(a >0,b >0),等号成立的条件:当且仅当□1a =b 时取等号.2.两个重要的不等式(1)a 2+b 2≥□22ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤(a +b 2)2(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值□32P .(2)已知x ,y 都是正数,如果x +y 的和等于定值S ,那么当x =y 时,积xy 有最大值□414S 2.利用基本不等式求最值要注意:(1)满足“一正,二定,三相等”,忽略某个条件,就会出错.(2)一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致(等号同时成立).常用结论1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤(a +b 2)2≤a 2+b 22(a ,b ∈R ).3.21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).1.思考辨析(在括号内打“√”或“×”)(1)不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.()(2)函数y =x +1x 的最小值是2.()(3)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.()(4)“x >0且y >0”是“x y +yx ≥2”的充要条件.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)已知x >-1,则x +1x +1的最小值为________.解析:x +1x +1=(x +1)+1x +1-1≥2(x +1)×1x +1-1=2-1=1,当且仅当x +1=1x +1,即x =0时等号成立.答案:1(2)若a >0,b >0,且ab =a +b +3,则ab 的最小值为________.解析:由ab =a +b +3≥2ab +3,得ab -2ab -3≥0,解得ab ≥3(ab ≤-1舍去),即ab ≥9,当且仅当a =b =3时取等号.答案:9(3)若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2,此时矩形场地的长、宽分别是________m.解析:设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m ,其中0<x<10,所以面积y =x (10-x )≤(x +10-x 2)2=25,当且仅当x =10-x ,即x =5时,等号成立,所以y max =25.此时矩形的长与宽均为5m.答案:255,5利用基本不等式求最值配凑法例1(1)已知x >2,则4x -2+x 的最小值是________.解析:由x >2知x -2>0,则4x -2+x =4x -2+(x -2)+2≥24x -2·(x -2)+2=6,当且仅当4x -2=x -2,即x =4时取“=”,所以4x -2+x 的最小值是6.答案:6(2)设0<x <32,则函数y =4x (3-2x )的最大值为________.解析:∵0<x <32,∴3-2x >0,y =4x (3-2x )=2[2x (3-2x )]≤22x +(3-2x )22=92,当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈(0,32),∴函数y =4x (3-2x )(0<x <32)的最大值为92.答案:92常数代换法例2(2024·济宁高三月考)若a >0,b >0,3a +2b =6,则2a +3b的最小值为()A .6B .5C .4D .3解析:C因为a >0,b >0,3a +2b =6,所以2a +3b =16(2a +3b )(3a +2b )=16(12+4b a +9a b )≥16(12+24b a ·9a b )=4,当且仅当3a =2b =3时,取等号,即2a +3b的最小值为4.消元法例3(2024·菏泽期中)若正数x ,y 满足x 2+xy -3=0,则4x +y 的最小值是()A .3B .6C .23D .42解析:B因为正数x ,y 满足x 2+xy -3=0,所以y =3x -x ,由y >0,得3x-x >0,因为x >0,所以3-x 2>0,即0<x <3.所以4x +y =3x +3x ≥23x ·3x=6,当且仅当3x =3x,即x =1时等号成立.故选B .反思感悟利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1(1)已知x >0,y >0,且4x +2y -xy =0,则2x +y 的最小值为()A .16B .8+42C .12D .6+42解析:A 由题意可知2x +4y =1,∴2x +y =(2x +y )(2x +4y )=8x y +2yx+8≥28x y ·2yx+8=16,当且仅当8x y =2yx,即x =4,y =8时,等号成立,则2x +y 的最小值为16.(2)(2024·深圳六校质检)已知x>0,y>0,若x+y+xy=3,则xy的最大值为()A.1B.2C.2D.22解析:A法一:由x>0,y>0,得x+y≥2xy,所以x+y+xy=3≥2xy+xy,当且仅当x=y时等号成立.令xy=t(t>0),则t2+2t-3≤0,解得0<t≤1,即0<xy≤1,故0<xy≤1,当且仅当x=y=1时等号成立,xy的最大值为1,故选A.法二:由x+y+xy=3,且x>0,得y=3-xx+1,则xy=x(3-x)x+1=-x2+3xx+1,因为x>0,y>0,则3-xx+1>0且x>0,解得0<x<3.设t=x+1∈(1,4),则x=t-1,xy=-x2+3xx+1=-(t-1)2+3(t-1)t=-t2+5t-4t=-t-4t+5=-(t+4t)+5≤-2t·4t+5=1,当且仅当t=4t,即t=2,也即x=y=1时等号成立,所以xy的最大值为1,故选A.(3)已知x>1,则y=x-1x2+3的最大值为________.解析:令t=x-1,∴x=t+1,∵x>1,∴t>0,∴y=t(t+1)2+3=tt2+2t+4=1t+4t+2≤124+2=16,当且仅当t=4t,t=2,即x=3时,等号成立,∴当x=3时,y max=1 6 .答案:1 6利用基本不等式求参数值或取值范围例4(1)当x>a时,2x+8x-a的最小值为10,则a=()A.1B.2 C.22D.4解析:A2x+8x-a=2(x-a)+8x-a+2a≥22(x-a)×8x-a+2a=8+2a,即8+2a=10,故a=1.(2)已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为________.解析:已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,只需求(x+y)(1x+ay)的最小值大于或等于9,∵(x+y)(1x+ay)=1+a+yx+axy≥a+2a+1=(a+1)2,当且仅当y=ax时,等号成立,∴(a+1)2≥9,∴a≥4,即正实数a的最小值为4.答案:4反思感悟利用基本不等式求最值及最值成立的条件,可确定某些参数的范围.训练2若正实数x,y满足x+y=1,且不等式4x+1+1y<m2+32m有解,则实数m的取值范围是________.解析:因为正实数x,y满足x+y=1,则(x+1)+y=2,所以4x+1+1y=12[(x+1)+y]·(4x+1+1y)=12(5+4yx+1+x+1y)≥1 2(5+24yx+1·x+1y)=92,+1=2y,+y=1,=13,=23时,等号成立,所以4x+1+1y的最小值为92.因为不等式4x+1+1y<m2+32m有解,则m2+32m>92,即2m2+3m-9>0,即(2m-3)(m+3)>0,解得m<-3或m>32.答案:(-∞,-3)∪(32,+∞)基本不等式的实际应用例5长征二号F遥十四运载火箭在设计生产中采用了很多新技术新材料.甲工厂承担了某种材料的生产,并以x千克/时(为保证质量要求1≤x≤10)的速度匀速生产,每小时可消耗A材料(kx2+9)千克,已知每小时生产1千克该产品时,消耗A材料10千克.(1)设生产m千克该产品,消耗A材料y千克,试把y表示为x的函数;(2)要使生产1000千克该产品消耗的A材料最少,工厂应选取何种生产速度?并求消耗的A材料最少为多少.解:(1)由题意得k+9=10,解得k=1,因为生产m千克该产品需要的时间是mx,所以y=mx(kx2+9)=m(x+9x),1≤x≤10.(2)由(1)知,生产1000千克该产品消耗的A材料为y=1000(x+9x)≥1000×29=6000(千克).当且仅当x=9x,即x=3时,等号成立,故工厂应选取3千克/时的生产速度,此时消耗的A材料最少,最少为6000千克.反思感悟1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.训练3某校为该校生物兴趣小组分配了一块面积为32m 2的矩形空地,该生物兴趣小组计划在该空地上设置三块全等的矩形试验区,如图,要求矩形试验区的四周各空0.5m ,各试验区之间也空0.5m .则每块试验区的面积的最大值为________m 2.解析:设矩形空地的长为x m ,则宽为32xm ,依题意可得,试验区的总面积S =(x -0.5×4)0.5×34-x -64x≤34-2x ×64x=18,当且仅当x =64x,即x =8时等号成立,易知x =8符合题意,所以每块试验区的面积的最大值为18÷3=6(m 2).答案:6限时规范训练(五)A 级基础落实练1.下列函数中,最小值为2的是()A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =sin x +1sin x (0<x <π2)解析:C 当x <0时,y =x +2x <0,故A 错误;y =x 2+3x 2+2=x 2+2+1x 2+2≥2,当且仅当x2+2=1x2+2,即x2=-1时取等号,又x2≠-1,故B错误;y=e x+e-x≥2e x·e-x=2,当且仅当e x=e-x,即x=0时取等号,故C正确;当x∈(0,π2)时,sin x∈(0,1),y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,因为sin x∈(0,1),故D错误.2.已知a>0,b>0,若2a+b=4,则ab的最大值为()A.14B.4C.12D.2解析:D由题意得4=2a+b≥22ab,即2≥2ab,两边平方得4≥2ab,∴ab≤2,当且仅当a=1,b=2时,等号成立,∴ab的最大值为2.3.(2024·六安金寨县青山中学期末)已知x>2,y=4x+1x-2,则y的最小值为()A.8B.10C.12D.14解析:C∵x>2,∴y=4x+1x-2=4(x-2)+1x-2+8≥24(x-2)·1x-2+8=12,当且仅当4(x-2)=1x-2,即x=52时取等号,故选C.4.(2024·长沙雅礼中学第三次月考)已知x>0,y>0,且x+y=7,则(1+x)(2+y)的最大值为()A .36B .25C .16D .9解析:B法一:由x +y =7,得(x +1)+(y +2)=10,则(1+x )(2+y )≤(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立,所以(1+x )·(2+y )的最大值为25.故选B .法二:因为x +y =7,所以y =7-x ,因为x >0,y >0,所以0<x <7,则(1+x )(2+y )=(1+x )(9-x )=-x 2+8x +9=-(x -4)2+25≤25,所以当x =4,y =3时,(1+x )(2+y )取得最大值25.故选B .5.(2023·忻州联考(二))已知0<a <2,则1a +92-a 的最小值是()A .4B .6C .8D .16解析:C 因为0<a <2,所以1a >0,92-a >0,则1a +92-a =12[a +(2-a )](1a +92-a )=12(1+9a 2-a +2-a a +9)=5+12(9a2-a +2-a a)≥5+9a 2-a ·2-aa=8,当且仅当9a 2-a =2-a a ,即a =12时等号成立,所以1a +92-a 的最小值为8.6.(多选)(2024·安徽名校联考)已知实数a ,b 满足a >b >0且a +b =2,则下列结论中正确的有()A .a 2+b 2>2B .8a +2b ≥9C .ln a +ln b >0D .a +1a >b +1b解析:AB对于A ,因为a >b >0且a +b =2,由基本不等式a 2+b 2>2ab ,得a 2+b 2=12[a 2+b 2+(a 2+b 2)]>12(a 2+b 2+2ab )=12(a +b )2=2(或由不等式a 2+b 22>(a +b 2)2直接得到),故A 正确;对于B ,8a +2b =12(8a +2b )(a +b )=12(10+8b a +2a b )≥12(10+28b a ·2ab)=9,当且仅当8b a =2a b ,即a =43,b =23时等号成立,故B 正确;对于C ,ln a +ln b =ln(ab )<ln(a +b 2)2=ln 1=0,故C 错误;对于D ,因为ab <(a +b 2)2=1,所以0<ab <1,所以(a +1a )-(b +1b )=(a -b )+b -a ab =(a -b )(1-1ab )=(a -b )(ab -1)ab<0,故D 错误.故选AB .7.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥2(x +1)·1(x +1)-2=0,当且仅当x =0时,等号成立.所以y =x 2x +1(x >-1)的最小值为0.答案:08.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系式为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的最大年平均利润是________万元.解析:每台机器运转x 年的年平均利润为y x=18-(x +25x )万元,由于x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大为8万元.答案:89.(2024·张家口部分学校期中)已知a >0,b >0,且有a 2+4ab =16b 2,则a +2b 的最小值为________.解析:(a +2b )2=a 2+4ab +4b 2=16b 2+4b 2≥216b 2×4b 2=16,当且仅当16b 2=4b 2,即b =2,a =4-22时取等号,由于a >0,b >0,所以a +2b ≥4,所以a +2b 的最小值为4.答案:410.(1)当x <32时,求函数y =x +82x -3的最大值;(2)已知0<x <2,求函数y =x 4-x 2的最大值.解:(1)y =12(2x -3)+82x -3+32=-(3-2x 2+83-2x )+32.当x <32时,有3-2x >0,所以3-2x 2+83-2x≥23-2x 2·83-2x =4,当且仅当3-2x 2=83-2x ,即x =-12时,取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以4-x 2>0,则y =x 4-x 2=x 2·(4-x 2)≤x 2+(4-x 2)2=2,当且仅当x 2=4-x 2,即x =2时,取等号,所以y =x 4-x 2的最大值为2.11.已知x >0,y >0,且2x +8y =xy ,求:(1)xy 的最小值;(2)x +y 的最小值.解:(1)∵xy =2x +8y ≥22x ·8y ,即xy ≥8xy ,即xy ≥64,当且仅当2x =8y ,即x =16,y =4时,等号成立,∴xy 的最小值为64.(2)由2x +8y =xy ,得8x +2y=1,则x +y =(8x +2y)(x +y )=10+2x y +8y x ≥10+22x y ·8y x=18.当且仅当2x y =8y x,即x =12,y =6时等号成立,所以x +y 的最小值为18.B 级能力提升练12.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1解析:BC 对于A ,B ,由x 2+y 2-xy =1,得(x +y )2-1=3xy ≤3(x +y 2)2,当且仅当x =y 时取等号,解得-2≤x +y ≤2,所以A 不正确,B 正确;对于C ,D ,由x 2+y 2-xy =1,得x 2+y 2-1=xy ≤x 2+y 22,当且仅当x =y 时取等号,所以x 2+y 2≤2,所以C 正确,D 不正确.故选BC .13.(多选)(2023·安徽三模)已知正实数a ,b ,c 满足a 2-ab +4b 2-c =0,当c ab取最小值时,下列说法正确的是()A .a =2bB .c =4b 2C .2a +1b -6c 的最大值为1D .2a +1b -6c 的最小值为12解析:AC ∵正实数a ,b ,c 满足a 2-ab +4b 2-c =0,∴c ab a 2-ab +4b 2ab =a b +4b a -1≥2a b ·4b a -1=3,当且仅当a b =4b a ,即a =2b 时等号成立,A 正确;a =2b 时,c =(2b )2-2b 2+4b 2=6b 2,B 错误;2a +1b-6c =1b +1b -66b 2=-1b 2+2b =-(1b -1)2+1,当1b =1,即b =1时,2a +1b -6c的最大值1,C 正确,D 错误.故选AC .14.中华人民共和国第十四届运动会在陕西省举办,某公益团队联系全运会组委会举办一场纪念品展销会,并将所获利润全部用于社区体育设施建设.据市场调查,当每套纪念品(一个会徽和一个吉祥物)售价定为x 元时,销售量可达到(15-0.1x )万套.为配合这个活动,生产纪念品的厂家将每套纪念品的供货价格分为固定价格和浮动价格两部分,其中固定价格为50元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.约定不计其他成本,即销售每套纪念品的利润=售价-供货价格.(1)每套会徽及吉祥物售价为100元时,能获得的总利润是多少万元?(2)每套会徽及吉祥物售价为多少元时,单套的利润最大?最大值是多少元?解:(1)每套会徽及吉祥物售价为100元时,销售量为15-0.1×100=5(万套),供货单价为50+105=52(元),总利润为5×(100-52)=240(万元).(2)设售价为x 元,则销售量为(15-0.1x )万套,供货单价为(50+1015-0.1x )元,单套利润为x -50-1015-0.1x =(x -50-100150-x )元,因为15-0.1x >0,所以0<x <150.所以单套利润为y =x -50-100150-x =-(150-x )+100150-x +100≤100-2(150-x )·100150-x =80,当且仅当150-x =10,即x =140时取等号,所以每套会徽及吉祥物售价为140元时,单套的利润最大,最大值是80元.。

高中数学基本不等式教案

高中数学基本不等式教案

《基本不等式》教学设计方案人教版(A版)普通高中课程标准试验教科书必修第五册天津职业技术师范大学理学院欧阳炽【教学目标】1、知识与技能目标(1)掌握基本不等式,认识其运算结构;(2)了解基本不等式的几何意义及代数意义;(3)能够利用基本不等式求简单的最值。

2、过程与方法目标(1)经历由几何图形抽象出基本不等式的过程;(2)体验数形结合思想。

3、情感、态度和价值观目标(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;(2)体会多角度探索、解决问题。

【能力培养】培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程。

【教学难点】基本不等式等号成立条件。

【教学方法】教师启发引导与学生自主探索相结合【教学工具】课件辅助教学、实物演示实验【教学流程】【教学过程设计】一、创设情景,引入新课如图是在北京召开的第24届国际数学家大会的会标,这是根据赵爽弦图而设计的。

用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相等和不等关系?赵爽弦图1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b那么正方形的边长为。

这样,4个直角三角形的面积的和是2ab,正方形的面积为。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。

2.得到结论:一般的,如果3.思考证明:你能给出它的证明吗?证明:因为当所以,,即4.基本不等式1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式用分析法证明:要证(1)只要证(2)要证(2),只要证 a+b-0 (3)要证(3),只要证(-)(4)显然,(4)是成立的。

第2节 基本不等式--2025年高考数学复习讲义及练习解析

第2节  基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。

基本不等式教案

基本不等式教案

基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。

(2)掌握运用基本不等式求最值的方法和条件。

2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。

(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。

3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

二、教学重难点1、教学重点(1)基本不等式的内容及证明。

(2)运用基本不等式求最值的方法和条件。

2、教学难点(1)基本不等式的证明。

(2)运用基本不等式求最值时条件的判断和正确应用。

三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。

证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。

2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。

对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。

基本不等式教案

基本不等式教案

基本不等式教案基本不等式教案一、教学目标:1. 知识与技能:了解基本不等式的概念,掌握基本不等式的性质和解法。

2. 过程与方法:培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:培养学生勇于探索、积极思考的学习态度,培养学生的数学兴趣。

二、教学重难点:1. 教学重点:理解基本不等式的概念,掌握基本不等式的性质和解法。

2. 教学难点:应用基本不等式解决实际问题。

三、教学过程:1. 创设情境,引入话题老师可以从学生日常生活中的情境出发,引入基本不等式的话题。

比如,在购物时,我们经常会遇到打折活动,我们可以通过基本不等式来帮助我们选择打折的商品。

2. 提出问题,引导探究老师提出以下问题:如果我们知道一个商品原价为X元,现在打8折,那么能否通过基本不等式确定它的折后价?请同学们思考这个问题,并尝试通过数学的方法来解决。

3. 分组讨论,解答问题将学生分成小组,让他们用已学的不等式知识来解答这个问题。

鼓励学生提出自己的解法,并进行讨论和交流。

4. 总结规律,归纳性质根据学生的讨论和解法,引导学生总结出基本不等式的性质和解法。

比如,原价为X元,打8折后的折后价为0.8X元,可以表示为X > 0.8X,即X > X/5。

5. 练习巩固,拓展应用让学生在课堂上完成一些基本不等式的练习题,巩固所学的知识。

同时,老师也可以引入一些拓展应用的问题,让学生将基本不等式应用到更复杂的实际问题中,培养学生的解决问题的能力。

6. 作业布置布置一些巩固练习题作为课后作业,让学生复习所学的知识。

四、教学反思:本节课通过情境引入的方式,将抽象的数学知识和实际问题相结合,让学生更容易理解和掌握基本不等式的概念和解法。

同时,通过讨论和交流,培养学生的合作和思考能力。

在设计练习题时,要注意题目的难易程度和问题的实际应用性,引导学生理解基本不等式在实际生活中的意义和作用。

2025版高考数学一轮总复习1-4基本不等式

2025版高考数学一轮总复习1-4基本不等式

3.基本不等式求最值
2
(1)设,为正数,若积等于定值,那么当 = 时,和 + 有最小值_____
(简记为:积定和最小).
(2)设,为正数,若和 + 等于定值,那么当 =
(简记为:和定积最大).
1 2

时,积有最大值_____
4
常用结论
1.常用推论
(1) +
≥ 2 + 2 2,
命题角度3 换元法求最值
例3 【多选题】(2022年新课标Ⅱ卷)若,满足 2 + 2 − = 1,则(
A. + ≤ 1
B. + ≥ −2

C. 2 + 2 ≤ 2

D. 2 + 2 ≥ 1
)
解:由 2 + 2 − = 1,得 +
2
+

等式,其中,____叫做正数,的算术平均数,_____叫做正数,的几何平均数.基
2
不小于
本不等式表明:两个正数的算术平均数________它们的几何平均数.
2.几个重要不等式
重要不等式
2
2
−2

2 +2
2
使用前提
等号成立条件
> 0
_______
= −
________

≤ −2
− ⋅
当 = −1时等号成立,故B正确.
对于D,显然存在 = 4,使得 +
1

5
2
= < 2 2,故D错误.故选B.
1

= −2,当且仅
2.(2020年上海卷)下列不等式恒成立的是 (

高考数学复习专题 基本不等式

高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。

2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。

3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。

2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。

4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。

2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。

3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。

4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。

5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。

6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。

7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。

二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。

题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。

2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。

《基本不等式》教案

《基本不等式》教案

《基本不等式》教学设计教材:人教版中学数学必修5第三章一、教学目标1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想:2.进•步提炼、完善其本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基木不等式的相识,提高逻辑推理论证实力:3.结合课本的探究图形,引导学生进•步探究基本不等式的几何说明,强化数形结合的思想:4.借助例1尝试用其本不等式解决简洁的增值问题,通过例2与其变式引导学生领悟运用基本不等式向“空的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的实力,体会方法与策略.以上教学目标结合了教学实际,将学问与实力、过程与方法、情感看法价值观的三维目标融入各个教学环节.二、教学重点和难点内<a+b K点,应用数形结合的思想理解基本不等式,并从不同角度探究不等式"T的证明过程;难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.动手操作,几何引入如图是2002年在北京召开的第24届国际数学家大会会标,会标是依据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现/以形证数、形数统一、代数和几何是紧密结合、互不行分的.探究一:在这张“弦图”中能找出•些相等关系和不等关系吗?在正方形48CD中有4个全等的直角三处形.设直角三角形两条直角边长为40,则正方形的边长为"于是,4个直角三角形的面积之和S L.,正方形的面积S?=/+从.由图可知乡>$,即3产>加探究二;先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折春).假设两个正方形的面积分别为。

和b(αNb),考察两个直角三角形的面积与矩形的面积,你能发觉一个不等式吗?加4a+b通过学生动手操作,探究发觉:22.代数证明,得出结论依据上述两个几何背景,初步形成不等式结论:若aMJΓ,则/+从>2曲.若如尤,则匹吟学生探讨等号取到状况,老师演示几何画板,通过展示图形动画,使学生直•观感受不等关系中的相等条件,从而进一步完善不等式结论:KVa+b(1)若aMR.,则/.乂工9;(2)若aMR.,则“~请同学们用代数方法给出这两个不等式的证明.证法一(作差法>:炉♦户之2而,“初”时取等号.(在该过程中,可发觉久》的取值可以是全体实数)证法二(分析法):由FaMR.,「是要证明毕而只要证明a+b≥.汨,即证Ja+√⅛-2√afc>0f。

高考数学复习知识点讲解教案第4讲 基本不等式

高考数学复习知识点讲解教案第4讲 基本不等式

− 2 = 3 ≤
2
3 + 2
,
4
2
≤ 8,即 + ≤ 2 2,故C正确;对于D,由 > 0, > 0, + − = 2,
(当且仅当 =
2
时,等号成立),得
≤ 4,故D错误.故选BC.
+
2

− 2 = ≤
2
2
+
2
,
探究点二 变形用基本不等式求最值
微点1 配凑法
4
(简记:和定积最大)
常用结论
1.若 > 0, > 0,则1
2
1
+

≤ ≤
2.当 > 0时,函数 = +
数 = +




+
2

2 +2
,当且仅当
2
= 时,等号成立.
> 0 在 = 处取得最小值2 ;当 < 0时,函
> 0 在 = − 处取得最大值−2 .
=
2
2
⋅ 2 2 1 − 2 2 ,再利用基本不等式求解.
> 0,
2
2

2
2
1−
2
2
1
时等号成立,故
2
1−

2
2

2
2
2 +1−2
2
=
2
2
2 的最大值为 .
4
2

4
[总结反思]
基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,利用

高中数学教案《基本不等式》

高中数学教案《基本不等式》

教学计划:《基本不等式》一、教学目标1.知识与技能:学生能够理解并掌握算术平均数与几何平均数之间的关系,理解并掌握基本不等式(如均值不等式、平方和不等式等)的概念、性质及证明方法,能够熟练运用基本不等式解决简单问题。

2.过程与方法:通过观察、比较、归纳等数学活动,引导学生发现基本不等式的规律,培养学生的探究能力和逻辑推理能力;通过例题讲解和练习,提高学生应用基本不等式解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学审美意识和严谨的科学态度,让学生认识到数学在解决实际问题中的重要作用。

二、教学重点和难点●教学重点:基本不等式的概念、性质及证明方法;算术平均数与几何平均数之间的关系。

●教学难点:理解基本不等式的本质,掌握其证明过程,并能灵活运用基本不等式解决实际问题。

三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过生活中常见的分配问题(如分苹果、分蛋糕等),引导学生思考如何公平分配,从而引出算术平均数与几何平均数的概念,为学习基本不等式做好铺垫。

●提出问题:设问“算术平均数总是大于或等于几何平均数吗?”引发学生思考,激发学生探索的兴趣。

●明确目标:介绍本节课的学习目标,即掌握基本不等式的概念、性质及证明方法,并能运用其解决实际问题。

2. 讲授新知(约15分钟)●概念讲解:详细讲解算术平均数与几何平均数的定义,通过具体例子说明两者的区别与联系。

●不等式呈现:给出基本不等式的数学表达式,结合实例解释其含义,让学生初步感受不等式的性质。

●证明过程:通过代数方法或几何直观证明基本不等式,注重证明过程的逻辑性和条理性,让学生理解不等式的来源和依据。

3. 深入探究(约10分钟)●性质探讨:引导学生探讨基本不等式的性质,如对称性、传递性等,加深对不等式的理解。

●案例分析:选取典型例题,分析如何运用基本不等式解决问题,强调解题思路和步骤。

●学生讨论:组织学生进行小组讨论,分享自己对基本不等式的理解和应用心得,促进思维的碰撞和融合。

高中数学第六章不等式教案

高中数学第六章不等式教案

高中数学第六章不等式教案教学目标:学习并掌握不等式的基本概念,学会解决一元一次不等式和一元二次不等式;通过练习和应用,提高学生解题的能力和思维逻辑。

教学内容:1. 不等式的基本概念2. 一元一次不等式的解法3. 一元二次不等式的解法4. 不等式的综合运用教学重点和难点:一元一次不等式和一元二次不等式的解法,以及不等式的综合运用。

教学方法:讲授相结合,引导学生主动思考和解题练习。

教学过程:一、导入(5分钟)教师引导学生回顾上节课所学的不等式相关知识,激发学生对不等式的兴趣和好奇心。

二、讲解不等式的基本概念(10分钟)1. 引导学生理解不等式的定义和符号表示。

2. 介绍不等式的性质和基本性质。

三、讲解一元一次不等式的解法(15分钟)1. 讲解一元一次不等式的基本求解方法。

2. 通过例题解析,让学生掌握解题技巧和步骤。

四、讲解一元二次不等式的解法(15分钟)1. 引导学生理解一元二次不等式的定义和性质。

2. 通过例题讲解,让学生掌握一元二次不等式的解法方法。

五、综合训练(15分钟)1. 给学生提供一些练习题,让他们通过练习加深对不等式的理解。

2. 引导学生探讨不等式在生活和实际问题中的应用。

六、作业布置(5分钟)布置相应的作业,加强学生对不等式知识的巩固和提高。

七、课堂小结(5分钟)教师对今天的教学内容进行总结,并鼓励学生多多练习,提高解题的能力和思维逻辑。

教学反思:通过本节课的教学,学生应该能够掌握不等式的基本概念和解法方法,培养其解题思维和逻辑推理能力,进一步提高数学学习的兴趣和能力。

高三数学一轮复习基本不等式说课稿(基本不等式及应用)

高三数学一轮复习基本不等式说课稿(基本不等式及应用)

高三数学一轮复习基本不等式说课稿(基本不等式及应用)二、教学目标分析(一)教学目标:1.理解利用基本不等式求最值的原理2.掌握利用基本不等式求最值的条件3.会用基本不等式解决简单的最值问题4.能综合运用函数关系,基本不等式解决一些实际问题(二)解析:(1)就是指从形式上理解如何才能构建出用均值不等式的结构(2)就是指能从形式上配凑出用均值不等式的结构,并把握住三大条件:“一正;二定;三相等教学目标:进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。

通过应用问题的解决,明确解决应用题的一般过程。

这是一个过程性目标。

借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式2b a ab +≤的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。

结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。

三、教学重难点分析在用基本不等式解决最值时,学生往往容易忽视基本不等式2b a ab +≤使用的前提条件0,>b a ,同时又要注意区别基本不等式ab b a 222≥+的使用条件为R b a ∈,。

因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。

而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。

在具体的题目中,“正数条件往往易从题设中获得解决”,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.常经过配凑、裂项、分离常数等变形手段,创设一个应用均值不等式的情境.因此,“定值”条件决定着均值不等式应用的可行性,这是解题成败的关键.四、说教学过程教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。

2.2基本不等式(教案)——高中数学人教A版(2019)必修第一册

2.2基本不等式(教案)——高中数学人教A版(2019)必修第一册

专题2:基本不等式1.≤a +b 2(1)基本不等式成立的条件:a >0,b >0 ;(2)等号成立的条件:当且仅当a =b 时取等号.注意:(1)a +b 2和ab 分别叫a ,b 的算术平均数和几何平均数 ;(2)两种重要变形:①a +b ab ≤⎝⎛⎭⎫a +b 22 ;2.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,则x +y x =y 时,和x +y 有最小 值2p .(简记:积定和最小 )(2)如果和x +y 是定值p ,则xy ≤⎝⎛⎭⎫a +b 22 ,那么当且仅当x =y 时,xy 有最大 值p 24.(简记:和定积最大 ) 3.几个重要的不等式(1)a 2+b 2≥ 2ab (a ,b ∈R); (2)b a +a b≥2 (a ,b 同号 ); (3)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).※考点自测1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x的最小值是2.( × ) (2)当x >1时,函数y =x +1x的最小值等于2.( × ) (3)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (4)若a >0,则a 3+1a2的最小值为2a .( × ) 2.设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82答案 C3.若函数y =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C4.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.答案 25 m 25.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________.答案 116※题型讲练题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________. (2)函数y =x 2+2x -1(x >1)的最小值为________. 答案 (1)1 (2)23+2命题点2 “1”字代换法求最值例2 (1)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为 .(2)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是 .答案 (1)16 (2)92命题点3 换元法求最值例3 (1)函数y =x -1x +3+x -1的最大值为________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 (1)15 (2)6(2)已知0<x <12,则y =12x (1-2x )的最大值为 .(3)已知x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为_____.答案 (1)C (2)116 (3)2题型二 利用基本不等式解决恒成立问题例4 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为() A .9 B .12 C .18 D .24(2)若对任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.答案 (1)B (2)a ≥15.变式训练2:(1)当x <32时,不等式a ≥x +82x -3恒成立,则实数a 的取值范围是________.(2)若对于任意x ∈N *,x 2+ax +11x +1≥3恒成立,则a 的取值范围_______.答案 (1) a ≥-52 (2)[-83,+∞)变式训练3:(1)如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36 m 长的钢筋网材料,则每间虎笼的长= ,宽= 时,可使每间虎笼面积最大,最大面积为 . 答案 长为4.5 m ,宽为3 m 时,面积最大272. (2)已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9. 证明: 因为a >0,b >0,a +b =1,所以1+1a =1+a +b a =2+b a. 同理1+1b =2+a b. 所以(1+1a )(1+1b )=(2+b a )(2+a b) =5+2(b a +a b)≥5+4=9. 所以(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立).※课后练习(时间:45分钟)1.下列不等式中,一定正确的是( )A .a +4a≥4 B .a 2+b 2≥4ab C .ab ≥a +b 2 D .x 2+3x2≥2 3 答案:D2.已知x >0,y >0,x +y =3,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D3.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A .1ab ≤14B .1a +1b≤1 C .ab ≥2 D .a 2+b 2≥8 答案 D4.正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B .94C .9D .16 答案 B5.设a >0,b >0,且不等式1a +1b +k a +b≥0恒成立,则实数k 的最小值等于( ) A .0 B .4 C .-4 D .-2答案 C6.若y =x +1x -2(x >2)在x =a 处取最小值,则a 等于 . 答案 37.已知x ,y >0,且4x +3y =12,则xy 的最大值为_______.答案:38.设0<x <2,则函数y =x (4-2x )的最大值为 .答案 29.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)答案:16010.已知不等式(x +y )()1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是________.答案: 411.已知正数x ,y 满足:x +2y -xy =0,则x +2y 的最小值为 .答案 812.正数x ,y 满足1x +9y=1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )()1x +9y =19+2y x +9x y ≥19+2 2y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.13.已知a 、b 、c 都是正实数,且满足9a +b =ab ,求使4a +b ≥c 恒成立的c 的取值范围.解:9a +b =ab ,故9b +1a=1, 所以4a +b =(4a +b )(9b +1a )=13+36a b +b a ≥13+236a b ·b a=25,即4a +b ≥25, 当且仅当36a b =b a,即b =6a 时等号成立. 而c >0,所以要使4a +b ≥c 恒成立,c 的取值范围为0<c ≤25.14.求函数y =x 2+7x +10x +1(x >-1)的最小值. 解析 ∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2 (x +1)4x +1+5=9. 当且仅当x +1=4x +1,即x =1时,等号成立. ∴当x =1时,函数y =x 2+7x +10x +1(x >-1)的最小值为9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章不等式第3课时基本不等式(对应学生用书(文)、(理)89~90页)考情分析考点新知掌握基本不等式,能利用基本不等式推导不等式,能利用基本不等式求最大(小)值.了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.1. (必修5P91习题7改编)若x>0,则x+2x的最小值为________.答案:2 2解析:∵ x>0,∴x+2x≥2x·2x=22,当且仅当x=2时等号成立.2. (必修5P94复习题8改编)设x<0,则y=3-3x-4x的最小值为________.答案:3+4 3解析:∵x<0,∴y=3-3x-4x=3+(-3x)+⎝⎛⎭⎫-4x≥3+2(-3x)·⎝⎛⎭⎫-4x=3+43,当且仅当x=-233时等号成立,故所求最小值为3+4 3.3. (必修5P88例2改编)若x>-3,则x+2x+3的最小值为________.答案:22-3解析:∵ x+3>0,∴x+2x+3=(x+3)+2x+3-3≥2(x+3)×2x+3-3=22-3.4. (必修5P91练习题2改编)设x,y∈R,且x+y=5,则3x+3y的最小值是________.答案:18 3解析:3x+3y≥23x·3y=23x+y=235=183,当且仅当x=y=52时等号成立.5. (必修5P88例2改编)已知函数f(x)=x+ax-2(x>2)的图象过点A(3,7),则此函数的最小值是________.答案:6解析:∵函数f(x)=x+ax-2(x>2)的图象过点A(3,7),即7=3+a,∴a=4.∵ x-2>0,∴f(x)=(x-2)+4x-2+2≥2(x-2)·4x-2+2=6,当且仅当x=4时等号成立,故此函数的最小值是6.1. 算术平均数与几何平均数对于正数a ,b ,我们把a +b2称为a 、b 的算术平均数,ab 称为a 、b 的几何平均数. 2. 基本不等式ab ≤a +b2(1) 基本不等式成立的条件:a>0,b>0;(2) 等号成立的条件:当且仅当a =b 时取等号;(3) 结论:两个非负数a ,b 的算术平均数不小于其几何平均数. 3. 拓展:若a >0,b >0,21a +1b ≤ab ≤a +b 2≤a2+b22,当且仅当a =b 时等号成立.[备课札记]题型1 利用基本不等式证明不等式例1 已知x>0,y>0,求证:1x +1y ≥4x +y.证明:原不等式等价于(x +y)2≥4xy ,即(x -y)2≥0,显然成立.故原不等式得证. 变式训练(1) 若a>b>c ,求证:1a -b +1b -c ≥4a -c ;(2) 若a>b>c ,求使得1a -b +1b -c ≥ka -c恒成立的k 的最大值.证明:(1) 令a -b =x ,b -c =y ,则a -c =x +y.原不等式等价于1x +1y ≥4x +y ,由作差法可证该不等式成立,故原不等式成立.(2) 由(1)可知,1a -b +1b -c ≥4a -c 恒成立,而1a -b +1b -c ≥ka -c ,k 的最大值为4.题型2 利用基本不等式求最值 例2 (1) 已知x<54,求函数y =4x -2+14x -5的最大值;(2) 已知x>0,y>0且1x +9y =1,求x +y 的最小值. 解:(1) x<54,∴ 4x -5<0.∴ y =4x -5+14x -5+3=-[(5-4x)+1(5-4x )]+3≤-2(5-4x )1(5-4x )+3=1,ymax =1.(2) ∵ x>0,y>0且1x +9y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +9y =10+9x y +y x ≥10+29x y ·yx =16,即x +y 的最小值为16.备选变式(教师专享) 已知函数f(x)=x2+2x +ax,x ∈[1,+∞). (1) 当a =4时,求函数f(x)的最小值;(2) 若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.解:(1) 由a =4,∴f(x)=x2+2x +4x =x +4x +2≥6,当x =2时,取得等号.即当x =2时,f(x)min =6.(2) x ∈[1,+∞),x2+2x +a x>0恒成立,即x ∈[1,+∞),x2+2x +a>0恒成立.等价于a>-x2-2x ,当x ∈[1,+∞)时恒成立, 令g(x)=-x2-2x ,x ∈[1,+∞),∴a>g(x)max =-1-2×1=-3,即a>-3. ∴a 的取值范围是()-3,+∞.题型3 利用基本不等式解应用题例3 如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.(1) 现有可围成36m 长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大? (2) 若使每间虎笼的面积为24m2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?解:(1) 设每间虎笼长为xm ,宽为ym , 则⎩⎪⎨⎪⎧4x +6y =36,x>0,y>0,面积S =xy. 由于2x +3y≥22x·3y =26xy ,所以26xy ≤18,得xy≤272,即S≤272,当且仅当2x =3y 时取等号.则⎩⎪⎨⎪⎧2x =3y 2x +3y =18⎩⎪⎨⎪⎧x =4.5,y =3, 所以每间虎笼长、宽分别为4.5m 、3m 时,可使面积最大.(2) 设围成四间虎笼的钢筋网总长为lm ,则l =4x +6y ,且xy =24,所以l =4x +6y =2(2x +3y)≥2×22x·3y =46xy =4×6×24=48(m),当且仅当2x =3y 时取等号.⎩⎪⎨⎪⎧xy =242x =3y ⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长、宽分别为6m 、4m 时,可使钢筋网的总长最小为48m. 备选变式(教师专享)某造纸厂拟建一座平面图形为矩形且面积为162 m2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m2,中间两道隔墙建造单价为248元/m2,池底建造单价为80元/m2,水池所有墙的厚度忽略不计.(1) 试设计污水处理池的长和宽,使总造价最低,并求出最低总造价; (2) 若由于地形限制,该池的长和宽都不能超过16 m ,试设计污水池的长和宽,使总造价最低,并求出最低总造价.解:(1) 设污水处理池的宽为x m ,则长为162x m.总造价为f(x)=400×⎝⎛⎭⎫2x +2·162x +248×2x +80×162=1 296x +1 296×100x+12 960=1296⎝⎛⎭⎫x +100x +1 2960≥1 296×2x·100x +12 960=38 880元.当且仅当x =100x (x>0),即x =10时取等号.∴ 当长为16.2 m ,宽为10 m 时总造价最低,最低总造价为38 880元.(2) 由限制条件知⎩⎪⎨⎪⎧0<x≤16,0<162x ≤16,∴ 1018≤x ≤16.设g(x)+x +100x ⎝⎛⎭⎫∴ 1018≤x≤16,由函数性质易知g(x)在⎣⎡⎦⎤1018,16上是增函数,∴ 当x =1018时(此时162x =16),g(x)有最小值,即f(x)有最小值1 296×⎝⎛⎭⎫1018+80081+12 960=38 882(元).∴ 当长为16 m ,宽为1018 m 时,总造价最低,为38 882元.1. (2013·上海)设常数a>0,若9x +a2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.答案:⎣⎡⎭⎫15,+∞解析:9x +a2x ≥29x·a2x =6a ,所以6a≥a +1,即a≥15.2. 已知正实数x 、y 、z 满足2x(x +1y +1z )=yz ,则⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z 的最小值为________.答案: 2解析:∵ 2x ⎝⎛⎭⎫x +1y +1z =yz ,∴ 1y +1z =yz 2x -x ,∴ ⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z =x2+x ⎝⎛⎭⎫1y +1z +1yz =yz 2+1yz ≥ 2.3. 已知P 是△ABC 的边BC 上的任一点,且满足AP →=xAB →+yAC →,x 、y ∈R ,则1x +4y 的最小值是________. 答案:9解析:因为B 、C 、P 三点共线且AP →=xAB →+yAC →,故x >0,y >0且x +y =1,所以1x +4y =⎝⎛⎭⎫1x +4y(x +y)=5+y x +4xy ≥9.4. 若不等式4x2+9y2≥2kxy 对一切正数x 、y 恒成立,则整数k 的最大值为________. 答案:3解析:原不等式可化为4x y +9y x ≥2k 而4x y +9yx ≥12,∴ 2k ≤12,则整数k 的最大值为3. 5. 设正项等差数列{an}的前2 011项和等于2 011,则1a2+1a2 010的最小值为________. 答案:2解析:由题意得S2 011=2 011(a1+a2 011)2=2 011,∴ a1+a2 011=2.又a2+a2 010=a1+a2 011=2,∴ 1a2+1a2 010=12⎝⎛⎭⎫1a2+1a2 010(a2+a2 010)=12(a2 010a2+a2a2 010)+1≥2.1. a2+b2≥2ab 成立的条件是a ,b ∈R ,而a +b2≥ab 成立的条件是a≥0,b ≥0,使用时要注意公式成立的前提条件.2. 在运用基本不等式时,要特别注意“拆、拼、凑“等技巧,使其满足基本不等式中的”一正“(即条件中字母为正数),”二定“(不等式的另一边必须为定值),”三相等“(等号取得的条件).3. 正确理解定理:“和一定,相等时积最大;积一定,相等时和最小“.4. 连续使用公式两次或以上,要求同时满足任何一次的字母取值存在且一致.5. 函数y =ax +bx (a>0,b>0)的单调性要掌握,特别是运用基本不等式不能满足“三相等“时.请使用课时训练(A )第3课时(见活页).[备课札记]。

相关文档
最新文档