2017-2018学年四川省南充市九年级(上)期末数学试卷
南充市九年级上学期期末数学试卷

南充市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知(x2+2x﹣3)0=x2﹣3x+3,则x的值为()A . 2B . ﹣1或﹣2C . 1或2D . 12. (2分)(2020·金华模拟) 如图所示的几何体的左视图是()A .B .C .D .3. (2分)若A(a,b),B(a-2,c)两点均在函数的图象上,且a<0,则b与c的大小关系为()A . >cB . b<cC . b=cD . 无法判断4. (2分)如图,DE∥BC,EF∥AB,现得到下列结论:,,,其中正确的比例式的个数有()A . 4个B . 3个C . 2个D . 1个5. (2分) (2016九上·仙游期末) 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球100次,其中20次摸到黑球,你估计盒中大约有白球()A . 20个B . 28个C . 36个D . 32个6. (2分)(2020·宜昌模拟) 将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是()A . (4,2)B . (2,4)C . (,3)D . (3,)7. (2分)将函数y=2(x+1)2﹣3的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A . (﹣3,2)B . (3,8)C . (1,﹣8)D . (1,2)8. (2分)(2020·达县) 如图,,,点A在上,四边形是矩形,连接、交于点E,连接交于点F.下列4个判断:① 平分;② ;③ ;④若点G是线段的中点,则为等腰直角三角形.正确判断的个数是()A . 4B . 3C . 2D . 19. (2分)如图,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将()A . 变大B . 变小C . 不变D . 无法判断10. (2分)已知下列命题:①若a2≠b2 ,则a≠b;②垂直于弦的直径平分这条弦;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是()A . ②③④B . ①②④C . ③④⑤D . ①③⑤11. (2分) (2020九下·襄阳月考) 如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=,则AD的长为()A .B . 2C . 3D .12. (2分)(2017·扬州) 如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A . b≤﹣2B . b<﹣2C . b≥﹣2D . b>﹣2二、填空题 (共4题;共5分)13. (1分) (2018九上·宁波期中) 已知线段a=2,b=8,则a,b的比例中项线段长等于________.14. (1分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有一旗杆BC,旗杆顶端B 点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为________.15. (2分) (2019八下·北京期中) 在平面直角坐标系中,过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长与面积相等,则这个点叫做“和谐点”.如图1,矩形ABOC的周长与面积相等,则点A是“和谐点”,(1)点,其中“和谐点”是________;(2)如图2,若点是双曲线上的“和谐点”,请直接写出所有满足条件的P点坐标________.16. (1分)如图,把矩形纸片沿着过点的直线折叠,使得点落在边上的点处,若,则∠DAE=________三、解答题 (共7题;共62分)17. (5分)(2020·宝安模拟) 计算: +|1- |-3tan30°+(2020-π)018. (10分) (2019八下·诸暨期中) 解方程:(1);(2)19. (7分)(2017·山西) 从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.________(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D 表示)20. (5分)(2019·北部湾模拟) 清泉阁是南宁园博园中的最高建筑.某数学兴趣小组利用周末到清泉阁进行室外测量实践活动.如图,在清泉阁最大的观景台上,选取测量点D,测得点D到清泉阁最高点A的仰角∠ADE=58°,点D到目标点C的俯角∠FDC=32°,DE=20m.已知清泉阁的高AB=75m,请计算测量点D到目标点C的距离(结果取整数).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21. (10分)(2017·河南模拟) 某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示;(1)求y(千克)与销售价x的函数关系式;(2)该经销商想要获得150元的销售利润,销售价应定为多少?22. (15分) (2018八下·宁远期中) 如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB 于E,(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.23. (10分)(2017·碑林模拟) 如图,抛物线y=﹣x2+x+6与x轴交于A,B两点,点A在点B的左侧,抛物线与y轴交于C,抛物线的顶点为D,直线l过点C交x轴于E(6,0).(1)写出顶点D的坐标和直线l的解析式.(2)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于NN连接CN,将△CMN 沿CN翻转,M的对应点为M′.探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、15-2、16-1、三、解答题 (共7题;共62分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
2016-2017年四川省南充市初三上学期期末数学试卷及答案

2016-2017学年四川省南充市初三上学期期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)若函数y=(m﹣1)x2+3x+1是二次函数,则有()A.m≠0B.m≠1C.x≠0D.x≠12.(3分)如图是一个中心对称图形,它的对称中心是()A.点A B.点B C.点C D.点A或点C 3.(3分)如图,点C在以AB为直径的半圆O上(与点A,B不重合),则∠ACB ()A.是锐角B.是直角C.是钝角D.大小不能确定4.(3分)下列事件是随机事件的是()A.两个整数相加,和是整数B.两个整数相减,差是整数C.两个整数相乘,积是整数D.两个整数相除,商是整数5.(3分)如果关于x的一元二次方程mx2+x+m=0有两个实数根,那么()A.两根互为相反数B.两根相等C.两根互为倒数D.两根和为16.(3分)黄山农场水稻2014年平均每公顷产8000千克,2016年平均每公顷产9000千克,设水稻每公顷产量年平均增长率为x,那么()A.8000(1+x)2=9000B.9000(1+x)2=9000C.8000(1﹣x)2=9000D.9000(1﹣x)2=90007.(3分)小红和其他2名同学排成一排拍照,则小红排在正中间的概率是()A.B.C.D.8.(3分)如果点(a,b)在直线y=﹣x+1上,二次函数y=ax2+bx的图象必经过()A.(﹣1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(1,1)9.(3分)如图,点A,B,C,D是⊙O上顺次4点,OA⊥OB,AE⊥OD于E,当∠C=70°时,∠A的度数是()A.30°B.35°C.40°D.45°10.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x轴的一个交点在点(3,0)和(4,0)之间,下列结论错误的是()A.a﹣b+c>0B.b2=4a(c﹣m)C.2a+c<0D.一元二次方程ax2+bx+c=m﹣1有两个不相等的实数根二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)方程(x﹣1)2=1的解为.12.(3分)从只装有4个红球的袋中随机摸出一球,摸到红球的概率是.13.(3分)二次函数y=x2的图象对称轴左侧上有两点A(a,4),B(b,),则a b.(选填“>”、“<”或“=”)14.(3分)如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是.15.(3分)如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是.16.(3分)如图,某数学兴趣小组将一段长为4的铁丝,围成以A为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形的最大面积为.三、解答题(本大题共9小题,共72分)17.(6分)若x2与x﹣1互为相反数,求x的值.18.(6分)四个大小颜色完全相同,表面分别标有数字2,4,5,5的小球放在盒子中.(1)随机摸一个球,求小球表面上的数字为5的概率;(2)如果同时摸出两个球,球两个球表面上数字之和为偶数的概率.19.(6分)已知抛物线y=x2+bx+c与x轴只有一个公共点为A(2,0),求抛物线与y轴的交点B的坐标.20.(8分)如图,点E是正方形ABCD内一点,将△ABE绕点B顺时针旋转90°到△CBF的位置,点A,E,F恰好在同一直线上.求证:AF⊥CF.21.(8分)为了改善小区环境,某小区决定要在一块一边靠墙(墙长18m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图),设绿化带BC边长为xm,绿化带的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)绿化带的面积能不能为200m2?如果能,求出x的值;如果不能,请说明理由.22.(8分)如图,AB是⊙O的直径,D是上一点,且OD经过AC的中点E,连接DC并延长交AB的延长线于点F.(1)当∠A=16°,求∠F的大小;(2)当⊙O的半径为6,DE=4,求CD的长.23.(10分)已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)请判断x=﹣1是否可为此方程的根,说明理由.(2)设方程的两实根为x1,x2,当2x1+2x2+1=x1x2时,试求k的值.24.(10分)如图,矩形ABCD中,以AB为直径作⊙O,点E是CD的中点,连接BE交⊙O于点F,连接DF并延长交BC于点G.(1)求证:DG是⊙O的切线.(2)如果AB=8,AD=6,求DG的长.25.(10分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0),C(0.4)两点,与x 轴交于另一点B.(1)求抛物线的解析式;(2)点P为抛物线第一象限上的点,求四边形PBOC的最大面积;(3)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.2016-2017学年四川省南充市初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.(3分)若函数y=(m﹣1)x2+3x+1是二次函数,则有()A.m≠0B.m≠1C.x≠0D.x≠1【解答】解:∵函数y=(m﹣1)x2+3x+1是二次函数,∴m﹣1≠0,∴m≠1,故选:B.2.(3分)如图是一个中心对称图形,它的对称中心是()A.点A B.点B C.点C D.点A或点C【解答】解:如图所示:它是一个中心对称图形,它的对称中心是点B.故选:B.3.(3分)如图,点C在以AB为直径的半圆O上(与点A,B不重合),则∠ACB ()A.是锐角B.是直角C.是钝角D.大小不能确定【解答】解:∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°.∴∠ACB是直角,故选:B.4.(3分)下列事件是随机事件的是()A.两个整数相加,和是整数B.两个整数相减,差是整数C.两个整数相乘,积是整数D.两个整数相除,商是整数【解答】解:A、两个整数相加,和是整数是必然事件;B、两个整数相减,差是整数是必然事件;C、两个整数相乘,积是整数是必然事件;D、两个整数相除,商是整数是随机事件;故选:D.5.(3分)如果关于x的一元二次方程mx2+x+m=0有两个实数根,那么()A.两根互为相反数B.两根相等C.两根互为倒数D.两根和为1【解答】解:设方程mx2+x+m=0的两个实数根为α、β,则α+β=﹣,αβ==1,∴α、β互为倒数.故选:C.6.(3分)黄山农场水稻2014年平均每公顷产8000千克,2016年平均每公顷产9000千克,设水稻每公顷产量年平均增长率为x,那么()A.8000(1+x)2=9000B.9000(1+x)2=9000C.8000(1﹣x)2=9000D.9000(1﹣x)2=9000【解答】解:设水稻每公顷产量年平均增长率为x,则2015年平均每公顷产:8000(1+x)千克,2016平均每公顷产:5000(1+x)2千克,那么可得方程:8000(1+x)2=9000.故选:A.7.(3分)小红和其他2名同学排成一排拍照,则小红排在正中间的概率是()A.B.C.D.【解答】解:小红和其他2名同学用甲、乙、丙来表示,则排列方式有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,则甲排在中间的概率是=,即小红排在正中间的概率是;故选:C.8.(3分)如果点(a,b)在直线y=﹣x+1上,二次函数y=ax2+bx的图象必经过()A.(﹣1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(1,1)【解答】解:∵点(a,b)在直线y=﹣x+1上,∴b=﹣a+1,即a+b=1,当x=1时,y=a+b,又∵a+b=1,∴x=1时,y=1,即二次函数图象必过点(1,1).故选:D.9.(3分)如图,点A,B,C,D是⊙O上顺次4点,OA⊥OB,AE⊥OD于E,当∠C=70°时,∠A的度数是()A.30°B.35°C.40°D.45°【解答】解:∵∠C=70°,∴∠BOD=2∠C=140°,∵OA⊥OB,AE⊥OD,∴∠AOB=∠AEO=90°,∴∠AOE=140°﹣90°=50°,∴∠A=90°﹣50°=40°;故选:C.10.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x轴的一个交点在点(3,0)和(4,0)之间,下列结论错误的是()A.a﹣b+c>0B.b2=4a(c﹣m)C.2a+c<0D.一元二次方程ax2+bx+c=m﹣1有两个不相等的实数根【解答】解:对称轴为x=1,且m>0,由对称性可知:抛物线与x轴的另外一个交点在(﹣1,0)与(﹣2,0)之间,∴当﹣1≤x≤3,y>0,且△>0,开口向下,a<0(A)当x=﹣1时,y=a﹣b+c>0,故A正确,(B)∵顶点坐标为(﹣,),∴=m,∴b2=4a(c﹣m),故B正确(C)∵﹣=1,∴b+2a=0,∵a﹣b+c>0,∴3a+c>0,故C错误(D)当y<m时,抛物线与y=m有两个交点,∵y=m﹣1<m,∴一元二次方程ax2+bx+c=m﹣1有两个不相等的实数根,故D正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)方程(x﹣1)2=1的解为x1=2,x2=0.【解答】解:x﹣1=±1,所以x1=2,x2=0.故答案为x1=2,x2=0.12.(3分)从只装有4个红球的袋中随机摸出一球,摸到红球的概率是1.【解答】解:∵从只装有4个红球的袋中随机摸出一球,∴摸到红球的概率是1.故答案为:1.13.(3分)二次函数y=x2的图象对称轴左侧上有两点A(a,4),B(b,),则a<b.(选填“>”、“<”或“=”)【解答】解:∵a=1>0,∴对称轴左侧y随x的增大而减小,∵4>,∴a<b,故答案为<.14.(3分)如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是(﹣1,0).【解答】解:如图,分别作出线段AD和BE的中垂线,中垂线的交点(﹣1,0)为旋转中心,故答案为:(﹣1,0).15.(3分)如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是9m.【解答】解:根据题意,当x=6时,原式=﹣×62=﹣9,即水面离桥拱顶部的距离是9m,故答案为:9m.16.(3分)如图,某数学兴趣小组将一段长为4的铁丝,围成以A为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形的最大面积为1.【解答】解:设半径长是x,则弧长是4﹣2x.则扇形的面积s=x(4﹣2x),即S=﹣x2+2x=﹣(x2﹣2x+1)+1=﹣(x﹣1)2+1.则扇形的面积是最大值是1.故答案是1.三、解答题(本大题共9小题,共72分)17.(6分)若x2与x﹣1互为相反数,求x的值.【解答】解:根据题意得,x2+x﹣1=0,∴△=1﹣4×1×(﹣1)=5>0,则x=.18.(6分)四个大小颜色完全相同,表面分别标有数字2,4,5,5的小球放在盒子中.(1)随机摸一个球,求小球表面上的数字为5的概率;(2)如果同时摸出两个球,球两个球表面上数字之和为偶数的概率.【解答】解:(1)∵4个球表面数字是5的有2种情况,不是5的也有2种情况,∴P==;(球面数字为5)(2)根据题意画树状图如下:共有12种可能的结果,两个球表面数字之和为偶数的有4种情况,则球两个球表面上数字之和为偶数的概率是:=.19.(6分)已知抛物线y=x2+bx+c与x轴只有一个公共点为A(2,0),求抛物线与y轴的交点B的坐标.【解答】解:由题意可知:点A为抛物线的顶点,∴﹣=2∴b=﹣4,∴y=x2﹣4x+c把(2,0)代入y=x2﹣4x+c,∴c=4,∴y=x2﹣4x+4,令x=0代入y=x2﹣4x+4,y=4,∴B(0,4)20.(8分)如图,点E是正方形ABCD内一点,将△ABE绕点B顺时针旋转90°到△CBF的位置,点A,E,F恰好在同一直线上.求证:AF⊥CF.【解答】证明:∵由旋转的性质可得△ABE≌△CBF.∴BE=BF,∠ABE=∠CBF,又∵正方形ABCD中,∠ABC=90°,即∠ABE+∠EBC=90°,∴∠EBC+∠CBF=90°,即∠EBF=90°,∴△BEF是等腰直角三角形,∴∠BEF=∠BFE=45°.∴∠AEB=∠CFB=180°﹣45°=135°.∴∠CFE=∠CFB﹣∠EFB=135°﹣45°=90°.∴AF⊥CF.21.(8分)为了改善小区环境,某小区决定要在一块一边靠墙(墙长18m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图),设绿化带BC边长为xm,绿化带的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)绿化带的面积能不能为200m2?如果能,求出x的值;如果不能,请说明理由.【解答】解:(1)由题意可得,y=x•=,即y与x之间的函数关系式是y=(0<x≤18);(2)绿化带的面积不能为200m2,理由:将y=200代入y=,得200=,解得,x=20,∵20>18,∴绿化带的面积不能为200m2.22.(8分)如图,AB是⊙O的直径,D是上一点,且OD经过AC的中点E,连接DC并延长交AB的延长线于点F.(1)当∠A=16°,求∠F的大小;(2)当⊙O的半径为6,DE=4,求CD的长.【解答】解:(1)如图,连接OC,∵E是AC的中点,∴AE=CE,∴OD⊥AC,,∴∠AOE=∠COE,∵∠BAC=16°,∴∠AOE=∠COE=74°,∴∠DCE=∠AOE=37°,∴∠F=∠DCE﹣∠BAC=37°﹣16°=21°;(2)∵OC=OD=6,DE=4,∴OE=OD﹣DE=2,在Rt△OCE中,由勾股定理得:CE==4,在Rt△DCE中,由勾股定理得:CD==4.23.(10分)已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)请判断x=﹣1是否可为此方程的根,说明理由.(2)设方程的两实根为x1,x2,当2x1+2x2+1=x1x2时,试求k的值.【解答】解:(1)x=﹣1不是此方程的解;理由如下:当x=﹣1时,方程左边=1+2(k+1)+k2=(k+1)2+2≠0,右边=0≠左边,∴x=﹣1不是此方程的根;(2)由根与系数的关系得:x1+x2=2(k+1),x1x2=k2,∵2x1+2x2+1=x1x2,∴4(k+1)+1=k2,解得:k=﹣1(方程无实根,舍去),或k=5,∴k=5.24.(10分)如图,矩形ABCD中,以AB为直径作⊙O,点E是CD的中点,连接BE交⊙O于点F,连接DF并延长交BC于点G.(1)求证:DG是⊙O的切线.(2)如果AB=8,AD=6,求DG的长.【解答】(1)证明:连接OF、OD.∵四边形ABCD是矩形,∴CD∥AB,CD=AB,∠A=90°,∵OA=OB,CE=DE,∴DE=OB,∴OBED是平行四边形,∴OD∥BE,∴∠1=∠3,∠2=∠4,∵OB=OD,∴∠3=∠4,∴∠1=∠2,∵OA=OF,OD=OD,∴△OAD≌△OFD,∴∠A=∠5=90°,∴DG是⊙O的切线.(2)解:∵∠A=∠ABC=90°,∴AD、BC都是⊙O的切线,∵DG是⊙O的切线,∴DF=DA=6,设GB=GF=x,则CG=6﹣x,DG=6+x,∵CD=AB=8,在Rt△GCD中,由勾股定理可得82+(6﹣x)2=(6+x)2,解得x=,∴DG=6+=.25.(10分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0),C(0.4)两点,与x 轴交于另一点B.(1)求抛物线的解析式;(2)点P为抛物线第一象限上的点,求四边形PBOC的最大面积;(3)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣4a经过C(0.4),∴﹣4a=4,a=﹣1,将A(﹣1,0)代入y=﹣x2+bx+4,得﹣1﹣b+4=0,∴b=3.∴抛物线的解析式为y=﹣x2+3x+4;(2)由已知,可设点P的坐标是(x,﹣x2+3x+4)如图1,作PH⊥x轴于H,则OH=x,PH=﹣x2+3x+4,由(1),当﹣x2+3x+4=0时,解得x=﹣1或x=4,∴点B的坐标是(4,0),∴OB=4;∵点C的坐标是(0,4),∴OC=4.=S四边形PHOC+S△PHB=(OC+PH)•OH PH•BH ∴S四边形PBOC=PH(OC+BH)==(﹣x2+3x+4)×4=﹣2x2+8x+8=﹣2(x﹣2)2+16∴当x=2时,四边形PBOC的最大面积是16;(3)∵点D(m,m+1)在第一象限的抛物线上,∴m+1=﹣m2+3m+4,∴m2﹣2m﹣3=0,∴m=﹣1或m=3.∵点D在第一象限,∴点D的坐标为(3,4),如图2,由(1)知,OB=OC=4,∴∠OBC=45°,设点D关于直线BC的对称点为点E,∵C(0,4),∴CD∥AB且CD=3,∴∠ECB=∠DCB=45°,∴点E在y轴上,且CE=CD=3,∴OE=1,∴点E的坐标为(0,1).即点D关于直线BC对称的点的坐标为(0,1).。
四川省南充市九年级上学期期末数学试卷

四川省南充市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·全椒模拟) 如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A .B .C .D . 12. (2分)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A .B .C .D .3. (2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A . 掷一枚正六面体的骰子,出现1点的概率B . 从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C . 抛一枚硬币,出现正面的概率D . 任意写一个整数,它能被2整除的概率4. (2分)已知⊙O的半径为6cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为()A . 0B . 1C . 2D . 无法确定5. (2分)某商店专门销售有关08年北京奥运会吉祥物的玩具,已知一月份的营业额为2万元,三月份的营业额为2.88万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A . 10%B . 15%C . 20%D . 25%6. (2分)已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A . 当k≠0时,方程总有两个不相等的实数解B . 当k=﹣1时,方程有两个相等的实数解C . 当k=1时,方程有一个实数解D . 当k=0时,方程无解7. (2分) (2016九上·江津期中) 将抛物线y=2x2向上平移1个单位,再向右平移2个单位,则平移后的抛物线为()A . y=2(x+2)2+1B . y=2(x﹣2)2+1C . y=2(x+2)2﹣1D . y=2(x﹣2)2﹣18. (2分)如右图,锐角的高CD和BE相交于点O,则图中与相似的三角形有()A . 4个B . 3个C . 2个D . 1个9. (2分)如图,点A在双曲线y=上,点B在x轴上,AD⊥y轴于点D,DC∥AB,交x轴于点C,若四边形ABCD的面积为6,则k的值为()A . -2B . -3C . -4D . -610. (2分)⊙O的两条弦AB与CD相交于点P,PA=3cm,PB=4cm,PC=2cm,则CD=()A . 12cmB . 6cmC . 8cmD . 7cm11. (2分)已知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),那么该抛物线有()A . 最小值﹣2B . 最大值﹣2C . 最小值3D . 最大值312. (2分)(2019·宝鸡模拟) 若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1 , 0),(x2 , 0),且x1<x2 ,图象上有一点M(x0 , y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A . ①③④B . ①②④C . ①②③D . ②③二、填空题 (共6题;共6分)13. (1分)如果是两个不相等实数,且满足,,那么等于________14. (1分) (2016九上·滨海期中) 如图,△ABC内接于圆O,∠P=60°,弧 =弧,则△ABC的特殊形状是________.15. (1分)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE= ________.16. (1分)(2020·宁波模拟) 如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.若∠ABC的平分线BF交AD于点F, DE=4,DF=3,则AF的长为________.17. (1分) (2019九上·莲湖期中) 在实数范围内定义一种运算“*”,其规则为a*b=a2-b2 ,根据这个规则,方程(x+1)*2=0的解为________.18. (1分)如图,在中,,以点C为中心,把逆时针旋转45°,得到,则图中阴影部分的面积为________.三、解答题 (共7题;共71分)19. (5分)已知a、b、c均为实数,且+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.20. (11分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,江南晚报社设计了如下的调查问卷(单选).克服酒驾﹣﹣你认为哪一种方式更好?A.司机酒驾,乘客有责,让乘客帮助监督B.车上张贴“请勿酒驾”的提醒标志C.签订““永不酒驾”保证书D.希望交警加大检查力度E.查出酒驾,追究就餐饭店的连带责任在随机调查了本市全部3000名司机中的部分司机后,整理相关数据并制作了两个不完整的统计图:根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m=________;(2)该市支持选项D的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取90名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?21. (9分) (2017九上·汉阳期中) 如图,将函数y=x2﹣2x(x≥0)的图象沿y轴翻折得到一个新的图象,前后两个图象其实就是函数y=x2﹣2|x|的图象.(1)观察思考函数图象与x轴有________个交点,所以对应的方程x2﹣2|x|=0有________个实数根;方程x2﹣2|x|=2有________个实数根;关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是________;(2)拓展探究①如图2,将直线y=x+1向下平移b个单位,与y=x2﹣2|x|的图象有三个交点,求b的值;②如图3,将直线y=kx(k>0)绕着原点旋转,与y=x2﹣2|x|的图象交于A、B两点(A左B右),直线x=1上有一点P,在直线y=kx(k>0)旋转的过程中,是否存在某一时刻,△PAB是一个以AB为斜边的等腰直角三角形(点P、A、B按顺时针方向排列).若存在,请求出k值;若不存在,请说明理由.22. (6分)如图,在大地电影院,高240cm的银幕AB挂在距离地面OM160cm的墙上,观众的座位设置在离银幕水平距离OC=300cm且坡度i=1:4的斜坡CN上,每排座位之间的水平距离CD=60cm(点D处为第1排座位),假如观看电影时,保持座位靠前,且观看银幕中心的仰角∠FPQ不大于10°为最佳位置(此时假设眼睛距离座位底端EF=120cm).(1)银幕中心距离地面________cm.(2)试问该影院第几排是最佳位置?请通过计算说明理由.(参考数据:sin10°≈0.174,cos10°≈0.985,tan10°≈0.176)23. (10分)如图,有一段15m长的旧围墙AB,现打算利用该围墙的一部分(或全部)为一边,再用32m长的篱笆围成一块长方形场地CDEF.(1)怎样围成一个面积为126m2的长方形场地?(2)长方形场地面积能达到130m2吗?如果能,请给出设计方案,如果不能,请说明理由.24. (15分)(2018·绍兴模拟) 如图,已知点A(0,4)和点B(3,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形ABCD为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC的交点为点E,x轴上的点F,使得以点C、E、F为顶点的三角形与△ABE相似,请求出F点坐标.25. (15分)(2018·德州) 如图1,在平面直角坐标系中,直线与抛物线交于两点,其中 , .该抛物线与轴交于点 ,与轴交于另一点 .(1)求的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△ 和等腰直角△ ,连接 ,试确定△ 面积最大时点的坐标.(3)如图3.连接、 ,在线段上是否存在点 ,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共71分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
四川省南充市九年级上学期数学期末考试试卷

四川省南充市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八下·桐梓月考) 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A . 钝角三角形B . 锐角三角形C . 直角三角形D . 等边三角形2. (2分) (2015九上·宝安期末) 如图,每个小正方形的边长均为1,△ABC和△DEC的顶点均在“格点”上,则 =()A .B .C .D .3. (2分)抛物线y=3x2的顶点坐标是()A . (3,0)B . (0,3)C . (0,0)D . (1,3)4. (2分) (2016九上·崇仁期中) 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A . (6,0)B . (6,3)C . (6,5)D . (4,2)5. (2分)如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与△ABC的面积比为()A . 2:1B . 2:3C . 4:1D . 4:96. (2分)在Rt△ABC中,sinA=,则tanA的值为()A .B .C .D .7. (2分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为()A .B .C .D .8. (2分)(2016·盐田模拟) 抛物线y=﹣x2+6x﹣9的顶点为A,与y轴的交点为B,如果在抛物线上取点C,在x轴上取点D,使得四边形ABCD为平行四边形,那么点D的坐标是()A . (﹣6,0)B . (6,0)C . (﹣9,0)D . (9,0)9. (2分)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF .设BE=x , DF=y ,则y是x的函数,函数关系式是()A . y=x+1B . y=x-1C . y=x2-x+1D . y=x2-x-110. (2分)如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD 沿MN对开,依次类推,若各种开本的矩形都相似,那么等于()A . 0.618B .C .D . 2二、填空题 (共4题;共5分)11. (1分)(2018·泰州) 如图,中,,,,将绕点顺时针旋转得到,为线段上的动点,以点为圆心,长为半径作,当与的边相切时,的半径为________.12. (1分)若=2,则的值为________13. (1分)(2011·柳州) 如图,要测量的A、C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得E、F两点间的距离等于23米,则A、C两点间的距离________米.14. (2分)二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△PAB=________.三、解答题 (共9题;共80分)15. (5分)(2017九下·宜宾期中) 计算:(1)(2)16. (5分)(2017·揭西模拟) 如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)17. (5分)如图所示的网格中,每个小方格都是边长为1的小正方形,B点的坐标为:B(﹣1,﹣1).(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1 ,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2 ,使放大前后的面积之比为1:4请在下面网格内画出△A2B2C2 .18. (10分)(2018·江苏模拟) 如图,在平面直角坐标系中,点A为二次函数图象的顶点,图象与轴交于点C,过点A并与AC垂直的直线记为BD,点B、D分别为直线与轴和轴的交点,点E 是二次函数图象上与点C关于对称轴对称的点,将一块三角板的直角顶点放在A点,绕点A旋转,三角板的两直角边分别与线段OD和线段OB相交于点P、Q两点.(1)点A的坐标为________,点C的坐标为________;(2)求直线BD的表达式;(3)在三角板旋转过程中,平面上是否存在点R,使得以D、E、P、R为顶点的四边形为菱形,若存在,直接写出P、Q、R的坐标;若不存在,请说明理由.19. (10分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.20. (10分)(2012·崇左) 如图,已知∠XOY=90°,等边三角形PAB的顶点P与O点重合,顶点A是射线OX上的一个定点,另一个顶点B在∠XOY的内部.(1)当顶点P在射线OY上移动到点P1时,连接AP1,请用尺规作图;在∠XOY内部作出以AP1为边的等边△AP1B1(要求保留作图痕迹,不要求写作法和证明);(2)设AP1交OB于点C,AB的延长线交B1P1于点D.求证:△ABC∽△AP1D;(3)连接BB1,求证:∠ABB1=90°.21. (10分)(2019·淄博模拟) 如图,顶点为的抛物线与轴交于,两点,与轴交于点.(1)求这条抛物线对应的函数表达式;(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.22. (10分)(2016·百色) 如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.23. (15分)(2019·龙湾模拟) 如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地. 已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元. 设该工厂有吨产品销往地. (利润=售价—进价—运费)(1)用的代数式表示购买的原材料有________吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨,且每吨售价不得低于1440元,记销完产品的总利润为元,求关于的函数表达式,及最大总利润.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共5分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
四川省南充市九年级上学期数学期末考试试卷

四川省南充市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分) (2017八下·椒江期末) 二次根式的除法法则成立的条件是()A . a>0,b>0B . a≥0,b>0C . a≥0,b≥0D . a≤0,b<02. (2分)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A . 标号小于6B . 标号大于6C . 标号是奇数D . 标号是33. (2分) (2017九上·武昌期中) 把抛物线y=﹣ x2向下平移3个单位长度再向左平移2个单位长度的解析式为()A . y=﹣(x+2)2+3B . y=﹣(x+2)2﹣3C . y=﹣(x+3)2﹣2D . y=﹣(x﹣3)2+24. (2分)如图是小明设计用手电来测量某古城墙高度的示意图。
点P处放一水平的平面镜,,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处。
已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A . 6米B . 8米C . 18米D . 24米5. (2分)一个正方形的边长增加了2 ,面积相应增加了32 ,则原正方形的边长为()A .B .C .D .6. (2分)(2016·石家庄模拟) 抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.从表可知,下列说法正确的个数有()x…﹣3﹣2﹣101…y…﹣60466…A . 1个B . 2个C . 3个D . 4个7. (2分)(2017·毕节) 如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A . △AEE′是等腰直角三角形B . AF垂直平分EE'C . △E′EC∽△AFDD . △AE′F是等腰三角形二、填空题 (共6题;共7分)8. (1分) (2017九下·简阳期中) 已知α、β均为锐角,且满足|sinα﹣ |+ =0,则α+β=________.9. (1分)关于x的一元二次方程2x2﹣4x+m﹣1=0有两个相等的实数根,则m的值为________ .10. (1分)抛物线y=ax2+12x﹣19顶点横坐标是3,则a=________.11. (2分) (2017七下·东城期中) 如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点________.12. (1分)如图,抛物线y1=a(x+2)2﹣3与y2= (x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是________.13. (1分) (2016九上·洪山期中) 如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB 绕着点B逆时针旋转后得到△CQB,则∠A PB的度数________三、解答题 (共10题;共66分)14. (5分) (2019七下·北京期中) 计算:(1)(2)15. (5分) (2017八下·福州期末) 已知a、b分别是一元二次方程的不相等的两根,求a2+2a+b的值。
四川省南充市九年级上册数学期末考试试卷

四川省南充市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)抛物线y=3(x-8)2+2的顶点坐标为()A . (2,8)B . (-8,2)C . (8,2)D . (-8,-2)2. (2分)已知函数y=的图象如图,当x≥﹣1时,y的取值范围是()A . y<﹣1B . y≤﹣1C . y≤﹣1或y>0D . y<﹣1或y≥03. (2分) (2018八上·银海期末) 下列命题为真命题的是()A . 有两边及一角对应相等的两个三角形全等B . 方程 x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形4. (2分)(2020·浙江模拟) 数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A . 勾股定理B . 勾股定理的逆定理C . 直径所对的圆周角是直角D . 90°的圆周角所对的弦是直径5. (2分)如图,在△ABC中,EF∥B C,AE=2BE,则△AEF与△ABC的面积比为()A . 2:1B . 2:3C . 4:1D . 4:96. (2分)某收费站在2小时内对经过该站的机动车统计如下:类型轿车货车客车其他数量(辆)3624812若有一辆机动车将经过这个收费站,利用上面的统计估计它是轿车的概率为()A .B .C .D .7. (2分)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A . 8B . 9.5C . 10D . 11.5二、填空题 (共7题;共9分)8. (1分)(2019·芜湖模拟) 如图,在扇形AOC中,B是弧AC上一点,且AB、BC分别是⊙O的内接正方形、正五边形的边.若OA=1,则弧AC长为________.9. (1分) (2016九上·蓬江期末) 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为________m(结果保留根号).10. (1分) 2017参加杭州市体育中考的学生需从耐力类(游泳和男生1000米或女生800米)、力量类(实心球和男生引体向上或女生仰卧起坐)、跳跃类(立定跳远和一分钟跳绳)三大类中各选一项作为考试项目,小明已经选了耐力类游泳,则他在力量类和跳跃类中,选“实心球和立定跳远”这两项的概率是________.11. (1分)(2018·莱芜) 已知x1 , x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=________.12. (1分)某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:⑴月销量y(件)与售价x(元)的关系满足:y=﹣2x+400;⑵工商部门限制销售价x满足:70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________(把所有正确结论的序号都选上)13. (2分)(2020·定海模拟) 如图,在平面直角坐标系中,A点的坐标是(4,3),图1中,点P为正方形ABCD的对称重心,顶点C、D分别在y轴和x轴的正半轴上,则OP=________。
四川省南充市九年级上学期数学期末试卷

四川省南充市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019八下·淮安月考) 下列说法错误的是()A . 成中心对称的两个图形必能重合B . 两组对角分别相等的四边形是平行四边形C . 一组对边平行,一组对角相等的四边形是平行四边形D . 对角线相等的四边形是平行四边形2. (2分)下列命题中,假命题是()A . 三角形任意两边之和大于第三边B . 方差是描述一组数据波动大小的量C . 两相似三角形面积的比等于周长的比的平方D . 不等式的-x<1的解集是x<-13. (2分)若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A .B .C .D . π4. (2分)(2019·兰坪模拟) 如图,点A、B、C在⊙O上,CO的延长线交AB于点D,BD=BO,∠A=50°,则∠B的度数为()A . 15°B . 20°C . 25°D . 30°5. (2分) (2019八下·温州期中) 如图,正方形OABC的边OA,OC在坐标轴上,矩形CDEF的边CD在CB上,且5CD=3CB,边CF在y轴上,且CF=2OC-3,反比例函数 (k>0)的图象经过点B,E,则点E的坐标是()A . ( , )B . ( , )C . ( , )D . ( , )6. (2分)(2019·泰山模拟) 二次函数y=ax2+br+c(a≠0)的图象如图所示,给出下列四个结论:①abc >0;②3b+2c<0;③4a+c<2b;④当y>0时,- <x< ,其中结论正确的个数是()A . 2B . 3C . 4D . 1二、填空题 (共8题;共10分)7. (1分)(2020·大连) 不等式5x+1>3x-1的解集是________。
精选题库四川省南充市九年级上学期数学期末试卷【

D.随意翻到一本书的某页,这页的页码一定是偶数
5.(3 分)已知圆锥的底面半径是 3,母线长为 6,则该圆锥侧面展开后所得扇
形的圆心角为(
)
A.60°
B.90°
C.120°
D.180°
6.(3 分)已知 m 是方程 x2﹣x﹣1=0 的一个根,则代数式 m2﹣m 的值等于( )
A.﹣ 1
B.0
C.1
点 B1 的坐标; ( 2)以原点 O 为对称中心,画出△ A1B1C1,关于原点 O 对称的△ A2B2C2,并写
出 B2 的坐标.
21.(8 分)已知:如图,⊙ O 的直径 AB 与弦 CD(不是直径) 交于点 F,若 FB=2, CF=FD=,4 求 AC的长.
22.( 8 分)我市 2015 年为做好 “精准扶贫 ”,投入资金 1500 万元用于某镇的异 地安置,并规划投入资金逐年增加, 2017 年在 2015 年的基础上增加投入资金 1875 万元.
)
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200 件产品中有 5 件次品,从中任意抽取 6 件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
【解答】 解: A、一个图形平移后所得的图形与原来的图形不全等,是不可能事 件,故此选项错误;
)
A.y=﹣ x2+2
B.y=x2+2
C.y= (x+2)2
D.y=4( x﹣2)2
【解答】 解: ∵抛物线 y=ax2+c 的对称轴为 y 轴, ∴ A、 B 不正确; ∵抛物线 y=a(x﹣h)2 的对称轴为 x=h, ∴抛物线 y= ( x+2) 2 的对称轴为 x=﹣ 2,
九年级上册南充数学期末试卷复习练习(Word版 含答案)

九年级上册南充数学期末试卷复习练习(Word 版 含答案)一、选择题1.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .192.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( )A .向左平移1个单位长度,再向上平移3个单位长度B .向左平移1个单位长度,再向下平移3个单位长度C .向右平移1个单位长度,再向上平移3个单位长度D .向右平移1个单位长度,再向下平移3个单位长度3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1) 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°6.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°7.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 8.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°9.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2B .中位数是2,众数是3C .中位数是4,众数是2D .中位数是3,众数是4 10.cos60︒的值等于( )A .12B .22C .32D .3311.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .37 12.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题13.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.14.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.15.二次函数y=x2﹣bx+c的图象上有两点A(3,﹣2),B(﹣9,﹣2),则此抛物线的对称轴是直线x=________.16.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且12mn,则m+n的最大值为___________.17.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只.18.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.19.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).20.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.21.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.22.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.23.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式21220=-++,则火箭升空的最大高度是___mh t t24.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.27.解方程:(1)x 2-8x +6=0(2)(x -1)2 -3(x -1) =028.解下列方程:(1)(y ﹣1)2﹣4=0;(2)3x 2﹣x ﹣1=0.29.如图,BD 、CE 是ABC 的高.(1)求证:ACE ABD ∽;(2)若BD =8,AD =6,DE =5,求BC 的长. 30.如果一个直角三角形的两条直角边的长相差2cm ,面积是242cm ,那么这个三角形的两条直角边分别是多少?31.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD .①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.32.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ; (2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a1与a2的关系式,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.2.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C .【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】 解:由圆周角定理得,1252A BOC ∠=∠=︒, 故选:D .【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABCAOC 4. 故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7.C解析:C【解析】【分析】利用两个根和的关系式解答即可. 【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 8.A解析:A【解析】【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数.【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径,∴AB ⊥AC ,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A .【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.9.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.10.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.11.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.12.C解析:C【解析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题13.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.15.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线. 【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.16.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==, 3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x=-=⨯-时,28128mn m==最大,94m∴=最大,m n∴+的最大值为927344⨯=.故答案为:274.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.17.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得635x=,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主要考查概率公式,解题的关键是熟知概率公式的运用. 18.74【解析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.19.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.20.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.21.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x <3时,y >0,∴不等式ax 2+bx +c >0的解集为﹣1<x <3.故答案为﹣1<x <3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x 轴的另一个交点.22.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.23.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键. 24.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F 是CD 的中点∴DF解析:16【解析】【分析】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC ∴△DEF ∽△CHF, △DEM ∽△BHM∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆=∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为134或114.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【解析】【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>32),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m 得此时P点坐标.【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得41640cb c=⎧⎨-++=⎩,解得34bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴C(﹣1,0);故答案为y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴AQ PQ AO CO ∴=, ∴441AQ AO PQ CO ===,即AQ =4PQ , 设P (m ,﹣m 2+3m +4),∴m =4|4﹣(﹣m 2+3m +4|,即4|m 2﹣3m |=m ,解方程4(m 2﹣3m )=m 得m 1=0(舍去),m 2=134,此时P 点横坐标为134; 解方程4(m 2﹣3m )=﹣m 得m 1=0(舍去),m 2=114,此时P 点坐标为1175,416⎛⎫ ⎪⎝⎭; 综上所述,点P 的坐标为(134,5116)或(114,7516); (3)设()23,342P m m m m ⎛⎫-++> ⎪⎝⎭, 当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =4﹣(﹣m 2+3m +4)=m 2﹣3m ,∵△APQ 沿AP 对折,点Q 的对应点为点Q ',∴∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m ,∵∠AQ ′O =∠Q ′PH ,∴Rt △AOQ ′∽Rt △Q ′HP ,∴AO AQ Q H PQ '''=,即243m Q H m m '=-,解得Q ′H =4m ﹣12, ∴OQ ′=m ﹣(4m ﹣12)=12﹣3m ,在Rt △AOQ ′中,42+(12﹣3m )2=m 2,整理得m 2﹣9m +20=0,解得m 1=4,m 2=5,此时P 点坐标为(4,0)或(5,﹣6); 当点Q ′落在y 轴上,则点A 、Q ′、P 、Q 所组成的四边形为正方形,∴PQ =AQ ′,即|m 2﹣3m |=m ,解方程m 2﹣3m =m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0);解方程m 2﹣3m =﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,6),综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6)本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.27.(1)x 1=104+,x 2=-104+(2) x 1=1,x 2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x 2-8x +6=0x 2-8x +16=10(x-4)2=10x-4=±10∴x 1=104+,x 2=-104+(2)(x -1)2 - 3(x -1) =0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x 1=1,x 2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数(1)200;72(2)60(人),图见解析(3)1050人.【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200+=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.28.(1)y1=3,y2=﹣1;(2)x1=1136+,x2=1136.【解析】【分析】(1)先移项,然后利用直接开方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】解:(1)(y﹣1)2﹣4=0,(y﹣1)2=4,y﹣1=±2,y 1=3,y 2=﹣1;(2)3x 2﹣x ﹣1=0,a =3,b =﹣1,c =﹣1,△=b 2﹣4ac =(﹣1)2﹣4×3×(﹣1)=13>0,x ,x 1=16+,x 2=16. 【点睛】此题考查的是解一元二次方程,掌握利用直接开方法和公式法解一元二次方程是解决此题的关键.29.(1)见解析;(2)BC =253. 【解析】【分析】(1)BD 、CE 是ABC 的高,可得90ADB AEC ∠=∠=︒,进而可以证明ACE ABD ∽; (2)在Rt ABD 中,8BD =,6AD =,根据勾股定理可得10AB =,结合(1)ACE ABD ∽,对应边成比例,进而证明AED ACB ∽,对应边成比例即可求出BC 的长.【详解】解:(1)证明:BD 、CE 是ABC ∆的高,90ADB AEC ∴∠=∠=︒,A A ∠=∠,ACE ABD ∴∽;(2)在Rt ABD 中,8BD =,6AD =,根据勾股定理,得10AB ==,ACE ABD ∽, ∴AC AE AB AD=, A A ∠=∠,AED ACB ∴∽, ∴DE AD BC AB=, 5DE =,5102563BC ⨯∴==.本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.30.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.31.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解析式与抛物线的解析式联立的方程组,便可求得P 点坐标.【详解】(1)联立方程组2165y x y x x =-⎧⎨=-+-⎩, 解得,1110x y =⎧⎨=⎩,2243x y =⎧⎨=⎩, ∴A (1,0),D (4,3),(2)①过P 作PE ⊥x 轴,与AD 相交于点E ,∵点P的横坐标为2,∴P(2,3),E(2,1),∴PE=3﹣1=2,∴()112(41)22PAD D AS PE x x=-=⨯⨯-=3;②过点D作DP∥AC,与抛物线交于点P,则∠PDA=∠CAD,∵y=-x2+6x-5=-(x-3)2+4,∴C(3,4),设AC的解析式为:y=kx+b(k≠0),∵A(1,0),∴34k bk b+⎧⎨+⎩==,∴22kb⎧⎨-⎩==,∴AC的解析式为:y=2x-2,设DP的解析式为:y=2x+n,把D(4,3)代入,得3=8+n,∴n=-5,∴DP的解析式为:y=2x-5,联立方程组22565y xy x x-⎧⎨-+-⎩==,解得,1015xy⎧⎨-⎩==,2243xy⎧⎨⎩==,∴此时P(0,-5),当P点在直线AD上方时,延长DP,与y轴交于点F,过F作FG∥AC,FG与AD交于点G,则∠FGD=∠CAD=∠PDA,∴FG=FD,设F(0,m),∵AC的解析式为:y=2x-2,∴FG的解析式为:y=2x+m,联立方程组21y x my x+⎧⎨-⎩==,解得,12x my m--⎧⎨--⎩==,∴G(-m-1,-m-2),∴()()22122m m+++()2163m+-,∵FG=FD,()()22122m m+++()2163m+-∴m=-5或1,∵F在AD上方,∴m>-1,∴m=1,∴F(0,1),设DF的解析式为:y=qx+1(q≠0),把D (4,3)代入,得4q+1=3,∴q=12, ∴DF 的解析式为:y=12x+1, 联立方程组211265y x y x x ⎧+⎪⎨⎪-+-⎩== ∴1143x y ⎧⎨⎩==,223274x y ⎧⎪⎪⎨⎪⎪⎩==, ∴此时P 点的坐标为(32,74), 综上,P 点的坐标为(0,-5)或(32,74). 【点睛】本题是一次函数、二次函数、三角形的综合题,主要考查了一次函数的性质,二次函数的图象与性质,三角形的面积计算,平行线的性质,待定系数法,难度较大,第(2)小题,关键过P 作x 轴垂线,将所求三角形的面积转化成两个三角形的面积和进行解答;第(3)小题,分两种情况解答,不能漏解,考虑问题要全面.32.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标; (2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1),∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠120a a ∴+=【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.。
四川省南充市九年级上学期数学期末考试试卷

四川省南充市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2013·福州) 下列一元二次方程有两个相等实数根的是()A . x2+3=0B . x2+2x=0C . (x+1)2=0D . (x+3)(x﹣1)=02. (2分)(2016·深圳) 下列图形中,是轴对称图形的是()A .B .C .D .3. (2分)如图是一个正六棱柱,它的俯视图是()A .B .C .D .4. (2分)(2019·甘肃) 已知点在轴上,则点的坐标是()A .B .C .D .5. (2分)如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A . 2B .C .D .6. (2分) (2019九上·乌拉特前旗期中) 如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=40°,则∠ACB=().A . 70°B . 80°C . 110°D . 140°7. (2分)△ABC中,∠C=90°,AC=8,BC=6,则cosA的值是()A .B .C .D .8. (2分)(2012·宜宾) 给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x2的切线;②直线x=﹣2与抛物线y= x2 相切于点(﹣2,1);③若直线y=x+b与抛物线y= x2相切,则相切于点(2,1);④若直线y=kx﹣2与抛物线y= x2相切,则实数k= .其中正确命题的是()A . ①②④B . ①③C . ②③D . ①③④9. (2分)如图,正方形ABOC的边长为2,反比例函数y=的图象过点A,则k的值是()A . 2B . ﹣2C . 4D . ﹣410. (2分) (2016八下·西城期末) 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A . 16B . 24C . 4D . 8二、填空题 (共8题;共12分)11. (1分) (2011八下·新昌竞赛) 已知,则 ________.12. (1分) (2017八下·福州期末) 福州市政府下大力气降低药品价格,某种药品的单价由100元经过两次降价,降至64元。
南充市九年级上册期末精选试卷检测题

南充市九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。
【详解】解:(1)∵()4,0-A ,()0,4B ,四边形ABCO 为平行四边形, ∴点C 坐标为(4,4),又∵P 为x 轴上一动点,点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,P 点运动时间为t ,∴P 点坐标为(43t ,0), (2)∵B ,D 的坐标分别为:()0,4B ,4,03D ⎛⎫- ⎪⎝⎭, ∴4OB =,43OD =, 由勾股定理有:22224441033DB OBOD, 当BDP ∆为等腰三角形时, ①如图所示,当BDBP 时,OD OP =,∴P 点坐标为(43,0), ∴1t =②如图所示,当BD DP =时,∵4103DB ,OP DP OD∴44410101333OP ,∴101t③如图所示,当BP DP =时,设P 点坐标为:(x ,0) 则有:2224BP x,2243DPx, ∴222443xx,解之得:163x = ∴P 点坐标为(163,0), ∴4t =综上所述,当t 为1,101-,4时,BDP ∆为等腰三角形;(3)答:存在t ,使得ABD OBP ∠=∠。
南充市九年级上学期期末数学试卷

南充市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)将1299万人用科学记数法表示为()A . 1.299×105人B . 1.299×107人C . 12.99×102万人D . 1.299×104万人2. (2分)已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A . 点P在圆上B . 点P在圆内C . 点P在圆外D . 不能确定3. (2分)抛物线y=2(x﹣1)2+3的顶点坐标为()A . (2,1)B . (2,﹣1)C . (﹣1,3)D . (1,3)4. (2分) (2015九上·房山期末) 若3a=2b,则的值为()A . -B .C . -D .5. (2分) (2015九上·房山期末),则(﹣xy)2的值为()A . ﹣6B . 9C . 6D . ﹣96. (2分)将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A . y=5(x+2)2+3B . y=5(x﹣2)2+3C . y=5(x﹣2)2﹣3D . y=5(x+2)2﹣37. (2分)如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为()A . 20°B . 40°C . 50°D . 60°8. (2分) (2015九上·房山期末) 如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于()A . 25°B . 30°C . 50°D . 65°9. (2分) (2015九上·房山期末) 如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A . 1B .C .D .10. (2分) (2016九上·扬州期末) 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2018·黔西南模拟) 据国家考试中心发布的信息,我国今年参加高考的考生数达11600000人,这个数据用科学记数法且保留两个有效数字可表示为________人.12. (1分)反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为________13. (1分)分解因式:ax2﹣4a=________14. (1分) (2015九上·房山期末) 活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________.15. (1分) (2015九上·房山期末) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为________.16. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象经过A(0,3),B(2,3)两点.请你写出一组满足条件的a,b的对应值.a=________ b=________三、解答题 (共13题;共120分)17. (5分)(2016·宜昌) 先化简,再求值:4x•x+(2x﹣1)(1﹣2x).其中x= .18. (5分) (2015九上·房山期末) 求不等式组的整数解.19. (10分) (2015九上·房山期末) 如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BCD∽△ACB;(2)如果BC= ,AC=3,求CD的长.20. (10分) (2015九上·房山期末) 在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.21. (10分) (2015九上·房山期末) 下表给出了代数式﹣x2+bx+c与x的一些对应值:x…﹣2﹣10123…﹣x2+bx+c…5n c2﹣3﹣10…(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.22. (5分) (2015九上·房山期末) 如图,△ABC中,∠B=60°,∠C=75°,AC=3 ,求AB的长.23. (10分) (2015九上·房山期末) 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.24. (5分)如果关于x的函数y=ax2+(a+2)x+a+1的图象与x轴只有一个公共点,求实数a的值.25. (15分) (2015九上·房山期末) 如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b﹣<0的解集.(直接写出答案)26. (5分) (2015九上·房山期末) 如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4 ,求点P的坐标.27. (15分) (2015九上·房山期末) 已知关于x的一元二次方程x2+2x+ =0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2+2x+ 的图象向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线y=kx+b(k>0)过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于﹣5时,求k的取值范围.28. (10分) (2015九上·房山期末) 在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.①在图1中画出图形;②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.29. (15分) (2015九上·房山期末) 如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣ x+n同时经过A(0,3)、B(4,0).(1)求m,n的值.(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共120分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、25-3、26-1、27-1、27-2、27-3、28-1、29-1、29-2、29-3、。
新人教版2017—2018学年度上学期期末教学质量监测九年级数学试卷

新⼈教版2017—2018学年度上学期期末教学质量监测九年级数学试卷2017—2018学年度上学期期末教学质量监测九年级数学试卷(考试时间90分钟,试卷满分120分)⼀、选择题:(每题3分,计24分)1、⼀元⼆次⽅程2280x -=的解是()1212. 2 . 2 . 2, 2 . A x B x C x x D x x ==-==-==2、在平⾯直⾓坐标系中,点P (2,⼀ 4)关于原点对称的点的坐标是() A.(2,4 ) B.(⼀2,4) C.(⼀2,⼀4) D.(⼀4,2) 3、下列说法中,正确的是()A. 随机事件发⽣的概率为1B.. 概率很⼩的事件不可能发⽣C. 不可能事件发⽣的概率为0D. 投掷⼀枚质地均匀的硬币1000次,正⾯朝上的次数⼀定是500次 4、如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC ,AD,若∠ADC=55°,则∠CAB 的度数为() A.35° B.45° C.55° D.65°5、⼀个不透明的袋中装有除颜⾊外均相同的5个红球和n 个黄球,从中随机摸出⼀个,摸到红球的概率是58,则n 是() A.5 B.8C.3D.136、如图,⊙O 与正⽅形ABCD 的边AB,AD 相切,且DE 与⊙O 相切与点E 。
若⊙O 的半径为5,且AB=12,则DE=()(4题图)A.5B. 6C.7D. 1727、“赶陀螺”是⼀项深受⼈们喜爱的运动,如图所⽰是⼀个陀螺的⽴体结构图,已知底⾯圆的直径AB=6cm ,圆柱体部分的⾼BC=5cm,圆锥体部分的⾼CD=4cm,则这个陀螺的表⾯积是()A. 284cm πB.245cm πC. 274cm πD.254cm π8、已知⼆次函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是() A.当a = 1时,函数图像经过点(⼀1,0)B. 当a = ⼀2时,函数图像与x 轴没有交点C. 若 0a <,函数图像的顶点始终在x 轴的下⽅D. 若 0a﹥,则当1x ≥时,y 随x 的增⼤⽽增⼤⼆、填空题(每⼩题3分,共21分)9、若m 是⽅程210x x +-=的⼀个根,则代数式22018m m +-=_______________ 10、将抛物线24y x =向左平移3个单位长度,再向下平移2个单位长度,得到的抛物线的解析式_____________________11、在4张完全相同的卡⽚上分别画上①、②、③、④。
南充市营山县2017-2018学年九年级上数学期末试卷(含答案)

2017--2018学年上学期九年级数学期末质量检测(考试时间:120分总分120分)______学校年级班______ 姓名考号________成绩一.选择题(每小题3分,共30分)1、方程的左边配成完全平方后,得到的方程为().A.B.C. D.以上都不对2、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为,则满足的方程是()A. B.C. D.3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转900得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是( )(A)45°(B)30°(C)25°(D)15°4、下列图形中,是中心对称图形的是()5、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11、方程有两个不等的实数根,则a的取值范围是________。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
南充市九年级上学期数学期末考试试卷

南充市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列代数式中,属于二次根式的为()A .B .C .D .2. (1分)(2020·平遥模拟) -2020的绝对值的倒数是()A .B .C .D .3. (1分) (2016九上·罗庄期中) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (1分) (2019九上·郑州期末) 下列运算正确的是()A . a2•a4=a8B . 2a2+a2=3a4C . a6÷a2=a3D . (ab2)3=a3b65. (1分) (2019九上·郑州期末) 如图,在△ABC中,DE∥BC,若,则等于()A .B .C .D .6. (1分) (2019九上·郑州期末) “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨)4569户数(户)3421A . 中位数是5吨B . 众数是5吨C . 极差是3吨D . 平均数是5.3吨7. (1分) (2019九上·郑州期末) 若关于x、y的方程组有实数解,则实数k的取值范围是()A . k>4B . k<4C . k≤4D . k≥48. (1分) (2019九上·郑州期末) 以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A . b≥1.25B . b≥1或b≤﹣1C . b≥2D . 1≤b≤29. (1分) (2019九上·郑州期末) 如图,四边形ABCD内接于⊙O,若四边形ABCD是平行四边形,则∠ADC 的大小为()A .B .C .D .10. (1分) (2019九上·郑州期末) 如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.12. (1分)(2016·镇江模拟) 函数y= ﹣1中,自变量x的取值范围是________.13. (1分) (2019九上·郑州期末) 有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是________.14. (1分) (2019九上·郑州期末) 如图,已知菱形ABCD的面积为120cm2 ,正方形AECF的面积为50cm2 ,则菱形的边长为________cm.15. (1分) (2017九上·召陵期末) 矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.三、解答题 (共8题;共21分)16. (1分) (2019七上·东莞期中) 用四舍五入法,把0.25036精确到0.001是________。
四川省南充市九级上期末数学试卷(含答案解析)

2017-2018学年四川省南充市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.方程﹣5x2=1的一次项系数是()A.3B.1C.﹣1D.02.下面的图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.用配方法解方程x2﹣8x+11=0,则方程可变形为()A.(x+4)2=5B.(x﹣4)2=5C.(x+8)2=5D.(x﹣8)2=54.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数5.已知圆锥的底面半径是3,母线长为6,则该圆锥侧面展开后所得扇形的圆心角为()A.60°B.90°C.120°D.180°6.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1B.0C.1D.27.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.998.对称轴是直线x=﹣2的抛物线是()A.y=﹣x2+2B.y=x2+2C.y=(x+2)2D.y=4(x﹣2)29.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸10.已知二次函数y=ax2+bx+c(a、b、c都是常数,且a≠0)的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.13.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=.14.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为.15.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、解答题(共9小题,共72分)17.(6分)解方程:3(x﹣4)2=﹣2(x﹣4)18.(6分)一个不透明的袋中中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用”画树状图“或”列表“的方法写出过程)19.(8分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.20.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)以原点O为对称中心,画出△A1B1C1,关于原点O对称的△A2B2C2,并写出B2的坐标.21.(8分)已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC的长.22.(8分)我市2015年为做好“精准扶贫”,投入资金1500万元用于某镇的异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1875万元.(1)从2015年到2017年,该镇投入异地安置资金的年平均增长率为多少?(2)在2017年的具体实施中,该镇计划投入资金不低于500万元用于优先搬迁户的奖励,规定前100户(含第100户)每户奖励2万元,100户以后每户奖励5000元,试求今年该镇最多有多少户享受到优先搬迁奖励?23.(8分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m1,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.24.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若,AB=3,求BD的长.25.(10分)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A 在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有两个不动点.2017-2018学年四川省南充市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.方程﹣5x2=1的一次项系数是()A.3B.1C.﹣1D.0【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:﹣5x2﹣1=0,则一次项系数为0,故选:D.【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.下面的图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念即可解答.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.3.用配方法解方程x2﹣8x+11=0,则方程可变形为()A.(x+4)2=5B.(x﹣4)2=5C.(x+8)2=5D.(x﹣8)2=5【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.【解答】解:x2﹣8x+11=0,x2﹣8x=﹣11,x2﹣8x+16=﹣11+16,(x﹣4)2=5.故选:B.【点评】本题考查的是用配方法解方程,把方程的左边配成完全平方的形式,右边是非负数.4.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.5.已知圆锥的底面半径是3,母线长为6,则该圆锥侧面展开后所得扇形的圆心角为()A.60°B.90°C.120°D.180°【分析】求得圆锥的底面周长即为侧面扇形的弧长,利用弧长公式即可求得扇形的圆心角.【解答】解:圆锥的底面周长为:2π×3=6π,那么=6π,解得n=180°.故选:D.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.6.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1B.0C.1D.2【分析】将x=m代入方程即可求出所求式子的值.【解答】解:将x=m代入方程得:m2﹣m﹣1=0,m2﹣m=1.故选:C.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.99【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.【点评】此题主要考查了生活中的旋转现象,正确想象出旋转后图形是解题关键.8.对称轴是直线x=﹣2的抛物线是()A.y=﹣x2+2B.y=x2+2C.y=(x+2)2D.y=4(x﹣2)2【分析】由抛物线的顶点式可得出答案.【解答】解:∵抛物线y=ax2+c的对称轴为y轴,∴A、B不正确;∵抛物线y=a(x﹣h)2的对称轴为x=h,∴抛物线y=(x+2)2的对称轴为x=﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握不同的解析式所对称的抛物线的对称轴是解题的关键.9.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为()A.寸B.13寸C.25寸D.26寸【分析】连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD的长.【解答】解:连接OA.设圆的半径是x尺,在直角△OAE中,OA=x,OE=x﹣1,∵OA2=OE2+AE2,则x2=(x﹣1)2+25,解得:x=13.则CD=2×13=26(cm).故选:D.【点评】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.10.已知二次函数y=ax2+bx+c(a、b、c都是常数,且a≠0)的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】根据待定系数法、方程根与系数的关系等知识和数形结合能力仔细分析即可解.【解答】解:①由y=ax2+bx+c与X轴的交点坐标为(﹣2,0)得:a×(﹣2)2+b×(﹣2 )+c=0,即4a﹣2b+c=0,所以正确;②由图象开口向下知a<0,由y=ax2+bx+c与X轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为,即<1,由a<0,两边都乘以a得:b>a,∵a<0,对称轴x=﹣<0,∴b<0,∴a<b<0.故正确;③由一元二次方程根与系数的关系知,结合a<0得2a+c>0,所以结论正确,④由4a﹣2b+c=0得,而0<c<2,∴,∴﹣1<2a﹣b<0∴2a﹣b+1>0,所以结论正确.故填正确结论的个数是4个.故选:D.【点评】本题主要考查对二次函数图象上点的坐标特征,抛物线与X轴的交点,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子的符号是解题的关键.二、填空题(每小题3分,共18分)11.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是7【分析】设另一根为a,直接利用根与系数的关系可得到关于a的方程,则可求得答案.【解答】解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.【点评】本题有要考查根与系数的关系,熟练掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为24个.【分析】首先设黄球的个数为x个,根据题意得:=,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得:=,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故答案为:24;【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=﹣1.【分析】根据抛物线y=﹣x2﹣2x+m,若其顶点在x轴上可知其顶点纵坐标为0,故可得出关于m的方程,求出m的值即可.【解答】解:∵抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,∴=0,解得m=﹣1.故答案为:﹣1.【点评】本题考查的是二次函数的性质,根据题意得出关于m的方程是解答此题的关键.14.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为(﹣1)a2.【分析】由图可知,阴影部分的面积是两个圆心角为90°,且半径为a的扇形的面积与正方形的面积的差,可据此求出阴影部分的面积.【解答】解:由题意可得出:S 阴影=2S 扇形﹣S 正方形=2×﹣a 2=(﹣1)a 2.故答案为:(﹣1)a 2.【点评】本题利用了扇形的面积公式,正方形的面积公式求解,得出S 阴影=2S 扇形﹣S 正方形是解题关键.15.四边形ABCD 为圆O 的内接四边形,已知∠BOD=100°,则∠BCD= 130°或50° . 【分析】先根据圆心角的度数等于它所对弧的度数得到∠BOD=100°,再根据圆周角定理得∠BCD=∠BOD=50°,然后根据圆内接四边形的性质求解. 【解答】解:如图∵弧BAD 的度数为100°, ∴∠BOD=100°,∴∠BCD=∠BOD=50°, ∴∠BAD=180°﹣∠ACD=130°.同理,当点A 是优弧上时,∠BAD=50°. 故答案为:130°或50°.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的对边和相等.16.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是+1 .【分析】如图,连接AM ,由题意得:CA=CM ,∠ACM=60°,得到△ACM 为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.三、解答题(共9小题,共72分)17.(6分)解方程:3(x﹣4)2=﹣2(x﹣4)【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.18.(6分)一个不透明的袋中中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用”画树状图“或”列表“的方法写出过程)【分析】列表得出所有等可能的结果,找出组成的两位数是5的倍数的情况,即可求出所求的概率.【解答】解:列表得:所有等可能的情况有6种,其中组成两位数是5的倍数的情况有2种,则所组成的两位数是5的倍数的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.【分析】(1)由二次项系数非零及根的判别式△>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围;(2)假设存在,设方程的两根分别为x1、x2,根据根与系数的关系结合+=0,即可得出关于m的方程,解之即可得出m的值,再根据(1)的结论即可得出不存在实数m,使方程的两个实数根的倒数和等于0.【解答】解:(1)∵关于x的方程mx2+(m+2)x+=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=﹣,x1x2=.∵+==﹣=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)根据二次项系数非零结合根的判别式△>0,找出关于m的一元一次不等式组;(2)根据根与系数的关系结合+=0,列出关于m的方程.20.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)以原点O为对称中心,画出△A1B1C1,关于原点O对称的△A2B2C2,并写出B2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于原点对称点的性质进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,1);(2)如图所示:△A2B2C2,即为所求,点B2的坐标为:(﹣5,﹣1).【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.21.(8分)已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC的长.【分析】根据垂径定理以及勾股定理即可求出答案.【解答】解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=4【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于中等题型.22.(8分)我市2015年为做好“精准扶贫”,投入资金1500万元用于某镇的异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1875万元.(1)从2015年到2017年,该镇投入异地安置资金的年平均增长率为多少?(2)在2017年的具体实施中,该镇计划投入资金不低于500万元用于优先搬迁户的奖励,规定前100户(含第100户)每户奖励2万元,100户以后每户奖励5000元,试求今年该镇最多有多少户享受到优先搬迁奖励?【分析】(1)设从2015年到2017年,该镇投入异地安置资金的年平均增长率为x,根据2015年及2017年投入的异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设今年该镇有y户享受到优先搬迁奖励,根据100×20000+超出100户的数量×5000≤投入资金,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设从2015年到2017年,该镇投入异地安置资金的年平均增长率为x,根据题意得:1500(1+x)2=1500+1875,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:从2015年到2017年,该镇投入异地安置资金的年平均增长率为50%.(2)设今年该镇有y户享受到优先搬迁奖励,根据题意得:100×20000+(y﹣100)×5000≤5000000,解得:y≤700.答:今年该镇最多有700户享受到优先搬迁奖励.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量间的关系,正确列出一元一次不等式.23.(8分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:(1)表中n的值为5;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m1,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.【分析】(1)根据表中的数据得出对称轴是直线x=2,根据对称点的特点得出即可;(2)根据表得出图象有最小值,根据顶点坐标得出即可;(3)根据二次函数的性质得出即可.【解答】解:(1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大,∵m<m+1,∴y1<y2.【点评】本题考查了二次函数的图象和性质,能根据表中的熟记得出正确信息是解此题的关键.24.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若,AB=3,求BD的长.【分析】(1)利用切线的性质结合等腰三角形的性质得出∠DCE=∠E,进而得出答案;(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,利用勾股定理得出BD的长.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1【点评】此题主要考查了切线的性质以及以及勾股定理和等腰三角形的性质等知识,熟练应用切线的性质得出∠OCD=90°是解题关键.25.(10分)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A 在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有两个不动点.【分析】(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围.【解答】解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB==3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0有两个不等的实数根,∴△>0,即(2m+1)2﹣4(m2+2m)≥0,解得m<,即当m<时,平移后的抛物线总有两个不动点.【点评】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、一元二次方程等知识点.在(1)中确定出A、B两点的坐标是解题的关键,在(2)中分别求得AB、AM、BM的长是解题的关键,在(3)中确定出抛物线总有两个不动点的条件是解题的关键.本题考查知识点较为基础,难度适中.。
四川省南充市九年级上学期数学期末考试试卷B卷

四川省南充市九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A . 1B . 2C . 3D . 42. (2分)(2017·洛阳模拟) 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,先从中摸出一个小球,再从余下的球中摸出一个小球,第二次摸到小球的编号大于第一次编号的概率是()A .B .C .D .3. (2分) (2018九上·盐池期中) 学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A .B .C .D .4. (2分)在一次数学课上,第一小组做投掷一枚均匀硬币的实验,若实验次数为50次,那么一定出现的情况是()A . 25次正面朝上,25次背面朝下B . 背面朝上次数大于正面朝上次数C . 正面朝上次数大于背面朝上次数D . 不确定5. (2分) (2017八上·常州期末) 如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A . 35°B . 40°C . 45°D . 50°6. (2分) (2017九下·莒县开学考) 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2 ,则S1+S2的值为()A . 17B . 18C . 19D . 207. (2分)如图,将长为2a,宽为a的矩形纸片分割成n个三角形后,拼成面积为2a2的正方形,则下列关于n的说法错误的是()A . n可以为3和4B . n可以为所有正偶数C . n可以为所有大于2的整数D . 正整数中所有3的倍数的数都可以为n值8. (2分)(2017·埇桥模拟) 如图,⊙O为△ABP的外接圆,若⊙O的半径为2,∠P=75°,则的长为()A . πB . πC . πD . 2π9. (2分) (2016九上·萧山期中) 如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠DAC等于()A . 30°B . 40°C . 50°D . 60°10. (2分) (2019九上·上海月考) 如图,已知AB∥CD,AD与CD相交于点O,AO:DO=1:2,则下列式子错误的为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如图,梯形中,,,点在边上,,,,若与相似,则的长为________.12. (1分)如图,在平面直角坐标系第一象限内有一矩形OABC,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P的坐标为________.13. (1分)(2014·徐州) 半径为4cm,圆心角为60°的扇形的面积为________cm2 .14. (1分) (2018七下·郸城竞赛) 若A=,B=2-,则当x=________时,A与B的值相等.15. (1分)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值:________ .16. (1分) (2017八上·台州开学考) 若点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为________.三、解答题 (共9题;共90分)17. (5分) (2019九上·揭阳月考) 用合适的方法解方程:;18. (5分)△ABC的三个顶点的坐标分别为A(1,1)B(3,1)C(3,3),请建立平面直角坐标系.(1)在坐标系中作出△ABC.(2)作出△ABC关于y轴对称的△A1B1C1 ,并写出A1、B1、C1各点的坐标.19. (15分)(2019·江岸模拟) 某商店购进一批成本为每件30元的商品,商店按单价不低于成本价,且不高于50元销售.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)销售单价定为多少元时,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润高于800元,请直接写出每天的销售量y(件)的取值范围.20. (15分)二次函数 y=x2+bx+c的图象经过点A(1,0),C(0,3).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴方程;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象,并根据图象在抛物线的对称轴找点P,使得△ACP周长最短(直接写出点P的坐标).21. (10分)(2019·葫芦岛) 如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长.22. (10分) (2016九上·泰顺期中) 将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.23. (10分) (2018九上·东台月考) 如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于点C,过C点作CD⊥AE的延长线于点D,直线CD与射线AB交于点P.(1)判断直线DP与⊙O的位置关系,并说明理由;(2)若DC=4,⊙O的半径为5,求PB的长.24. (10分)(2018·方城模拟) 如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转α(0°<α<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H;(ⅰ)求证:BD⊥CF;(ⅱ)当AB=2,AD=3 时,求线段DH的长.25. (10分) (2018九上·青浦期末) 如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且.(1)求证:∠CAE=∠CBD;(2)若,求证:.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共90分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年四川省南充市九年级(上)期末数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)方程﹣5x2=1的一次项系数是()
A.3B.1C.﹣1D.0
2.(3分)下面的图形中既是轴对称图形又是中心对称图形的是()
A.B.C.D.
3.(3分)用配方法解方程x2﹣8x+11=0,则方程可变形为()A.(x+4)2=5B.(x﹣4)2=5C.(x+8)2=5D.(x﹣8)2=5 4.(3分)下列事件中必然发生的事件是()
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
5.(3分)已知圆锥的底面半径是3,母线长为6,则该圆锥侧面展开后所得扇形的圆心角为()
A.60°B.90°C.120°D.180°
6.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1B.0C.1D.2
.现
旋转180°,得到数字“6”
旋转180°,得到数字“9”
;将数字“9”
7.(3分)将数字“6”
旋转180°,得到的数字是()
将数字“69”
A.96B.69C.66D.99
8.(3分)对称轴是直线x=﹣2的抛物线是()
A.y=﹣x2+2B.y=x2+2C.y=(x+2)2D.y=4(x﹣2)2 9.(3分)“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,
第1页(共23页)。