待定系数法求抛物线解析式
专题复习六待定系数法
专题复习六 待定系数法通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
【典型习题】1.已知:反比例函数和一次函数图象的一个交点为(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定这两个函数的解析式。
2、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A 、B 两点,与y 轴交于C 点,点A 、C 的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.3. 已知函数y=kx+b 的图象与另一个一次函数y=-2x-1的图象相交于y 轴上的点A ,且x 轴下方的一点B(3,n)在一次函数y=kx+b 的图象上,n 满足关系n2=9.求这个函数的解析式.4.已知二次函数y=(m 2-2)x 2-4mx+n 的图象的对称轴是x=2,且最高点在直线y=12x+1上,求这个二次函数的表达式.5.已知二次函数的图象经过点(0,3),对称轴方程是x-1=0,抛物线与x 轴两交点的距离为4,求这个二次函数的解析式.6.已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B . (1)求这条抛物线的函数关系式;(2)设直线AC 交x 轴于D P ,是线段AD 上一动点(P 点异于A D ,),过P 作PE x ∥轴交直线AB 于E ,过E 作EF x ⊥轴于F ,求当四边形OPEF 的面积等于72时点P 的坐标.专题复习七 方案决策型题方案决策型题的特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点。
待定系数法求解析式
待定系数法求函数解析式【要点梳理】一.已知三点求抛物线解析式例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式.例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标.二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式.三.已知两点及对称轴,求抛物线解析式例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式.四.已知x轴上两点坐标及另一点坐标求抛物线解析式例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标.五.求平移后新抛物线解析式例6把抛物线2xy-=向左平移1个单位,然后向上平移3个单位,求平移后新的抛物线解析式.六.求沿坐标轴翻折后新抛物线解析式例7 在一张纸上作出函数322+-=xxy的图象,沿x轴把这张纸对折,描出与函数322+-=xxy的图象关于x轴对称的抛物线,并写出新抛物线解析式.【课堂操练】1.求下列条件下的二次函数解析式:(1)过点(-1,0),(0,2)和(4,0).(2)顶点为(2,-3),且过点(-1,15).2.已知二次函数cbxaxy++=2的图象如图所示,求它关于y轴对称的抛物线解析式.3.已知二次函数cbxaxy++=2的图象如图所示,求它关于x轴对称的抛物线解析式.4.已知二次函数cbxxy++=221的图象过点A(c,-2),,求证:这个二次函数图象的对称轴是直线x=3,题目中横线上方部分是被墨水污染了无法辨认的文字.(1)根据已知和结论中现有信息,你能否求出题目中的二次函数解析式?若能,请写出解题过程;若不能,请说明理由.(2)请你根据已有的信息,在原题中的横线上添加一个适当的条件,把原题补充完整.【课后巩固】1.将抛物线2y x=的图像向右平移3个单位,则平移后的抛物线的解析式为___________.2.二次函数342++=xxy的图象可以由二次函数2xy=的图象平移而得到,下列平移正确的是()A、先向左平移2个单位长度,再向上平移1个单位长度B、先向左平移2个单位长度,再向下平移1个单位长度C、先向右平移2个单位长度,再向上平移1个单位长度D、先向右平移2个单位长度,再向下平移1个单位长度3.已知2y ax bx c=++的图象过(-2,-6)、(2,10)和(3,24)三点,求函数解析式.4.已知函数2y ax bx c=++,当x=1时,有最大值-6,且经过点(2,-8),求出此抛物线的解析式.5.已知二次函数的图象与x轴的交点横坐标分别为2和3,与y轴交点的纵坐标是72,求它的解析式.6.已知抛物线22(2)4y m x mx n =--+的对称轴是x =2,且它的最高点在直线112y x =+上,求此抛物线的解析式.7.已知抛物线2y ax bx c =++(a ≠0)经过 (0,1)和(2,-3)两点. (1)如果抛物线开口向下,对称轴在y 轴的左侧,求a 的取值范围.(2)若对称轴为x =-1,求抛物线的解析式.8. 二次函数图象过A 、B 、C 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC . (1)求C 的坐标;(2)求二次函数的解析式,并求出函数最大值.9.在平面直角坐标系中,△AOB 的位置如图所示.已知∠AOB =90°,AO =BO ,点A 的坐标为 (-3,1).(1)求点B 的坐标,(2)求过A ,O ,B 三点的抛物线的解析式, (3)设点B 关于抛物线的对称轴的对称点为B l ,求△AB l B 的面积.10.已知点A (-2,-c )向右平移8个单位得到 点A ',A 与A '两点均在抛物线2y ax bx c =++上, 且这条抛物线与y 轴的交点的纵坐标为-6,求这 条抛物线的顶点坐标.11.在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0). (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.12.一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象;(2)求二次函数的解析式及它的最小值.13.在平面直角坐标系中,已知二次函数k x a y +-=2)1(的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.14.关于x 的函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.。
第12课 用待定系数法求二次函数解析式(顶点式或交点式) -2020年中考数学专项突破课之二次函数
中考专项突破课 二次函数第12课 用待定系数法求二次函数解析式(顶点式或交点式)一、典例分析例1:对称轴为2x =-,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为 .【解析】设抛物线解析式为2(2)y a x =+,把(0,3)代入可得43a =,解得34a =, 所以抛物线解析式为23(2)4y x =+, 故答案为:23(2)4y x =+. 例2:已知二次函数图象与x 轴的两个交点的坐标为(3,0)-、(1,0),且与y 轴的交点为(0,3)-,求这个函数解析式和抛物线的顶点坐标.【解析】设抛物线解析式为(3)(1)y a x x =+-,把(0,3)-代入得3(1)3a -=-g g ,解得1a =,所以抛物线解析式为2(3)(1)23y x x x x =+-=+-,而2223(1)4y x x x =+-=+-,所以抛物线得顶点坐标为(1,4)-.二、知识点小结:三、知识点检测1.抛物线的顶点为(1,4)-,与y 轴交于点(0,3)-,则该抛物线的解析式为( )A .223y x x =--B .223y x x =+-C .223y x x =-+D .2233y x x =--【解析】设抛物线的解析式为2(1)4y a x =--,将(0,3)-代入2(1)4y a x =--,得:23(01)4a -=--,解得:1a =,∴抛物线的解析式为22(1)423y x x x =--=--.故选:A .2.已知抛物线的顶点为(1,3)--,与y 轴的交点为(0,5)-,求抛物线的解析式.【解析】根据题意设2(1)3y a x =+-,将(0,5)-代入得:35a -=-,解得:2a =-,则抛物线解析式为222(1)3245y x x x =-+-=---.故抛物线的解析式为2245y x x =---.3.已知二次函数2286y x x =-+.(1) 把它化成2()y a x h k =-+的形式为: 22(2)2y x =-- .(2) 直接写出抛物线的顶点坐标: ;对称轴: .(3) 求该抛物线于坐标轴的交点坐标 .【解析】 (1)2222862(44)862(2)2y x x x x x =-+=-+-+=--;(2)22(2)2y x =--Q , ∴抛物线的顶点坐标是:(2,2)-;对称轴是:2x =;(3)2286y x x =-+Q , ∴当0y =时,22860x x -+=,解得11x =,23x =,∴抛物线与x 轴的交点坐标为(1,0),(3,0);当0x =时,6y =,∴抛物线与y 轴的交点坐标为(0,6).故答案为22(2)2y x =--;(2,2)-,2x =.4.已知抛物线2y ax bx c =++顶点坐标为(4,1)-,与y 轴交于点(0,3),求这条抛物线的解析式.【解析】设这条抛物线的解析式为2(4)1y a x =--,把点(0,3)代入2(4)1y a x =--得14a =, ∴这条抛物线的解析式为21(4)14y x =-- 即21234y x x =-+. 5.已知抛物线的顶点坐标是(3,1)-,与y 轴的交点是(0,4)-,求这个抛物线的关系式.【解析】根据抛物线的顶点坐标是(3,1)-,设抛物线解析式为:2(3)1y a x =--,把y 轴的交点是(0,4)-代入得:13a =-, ∴抛物线的关系式为21(3)13y x =---. 6.已知某二次函数图象与x 轴交于点(3,0)A 与点(2,0)B -,且函数图象与y 轴交于(0,3),求二次函数的解析式.【解析】设抛物线解析式为(3)(2)y a x x =-+,把(0,3)代入得(3)23a -=g g ,解得12a =-, 所以抛物线解析式为2111(3)(2)3222y x x x x =--+=-++. 7.已知抛物线的顶点坐标为(1,2)M -,且经过点(2,3)N ,求此二次函数的解析式及抛物线与y 轴的交点坐标.【解析】设2()y a x h k =++过顶点(1,2)M -,得:2(1)2y a x =-- Q 经过点(2,3)N ,23(21)2a ∴=--,5a ∴=,25(1)2y x ∴=--,当0x =时,25(01)23y =--= ∴抛物线与y 轴的交点坐标为(0,3).8.已知二次函数的图象以(1,4)A -为顶点,且过点(2,5)B -.(1)求该二次函数的表达式;(2)求该二次函数图象与y 轴的交点坐标.【解析】(1)由顶点(1,4)A -,可设二次函数关系式为2(1)4(0)y a x a =++≠.Q 二次函数的图象过点(2,5)B -, ∴点(2,5)B -满足二次函数关系式, 25(21)4a ∴-=++,解得1a =-. ∴二次函数的关系式是2(1)4y x =-++;(2)令0x =,则2(01)43y =-++=, ∴图象与y 轴的交点坐标为(0,3).。
利用待定系数法求解析式
1、利用待定系数法求解析式:(1)过(-1,11),(2,8),(0,6)三点;(2)顶点(3,-1),过(2,3);(3)对称轴为直线x=2,且过(1,4),(5,0)。
2、用函数观点看一元二次方程一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线y=ax2+bx+c与x轴的交点坐标是5, 那么二次函数y= 3 (1).一元二次方程3 x2+x-10=0的两个根是x1= -2 ,x2=3x2+x-10与x轴的交点坐标是_____(2). 若抛物线y= x2+ax+b与x轴的交点坐标是(5,0)和(-2,0),则一元二次方程x2+bx+c=0的两个根是_____.3、二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点b2–4ac > 0(2)有一个交点b2–4ac= 0(3)没有交点b2–4ac< 0若抛物线y=ax2+bx+c与x轴有交点,则b2 – 4ac≥04.利用抛物线图象填空:(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为__________(6)y=ax2+bx+c与y=ax+c的图象交于A(-0.8,0.6)、B(3.2,1)两点则方程ax2+bx+c=ax+c的图象根为-----------------5、函数观点看一元二次方程(字母符号)(1)a看开口方向(2)c看与y轴交点(3)b的符号:左同右异(4)b2-4ac的符号:由抛物线与x轴的交点个数确定:(5)a+b+c的符号:由x=1时抛物线上的点的位置确定(6)a-b+c的符号:由x=-1时抛物线上的点的位置确定(7)根据二次函数图象,如何确定2a-b,2a+b符号2a-b 的符号,看抛物线对称轴在x=-1的左侧还是右侧2a+b 的符号,看抛物线对称轴在x=1的左侧还是右侧。
中考数学(二次函数提高练习题)压轴题训练含详细答案(1)
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+2(不符合题意,舍),n3=3-2,n2﹣2n﹣3=2-42,P(3-2,2-42);综上所述:P(2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①23.①P1(122),P2(16,74).【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221b ba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB , ∴PQ=3 ∵PQ ⊥y 轴 ∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1, ∴P 到y 轴的距离是12, ∴点P 的横坐标为−12, ∴P (−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-62,或1+62,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2. ∴P (1+2,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。
用待定系数法求抛物线的解析式
用待定系数法求抛物线的解析式例1、小乔家门前有一座抛物线形的拱桥,当水面在l 时,拱顶离水面2m ,水面宽4m 。
当水面下降1m 时,水面宽度增加多少?例2、已知抛物线2y ax bx c =++经过(-1,0),(0,-3),(2,-3)三点; (1)求这条抛物线的解析式;(2)写出抛物线的开口方向、对称轴、顶点坐标。
例3、已知抛物线与x 轴交于点A(-1,0)、B(3,0)两点,与y 轴交于点C(0,3)。
(1)求抛物线的解析式。
(2)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P,使得PDC ∆是等腰三角形?若存在,求出符合条件的点P 点坐标;若不存在,请说明理由。
(3)若点M 是抛物线上的一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。
巩固练习:1、已知抛物线25y x mx =+-经过点(2,-3),则该抛物线的解析式是____________。
2、已知抛物线2y x bx c =++过点A (4,2),B (-1,-11),则它的解析式是________________。
3、已知抛物线2y ax bx c =++的顶点是(0,2),且过(3,4),则该抛物线的解析式是____________。
4、若二次函数22y x mx =-+-的最大值为94,则m 的值为_________。
5、二次函数2y x bx c =-++的图像的最高点是(1,3)--,则,b c 的值是( ) A 2,4 B 2,4- C 2,4-- D 2,4--6、若抛物线22(3)7y x m x m =-+-+的对称轴是y 轴,则该抛物线的解析式是____________。
7、(2007 天津)已知抛物线与x 轴的交点是A (-2,0)B (1,0),且经过点C (2,8);(1)求这条抛物线的解析式;(2)求抛物线的顶点坐标。
8、在平面直角坐标系中,AOB ∆的位置如图所示,已知AOB ∠=90︒,AO=BO,点A 的坐标是(-3,1) 。
数学人教版九年级上册求抛物线的函数解析式
《求抛物线的函数解析式》教学设计武平县实验中学赖小华教学内容:求解抛物线的函数解析式。
教学目标:1.学生会运用待定系数法求解二次函数的解析式;2.学生会根据不同的已知条件,灵活选择相应的求解方法。
教学重难点:1.重点:运用待定系数法求解二次函数的解析式;2.难点:根据不同的已知条件,巧妙选择相应的求解方法.教学过程:一、复习旧知,为学习新知作好铺垫1.回顾:(1)我们已经学过二次函数的几种不同的形式?(2)它们的开口方向如何判断,对称轴,顶点分别是什么?2.练习巩固:说出下列二次函数的开口方向,对称轴,以及顶点坐标(学生回答,教师点评)二、探索新知1.思考:如何求解某一个抛物线的解析式呢?分析:根据不同的已知条件,可将求函数解析式的题型分为三种情形:(1)已知抛物线上的三个点的坐标,求其解析式;(2)已知抛物线的顶点坐标,求其解析式;(3)已知抛物线与X轴的两个交点的坐标,求其解析式。
2.分题型展开:(教师引导,师生互动完成)(1)已知抛物线上的三个点的坐标,求其解析式;例1:某抛物线经过(1,-4),(2,-9),(-1,-6),求该抛物线的解析式。
分析:求二次函数的解析式,就是要确定当中的a,b,c的值,由于本题已知抛物线上的三个点的坐标,故可设该抛物线的解析式为,再把已知的三个点的坐标代入即可。
小结:已知抛物线上的三个点的坐标:可设一般式(2)已知抛物线的顶点坐标,求其解析式;例2:某抛物线的顶点是(1,-2),且经过(2,-3),求该抛物线的解析式。
分析:由于本题已知抛物线的顶点为(1,-2),故可设该抛物线的解析式为,再把(2,-3)代入即可求出a的值。
小结:已知抛物线的顶点坐标:可设顶点式(3)已知抛物线与X轴的两个交点的坐标,求其解析式;例3:某抛物线经过(-3,0),(-1,-4),(1,0),求该抛物线的解析式。
分析:由于本题已知抛物线与X轴的两个交点的坐标是(-3,0),(1,0),故可设该抛物线的解析式为y=a(x+3)(x-1),再把(-1,-4)代入即可求出a的值。
22.1.7 用待定系数法求抛物线解析式
故所求的抛物线解析式为 y=x2-2x-3
强化训练
已知二次函数的图像经过点A(3,0), B(1,0),C(0,-2),求这个函数的解 析式。
例 题
选
讲
例2 已知抛物线的顶点在(3,-2),且与x轴两交点 的距离为4,求此二次函数的解析式. 解: 设函数关系式 y=a(x-3)2-2(a≠0) ∵抛物线与x轴两交点距离为4,对称轴为x=3 ∴过点(5,0)或(1,0) 把(1,0)代入得, 4a=2 1 a= 2
分析:
(1)一次函数的解析式是y=kx+b,(k≠0,k,b是常数)要写 出解析式,需求出什么? 需要求出k与 b的值. 为此,可以由一次函数图象上两个点的坐标,列出关于 k,b的二元一次方程组,求出待定系数k与b。 类似地,二次函数的解析式是y=ax2+bx+c,(a≠0)要写出 解析式,需求出a,b,c的值。 为此,可以由二次函数图象上三个点的坐标,列出关于 a,b,c的三元一次方程组,求出三个待定系数a,b,c. 追问:这三个点应该满足什么条件? 三个点不在同一条直线上
特殊形式 • 交点式:y=a(x-x1)(x-x2) (a≠0)
我们知道, 由两点(两点的连线不与坐标轴平行) 的坐标可以确定一次函数,即可以求出这个一次函数的解 析式。 对于二次函数,探究下面的问题: (1)由几个点的坐标可以确定二次函数?这几个点应满 足什么条件? (2)如果一个二次函数的图像经过(-1,10),(1,4), (2,7)三点,能求出这个二次函数的解析式吗?如果能, 求出这个二次函数的解析式。
设所求二次函数为y=a(x-5)(x-1) 由已知,函数图像的对称轴是直线x=3,最大 值为4,得关于a的一元一次方程 4=a(3-5)(3-1) 解得 a=-1 所求二次函数是
用待定系数法求函数解析式用
经过点P(1,2)的一次函数的解析式,则这个一次
函数解析式为 y x 1 。
2、(2007年郴州)已知正比例函数y=kx经过点 P(1,2),求这个正比例函数的解析式为 y 2x 。
3、(2010年郴州)已知双曲线 (1,2)则双曲线的解析式为
y
k x
y
的图象经过A
2 。
x
展现 自我
1、(2013年郴州)已知:如图,一次函数的图
象与y轴交于C(0,3),且与反比例函数y= 2 的图象在第一象限内交于A,B两点,其中 x
A(1,a),求这个一次函数的解析式.1
这个一次函数的解析式y=-x+3
.
2、(2012年郴州)已知反比例函数的图象与 直线y=2x相交于A(1,a),求这个反比例 函数的解析式. 这个反比例函数的解析式为y= 2
(1)求抛物线的表达式; (2)、(3)待续
y 2 x2 11 x 4 33
方法点拔 看图找点 见形想式 建模求解
畅谈所得
感悟提升
通过本节课的复习你对用待 定系数法求函数解析式又有什么 新的认识?
轻松 应对
任选以下三个条件中的一个,求二次函数
y=ax2+bx+c的解析式; ① 0)已知直线上两个点的坐标
反比例函数
yy kk(k 0) xx
二次函数一般式 y=ax2+bx+c
已知双曲线上一个点的坐标 已知抛物线上三个点的坐标
二次函数顶点式 y=a(x-h)2+k 已知抛物线顶点坐标(h, k)
二次函数交点式
y=a(x-x1)(x-x2)
已知抛物线与x 轴的两个交 点(x1,0)、 (x2,0),
九年级数学第二十二章第1节《二次函数的图象和性质》解答题专题 (10)含解析
第二十二章第1节《二次函数的图象和性质》解答题专题 (10)1.已知关于x 的方程2(41)40kx k x -++=. (1)当k 取何值时,方程有两个实数根;(2)若二次函数2(41)4y kx k x =-++的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值并用配方法求出抛物线的顶点坐标.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点.(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值.3.已知抛物线2y x bx c =++与x 轴交于()1,0A x ,()2,0B x 两点,且12xx <,若222133x x k +=(k 为正整数),我们把该抛物线称为“B 系抛物线”.特例感知(1)当2b =,15c =-时,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 推广验证 (2)若234c b =-,且b 为负整数,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 拓展应用(3)在(2)的条件下,若M 为该抛物线的顶点,且ABM ∆为等腰直角三角形,求该抛物线的解析式.4.已知:如图抛物线26y ax bx =++与x 轴交于点()6,0B ()2,0C -与y 轴交于点A .(1)求抛物线的解析式;(2)如图点P 是线段AB 上方抛物线上的一个动点连结PA 、PB .设PAB △的面积为S .点P 的横坐标为m .①试求S 关于m 的函数关系式;②请说明当点P 运动到什么位置时PAB △的面积有最大值?③过点P 作x 轴的垂线交线段AB 于点D 再过点P 做//PE x 轴交抛物线于点E 连结DE 请问是否存在点P 使PDE △为等腰直角三角形?若存在请直接写出点P 的坐标;若不存在请说明理由.5.在平面直角坐标系xOy 中抛物线()2420y axax a a =-+≠的顶点为P 且与y 轴交于点A 与直线y a =-交于点BC (点B 在点C 的左侧).(1)求抛物线()2420y axax a a =-+≠的顶点P 的坐标(用含a 的代数式表示);(2)横、纵坐标都是整数的点叫做整点记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时结合函数图象直接写出a 的取值范围.6.在平面直角坐标系xOy 中,已知,点A (3,0)、B (-2,5)、C (0,-3).求经过点A 、B 、C 的抛物线的表达式.7.在平面直角坐标系xOy 中,抛物线25y ax bx a =+-与y 轴交于点A ,将点A 向左平移4个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点()1,2P a --,()4,2Q -.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.8.如图1在平面直角坐标系xOy 中抛物线y=-(x-a )(x-4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C 点D 为抛物线的顶点.(1)若D 点坐标为(32524,)求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点且点M 的纵坐标为a 点N 为抛物线在x 轴上方一点若以C 、B 、M 、N 为顶点的四边形为平行四边形时求a 的值;(3)直线y=2x+b 与(1)中的抛物线交于点D 、E (如图2)将(1)中的抛物线沿着该直线方向进行平移平移后抛物线的顶点为D′与直线的另一个交点为E′与x 轴的交点为B′在平移的过程中求D′E′的长度;当∠E′D′B′=90°时求点B′的坐标.9.二次函数y=ax 2+bx+c (a≠0)的图象向左平移4个单位,再向上平移3个单位,得到二次函数y=x 2﹣2x+1,求:b ,c 的值. 10.在平面直角坐标系中,抛物线y 14=x 2沿x 轴正方向平移后经过点A (x 1,y 2),B (x 2,y 2),其中x 1,x 2是方程x 2﹣2x =0的两根,且x 1>x 2, (1)如图.求A ,B 两点的坐标及平移后抛物线的解析式; (2)平移直线AB 交抛物线于M ,交x 轴于N ,且14AB MN =,求△MNO 的面积; (3)如图,点C 为抛物线对称轴上顶点下方的一点,过点C 作直线交抛物线于E 、F ,交x 轴于点D ,探究CD CDCE CF+的值是否为定值?如果是,求出其值;如果不是,请说明理由.11.已知:关于x 的二次函数2y x ax =-+(a >0),点A (n ,y 1)、B (n+1,y 2)、C (n+2,y 3)都在这个二次函数的图象上,其中n 为正整数.(1)y 1=y 2,请说明a 必为奇数;(2)设a=11,求使y 1≤y 2≤y 3成立的所有n 的值;(3)对于给定的正实数a ,是否存在n ,使△ABC 是以AC 为底边的等腰三角形?如果存在,求n 的值(用含a 的代数式表示);如果不存在,请说明理由.12.如图①定义:直线:(0,0)l y mx n m n =+<>与x 、y 轴分别相交于A 、B 两点将AOB ∆绕着点O 逆时针旋转90°得到COD ∆过点A 、B 、D 的抛物线P 叫做直线l 的“纠缠抛物线”反之直线l 叫做P 的“纠缠直线"两线“互为纠缠线”.(1)若:22l y x =-+则纠缠物线P 的函数解析式是____________. (2)判断并说明22y x k =-+与212y x x k k=--+是否“互为纠缠线”. (3)如图②若纠缠直线:24l y x =-+纠缠抛物线P 的对称轴与CD 相交于点E 点F 在l 上点Q 在P 的对称轴上当以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时求点Q 的坐标.13.已知二次函数y =ax 2(a ≠0)的图象经过点(﹣2,3) (1)求a 的值,并写出这个二次函数的解析式; (2)求出此抛物线上纵坐标为3的点的坐标. 14.关于x 的二次函数y 1=x 2+kx+k ﹣1(k 为常数) (1)对任意实数k ,函数图象与x 轴都有交点(2)若当x≥75时,函数y 的值都随x 的增大而增大,求满足条件的最小整数k 的值 (3)K 取不同的值时,函数抛物线的顶点位置也会变化,但会在某一函数图象上,求该函数图象的解析式(4)若当自变量x 满足0≤x≤3时,与其对应的函数值y 的最小值为10,求此时k 的值. 15.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B . (1)求抛物线2y ax bx =+的解析式.(2)若点M是该抛物线对称轴上的一点,求AM OM的最小值.16.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?17.如图:已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3)与x轴交于C、D两点,点P是x轴上的一个动点.(1)求抛物线的解析式;(2)当PA+PB的值是最小时,求点P的坐标.18.在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.19.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.20.如图抛物线y=-x2+bx+c与x轴交于A、B两点交y轴正半轴于C点D为抛物线的顶点A (-10)B(30).(1)求出二次函数的表达式.(2)点P在x轴上且∠PCB=∠CBD求点P的坐标.(3)在x轴上方抛物线上是否存在一点Q使得以QCBO为顶点的四边形被对角线分成面积相等的两部分?如果存在请直接写出点Q的坐标;如果不存在请说明理由.【答案与解析】1.(1)0k ≠;(2)k=1,(52,94-).(1)要使方程有两个实数根,必须满足两个条件:[]2(41)440k k k ⎧∆=-+-⨯≥⎨≠⎩从而可求出k 的取值范围;(2)令y=0,得到一个一元二次方程,用含有k 的代数式表示方程的解,根据题意求出k 的值.(1)依题意得[]2(41)4400k k k ⎧∆=-+-⨯≥⎨≠⎩,整理得24k-100k ⎧∆=≥⎨≠⎩()∵当k 取任何值时,2(41)0k -≥, ∴0k ≠∴当0k ≠时,方程总有两个实数根.(2)解方程2(41)40kx k x -++=,得14x =,21x k=. ∵12x x 和均为整数且k 为正整数,∴取k=1. ∴254y x x =-+222555()()422x x =-+-+ 259()24x =--∴抛物线的顶点坐标为(52,94-).【点睛】本题考查二次函数综合题,解题的关键是掌握根的判别式和抛物线的顶点坐标的求法.2.(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)214y x x =-++;(Ⅲ)3b = (Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式;(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值.解:(Ⅰ)把点(-1,0)和(3,0)代入函数2y x bx c =-++,有10930b c b c --+=⎧⎨-++=⎩.解得2,3b c == 2223(1)4y x x x ∴=-++=--+(0,3),(1,4)A E ∴(Ⅱ)由222424b c b y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,得24,24b c b E ⎛⎫+ ⎪⎝⎭∵点E 在直线y x =上,2424b c b+∴=221111(1)4244c b b b ∴=-+=--+2110,(1)44A b ⎛⎫∴--+ ⎪⎝⎭ 当1b =时,点A 是最高点此时,214y x x =-++(Ⅲ):抛物线经过点(1,0)-,有10b c --+=1c b ∴=+24,,(0,)24b c b E A c ⎛⎫+ ⎪⎝⎭ 2(2),,(0,1)24b b E A b ⎛⎫+∴+ ⎪⎝⎭∴E 关于x 轴的对称点E '为2(2),24b b ⎛⎫+- ⎪⎝⎭设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得(1)(1)y b x =-+-把点2(2),24b b E '⎛⎫+- ⎪⎝⎭代入(1)(1)y b x =-+-.得2(2)(1)142b b b +⎛⎫=-+- ⎪⎝⎭,即2680b b --=解得,3b =0,3b b >∴=舍去.317b ∴=+ 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.3.(1)是;理由见解析;(2)是;理由见解析;(3)23y 4x x =--. (1)根据“B 系抛物线”代入2b =,15c =-,然后计算与x 轴交点坐标,然后判断22213x x +的值判断即可;(2)将234c b =-代入表达式后计算与x 轴交点坐标,然后判断22213x x +的值判断即可; (3)过M 作MH ⊥AB ,然后根据(2)得到AB 长度和M 的横坐标,然后计算即可.解:(1)当2b =,15c =-时,代入2y x bx c =++即2215y x x =+-令y =0,即20215x x +=-∴(3)(x 5)0x -+= ∴125,3x x =-=∴22213x x +=2233?(-5)3k +=即28k=∴是“B 系抛物线” (2)∵234c b =-∴2234y x bx b =+-令y =0,即22304x bx b =+-∴13()()022x b x b -+= ∵b 为非负数 ∴1213,22x b x b ==- ∴2231()3?()322b b k -+=即233b k =此时2k b = ∴是“B 系抛物线”;(3)如图,当△ABM 为等腰直角三角形时,过M 作MH ⊥AB ,其中AB=2b ,点M 横坐标为2b - 将2b x =-代入2234y x bx b =+-即2223()()224b b y b b b =-+--= ∴MH=-2b∵△ABM 为等腰直角三角形 ∴MH=12AB ∴21×22b b -=解的120(),1b b ==-舍去∴抛物线的解析式234y x x =--【点睛】本题主要考查二次函数性质,理解“B 系抛物线”是解题的关键. 4.(1)2162y x bx =-++;(2)①()2327322S m =--+②当m=3时S 有最大值③点P 的坐标为(4,6)或(55-).(1)由()2(6)(2)412y a x x a x x =-+=-- 则-12a=6求得a 即可; (2)①过点P 作x 轴的垂线交AB 于点D 先求出AB 的表达式y=-x+6设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6)然后再表示()222113327332669322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+=--+ ⎪⎝⎭即可;②由在()2327322S m =--+中32-<0故S 有最大值;③△PDE 为等腰直角三角形则PE=PD 然后再确定函数的对称轴、E 点的横坐标进一步可得|PE|=2m-4即21266242m m m m -+++-=-求得m 即可确定P 的坐标. 解:(1)由抛物线的表达式可化为()22(6)6=(2)412y a x x a x ax bx x =+-++-=- 则-12a=6解得:a=12-故抛物线的表达式为:2162y x bx =-++; (2)①过点P 作x 轴的垂线交AB 于点D由点A(0,6)、B 的坐标可得直线AB 的表达式为:y=-x+6 设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6) ∴()222113327332669=322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+--+ ⎪⎝⎭; ②∵()2327322S m =--+32-<0 ∴当m=3时S 有最大值; ③∵△PDE 为等腰直角三角形 ∴PE=PD ∵点21,262P m m m ⎛⎫-++ ⎪⎝⎭函数的对称轴为:x=2则点E 的横坐标为:4-m 则|PE|=2m-4 即21266242m m m m -+++-=- 解得:m=4或-2或517+517-2和517 当m=4时21262m m -++=6; 当m=517-21262m m -++=3175. 故点P 的坐标为(4,6)或(5173175). 【点睛】本题属于二次函数综合应用题主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点掌握并灵活应用所学知识是解答本题的关键. 5.(1)顶点P 的坐标为()2,2a -;(2)① 6个;② 112a <≤112a -≤<-. (1)由抛物线解析式直接可求;(2)①由已知可知A (02)C (2+2 -2)画出函数图象观察图象可得;②分两种情况求:当a >0时抛物线定点经过(2-2)时a=1抛物线定点经过(2-1)时a=12则12<a≤1;当a <0时抛物线定点经过(22)时a=-1抛物线定点经过(21)时a=-12则-1≤a<-12. 解:(1)∵y=ax 2-4ax+2a=a (x-2)2-2a ∴顶点为(2-2a );(2)如图①∵a=2∴y=2x 2-8x+2y=-2 ∴A (02)C (2-2) ∴有6个整数点;②当a >0时抛物线定点经过(2-2)时a=1 抛物线定点经过(2-1)时12a =; ∴112a <≤. 当0a <时抛物线顶点经过点(22)时1a =-; 抛物线顶点经过点(21)时12a =-; ∴ 112a -≤<-. ∴综上所述:112a <≤112a -≤<-. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.6.223y x x =--设抛物线的解析式为y=ax 2+bx+c ,再把三个已知点的坐标代入得到关于a 、b 、c 的方程组,解方程组即可得到二次函数的解析式.解:设经过点A 、B 、C 的抛物线的表达式为2(0)y ax bx c a =++≠.则9304253a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩. ∴经过点A 、B 、C 的抛物线的表达式为223y x x =--. 【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解. 7.(1)()4,5B a --;(2)2x =-;(3)205a -≤< (1)根据解析式得到点A 的坐标,利用平移即可得到带你B 的坐标; (2)根据点A 、B 的对称性即可求出对称轴;(3)分两种情况:a>0或a<0时,分别确定点P 、Q 的位置,根据抛物线与线段PQ 恰有一个公共点求出答案.(1)∵抛物线25y ax bx a =+-与y 轴交于点A ,∴点A(0,-5a),∵将点A 向左平移4个单位长度,得到点B , ∴B(-4,-5a); (2)对称轴是x=0422-=-; (3)如图:当a<0时,∵A(0,-5a), ()1,2P a --,且-5a>-2a , ∴点P 在抛物线下方,∵()4,2Q -,抛物线与线段PQ 恰有一个公共点,B(-4,-5a), ∴点Q 在抛物线上方或是在抛物线上,即25a ≥-, 解得25a ≥-, ∴205a -≤<时抛物线与线段PQ 恰有一个公共点;当a>0时,∵A(0,-5a), ()1,2P a --,且-5a<-2a<0, ∴点P 在抛物线上方,在x 轴下方, ∵()4,2Q -,B(-4,-5a), ∴点Q 在抛物线上方,∴此时抛物线与线段PQ 没有公共点;综上,205a -≤<时抛物线与线段PQ 恰有一个公共点. 【点睛】此题考查抛物线的性质,利用解析式求点坐标,点平移的规律,抛物线对称轴,抛物线与线段交点问题.8.(1)y=-x 2+3x+4C (04);(2)a 11326221-;(3)D ′E ′5B′(-10).(1)将点D 的坐标代入函数解析式求得a 的值;利用抛物线解析式来求点C 的值. (2)需要分类讨论:BC 为边和BC 为对角线两种情况根据“平行四边形的对边平行且相等平行四边形的对角线相互平分”的性质列出方程组利用方程思想解答.(3)根据平移规律得到D ′E ′的长度、平移后抛物线的解析式然后由函数图象上点的坐标特征求得点B ′的坐标. (1)依题意得:254=-(32-a )(32-4). 解得a=-1.∴抛物线解析式为:y=-(x+1)(x-4)或y=-x 2+3x+4. ∴C (04).(2)由题意知:A (a0)B (40)C (0-4a ). 对称轴为直线x=42a +则M (42a +a ). ①MN ∥BC 且MN=BC 根据点的平移特征可知N (42a --3a ). 则-3a=-(42a --a )(42a --4). 解得:②当BC 为对角线时设N (xy ).根据平行四边形的对角线互相平分可得:4424a x a y a +⎧+=⎪⎨⎪+=-⎩.解得425a x y a-⎧=⎪⎨⎪=-⎩.则-5a=-(42a --a )(42a --4). 解得a=63±.(舍去正值) ∴a 12=63-. (3)把D (32524,)代入y=2x+b 得到:2×32+b=254.则b=134. 故直线解析式为:y=2x+134. 联立2132434y x y x x ⎧=+⎪⎨⎪=-++⎩.解得1132254x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)221294x y ⎧=-⎪⎪⎨⎪=⎪⎩.∴E (-1294)∴.根据抛物线的平移规律则平移后线段D′E′始终等于 设平移后的D′(m2m+134)则E′(m-22m-34). 平移后抛物线的解析式为:y=-(x-m )2+2m+134. 则D′B′:y=-12x+n 过点(m2m+134) ∴y=-12x+52m+134则B′(5m+1320). ∴-12(5m+132)+52m+134=0. 解得m 1=-32m 2=-138. ∴B ′1(-10)B′2(-1380)(与D′重合舍去). 综上所述B′(-10). 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来利用点的坐标的意义表示线段的长度从而求出线段之间的关系. 9.b=﹣10,c=22.此题实际上是将抛物线y=x 2﹣2x+1向下平移3个单位,向右平移4个单位得到抛物线y=ax 2+bx+c (a≠0),由此求得b ,c 的值.解:将y=x 2﹣2x+1向下平移3个单位,向右平移4个单位, 得:y=(x ﹣1﹣4)2﹣3=(x ﹣5)2﹣3=x 2﹣10x+22. 故:b=﹣10,c=22. 【点睛】本题考查了二次函数图象的平移,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式是关键.10.(1)点A 坐标为(2,0),点B 坐标为(0,1),21(2)4y x =-;(2)12或28;(3)CD CDCE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0.即可求得点A 坐标为(2,0),抛物线解析式为()2124y x =- ,把x =0代入抛物线解析式得y =1,即可得点B 坐标为(0,1);(2)如图,过M 作MH ⊥x 轴,垂足为H ,由AB ∥MN ,即可得△ABO ∽△MHN ,根据相似三角形的性质可得14BO HN AB MH AO MN ===,由此求得MH =4,HN =8,将y =4代入抛物线()2124y x =-求得x 1=﹣2,x 2=6,所以M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0),由此求得△MNO 的面积即可;(3)设C (2,m ),求得CD 解析式为y =kx +m ﹣2k ,令y =0得kx +m ﹣2k =0,由此求得点D 为(2k mk-,0);把CD 的解析式与抛物线的解析式联立221(2)4y kx m ky x =+-⎧⎪⎨=-⎪⎩,消去y 得,kx +m ﹣2k =14(x ﹣2)2.化简得x 2﹣4(k +1)x +4﹣4m +8k =0,由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q ,由AD ∥EP ,AD ∥FQ ,可得CD CDCE CF+=AD AD EP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk -﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k m k m k k +--⋅-+-++=1,由此可得CD CD CE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0. ∴点A 坐标为(2,0),抛物线解析式为()2124y x =- . 把x =0代入抛物线解析式得y =1. ∴点B 坐标为(0,1).(2)如图,过M 作MH ⊥x 轴,垂足为H ∵AB ∥MN ∴△ABO ∽△MHN∴14BO HN AB MH AO MN === ∴MH =4,HN =8将y =4代入抛物线()2124y x =- 可得x 1=﹣2,x 2=6∴M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0), ∴11164122M N O S ∆=⨯⨯= 221144282M N O S ∆=⨯⨯=(3)设C (2,m ),设直线CD 为y =kx +b 将C (2,m )代入上式,m =2k +b ,即b =m ﹣2k . ∴CD 解析式为y =kx +m ﹣2k , 令y =0得kx +m ﹣2k =0, ∴点D 为(2k mk-,0) 联立221(2)4y kx m k y x =+-⎧⎪⎨=-⎪⎩, 消去y 得,kx +m ﹣2k =14(x ﹣2)2. 化简得,x 2﹣4(k +1)x +4﹣4m +8k =0由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q , ∴AD ∥EP ,AD ∥FQ , ∴CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk-﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k mk m k k +--⋅-+-++ =1∴CD CDCE CF +为定值,定值为1. 【点睛】本题是二次函数综合题,考查了一次函数与二次函数图象的交点问题,解决第(3)问的关键是确定CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅,再利用根与系数的关系解决. 11.解:(1)∵点A (n ,y 1)、B (n+1,y 2)都在二次函数2y x ax =-+(a >0)的图象上,∴()()2212y n an y n 1a n 1=-+=-+++,. ∵y 1=y 2,∴()()22n an n 1a n 1-+=-+++,整理得:a=2n+1. ∵n 为正整数,∴a 必为奇数. (2)当a=11时,∵y 1<y 2<y 3,∴()()()()222n 11n n 111n 1n 211n 2-+≤-+++≤-+++. 化简得:0102n 184n ≤-≤-.解得:n 4≤. ∵n 为正整数,∴n=1、2、3、4. (3)存在. 假设存在,则AB=AC ,如图所示,过点B 作BN ⊥x 轴于点N ,过点A 作AD ⊥BN 于点D ,CE ⊥BN 于点E ,∵x A =n ,x B =n+1,x C =n+2,∴AD=CE=1. 在Rt △ABD 与Rt △CBE 中,AB=BC ,AD=CE , ∴Rt △ABD ≌Rt △CBE (HL ).∴∠BAD=∠CBE ,即BN 为顶角的平分线. 由等腰三角形性质可知,点A 、C 关于BN 对称. ∴BN 为抛物线的对称轴,点B 为抛物线的顶点, ∴()a an 1212+=-=⨯-.∴a n 12=-.∴存在n ,使△ABC 是以AC 为底边的等腰三角形,an 12=-. (1)将点A 和点B 的坐标代入二次函数的解析式,利用y 1=y 2得到用n 表示a 的式子,即可得到答案;(2)将a=11代入解析式后,由题意列出不等式组,求得此不等式组的正整数解. (3)本问为存在型问题,如图所示,可以由三角形全等及等腰三角形的性质,判定点B为抛物线的顶点,点A 、C 关于对称轴对称,于是得到()a a n 1212+=-=⨯-,从而可以求出a n 12=-. 12.答案见解析.(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)即可求解;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0)则抛物线的表达式为:y=a (x+2k )(x-k )即可求解;(3)以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1即可求解.解:(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)将点B 的坐标代入上式得:2=a (0+2)(0-1)解得:a=-1故答案为:y=-x 2-x+2;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0) 则抛物线的表达式为:y=a (x+2k )(x-k )将点B 的坐标代入上式并解得:a=1-k 故抛物线的表达式为:y=211-(2)()2x k x k x x k k k +-=--+ 故y=-2x+2k 与y =212x x k k--+“互为纠缠线”; 点A 、B 、C 、D 的坐标分别为:(20)、(04)、(02)、(-40) 同理可得:抛物线的表达式为:y=21--42x x + 抛物线的对称轴为:x=-1设点F (m-2m+4)点Q (-1n )将点C 、D 的坐标代入一次函数表达式并求得:直线CD 的表达式为:y=12x+2 点CE 横坐标差为1故纵坐标差为12以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1解得:m=0或-2当m=0时点F (04)则点Q (-192);同理当m=-2时点Q (-1172); 综上点Q 坐标为:Q (-192)或Q (-1172). 【点睛】 本题考查的是二次函数综合运用涉及到一次函数、平行四边形性质等其中(3)要注意分类求解避免遗漏.13.(1)34,234y x = (2)(﹣2,3),(2,3) (1)根据二次函数图象上点的坐标满足其解析式,把点(-2,3)代入解析式得到关于a 的方程,然后解方程即可;(2)把y=3代入解析式求出x 的值即可.解:(1)∵抛物线y =ax 2经过点(﹣2,3),∴4a =3,∴a=34, ∴二次函数的解析式为234y x =; (2)∵抛物线上点的纵坐标为3, ∴3=34x 2, 解得x =±2, ∴此抛物线上纵坐标为3的点的坐标为(﹣2,3),(2,3).【点睛】考查了待定系数法求解析式,二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.14.(1)见解析;(2)﹣150;(3)y =﹣x 2﹣2x ﹣1;(4)11.(1)计算△,根据△的值进行判断;(2)根据二次函数的增减性即可判断;(3)得到抛物线的顶点,写成方程组,消去k 得y =-x 2-2x -1,即可判断;(4)函数配方后得y =x 2+kx +k -1=22124k k x k ⎛⎫+-+- ⎪⎝⎭,根据对称轴的位置分三种情况进行讨论可得结论.解:(1)∵△=k 2﹣4(k ﹣1)=k 2﹣4k+4=(k ﹣2)2≥0,∴对任意实数k ,函数图象与x 轴都有交点;(2)∵a=1>0,抛物线的对称轴x b k 2a 2=-=-, ∴在对称轴的右侧函数y 的值都随x 的增大而增大,即当x k 2->时,函数y 的值都随x 的增大而增大, ∵x≥75时,函数y 的值都随x 的增大而增大, ∴k 2-≤75,k≥﹣150, ∴k 的最小整数是﹣150, ∴满足条件的最小整数k 的值是﹣150;(3)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), ∴2k x 2k y k 14⎧=-⎪⎪⎨⎪=-+-⎪⎩, 消去k 得,y =﹣x 2﹣2x ﹣1,由此可见,不论k 取任何实数,抛物线的顶点都满足函数y =﹣x 2﹣2x ﹣1,即抛物线的顶点在二次函数y =﹣x 2﹣2x ﹣1的图象上; (4)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), 又∵0≤x≤3时,与其对应的函数值y 的最小值为10, ①当k 2-≤0时,即k≤0, 此时x =0时,y 取得最小值是10,则有10=k ﹣1,k =11. ②当k 2-≥3时,即k≤﹣6, 此时x =3时,y 取得最小值是10,则有10=32+3k+k ﹣1, k 12=,不符合题意; ③当0k 2-<<3时,即﹣6<k <0, 此时x k 2=-时,y 取得最小值是10,即2k 4-+k ﹣1=10, 此方程无实根,综上所述,k 的值是11.【点睛】本题主要考查了二次函数的性质,解决本题的关键是要熟悉函数关系式和方程的关系、函数的性质.15.(1)抛物线的解析式为212y x x =-+;(2)AM OM +的最小值为42. (1)利用待定系数法可求出该抛物线的解析式; (2)根据O 、B 两点正好关于抛物线的对称轴对称,那么只需连接A 、B ,直线AB 和抛物线对称轴的交点即为符合要求的M 点,而AM +OM 的最小值正好是AB 的长,过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,根据勾股定理即可得出结论.(1)把A (﹣2,﹣4),B (2,0)两点的坐标代入y =ax 2+bx 中,得:424420a b a b -=-⎧⎨+=⎩,解方程组,得:a 12=-,b =1,∴解析式为y 12=-x 2+x . (2)由y 12=-x 2+x 12=-(x ﹣1)212+,可得抛物线的对称轴为直线x =1,并且对称轴垂直平分线段OB ,∴OM =BM ,∴OM +AM =BM +AM .连接AB 交直线x =1于M 点,则此时OM +AM 最小.过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,AB 222244AN BN =+=+=42,因此OM +AM 最小值为42.【点睛】本题是二次函数的综合题,难点在于点M 位置的确定,正确理解二次函数的轴对称性以及两点之间线段最短是解题的关键.16.见解析试题分析:观察图像结合函数表达式可以得到两个函数开口向上,对称轴也都是y 轴,顶点坐标分别是(0,0),(0,-1);根据二次函数的性质及图像知道抛物线y=12x2-1与抛物线y=12x2形状相同,对称轴相同,但是位置不同,开口方向也相同,所以可以得到抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到的.解:如图所示:(1)抛物线y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);抛物线y=12x2-1开口向上,对称轴为y轴,顶点坐标(0,-1).(2)抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到.17.(1)y=﹣(x﹣1)2+4;(2)当PA+PB的值是最小时,点P的坐标是(37,0).试题分析:(1)由题意可设抛物线解析式为“顶点式”,再代入点B的坐标可求得解析式;(2)由题意作出点B关于x轴的对称轴点E,连接AE交x轴于点P,P为所求的点,由A、E的坐标可求得直线AE的解析式,再由AE的解析式就可求得点P的坐标.试题解析:(1)∵抛物线的顶点A的坐标为(1,4),∴设抛物线的表达式为y=a(x-1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4.解得a=-1.∴二次函数的表达式为y=-(x-1)2+4,即y=-x2+2x+3.(2)作点B关于x轴的对称点E(0,-3),连接AE交x轴于点P,点P即为所求点.设AE所在直线的表达式为y=kx+b,分别代入A,E坐标,得43k bb+=⎧⎨=-⎩,解得73kb=⎧⎨=-⎩,∴y=7x-3.当y=0时,x=3 7 .∴点P 的坐标为(37,0). 18.(1)y =x 2﹣4x +4;(2)①点P 的坐标为(1,1)或(4,4);②在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.(1)根据抛物线顶点在x 轴上,列式计算可得m 的值;(2)由∠POQ =45°,作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,联立解析式求出P 点坐标即可;(3)分两种情况考虑:当点P ,Q 在y 轴右侧时与点P ,Q 在y 轴左侧时,列出不等式求解即可.解:(1)∵抛物线y =x 2﹣4x +m +2的顶点在x 轴上,∴()()2412441m ⨯⨯+--⨯=0,解得:m =2, ∴抛物线的表达式为y =x 2﹣4x +4.(2)①作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,如图1所示.联立直线OP 及抛物线的表达式成方程组,得:244y x y x x =⎧⎨=+⎩﹣, 解得:1111x y =⎧⎨=⎩,2244x y =⎧⎨=⎩, ∴点P 的坐标为(1,1)或(4,4).②当y =1时,x 2﹣4x +4=1,解得:x 1=1,x 2=3,∴点E 的坐标为(1,1),点F 的坐标为(3,1).分两种情况考虑:(i )当点P ,Q 在y 轴右侧时,∵抛物线y =x 2﹣4x +4与直线y =x 交于点(1,1), ∴当1≤3﹣n ≤3时,图象G 上存在点P ,使得∠POQ =45°,解得:0≤n ≤2;(ii )当点P ,Q 在y 轴左侧时,同①可得出,抛物线y =x 2﹣4x +4与直线y =﹣x 交于点(﹣1,﹣1)或(﹣4,﹣4),∴当﹣1≤3﹣n ≤1时,图象G 上存在点P ,使得∠POQ =45°,解得:2≤n ≤4. 综上所述:若在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.【点睛】本题考查二次函数的图像和性质,正确理解∠POQ=45°的意义,运用数形结合的思想解决问题是解题关键.19.(1)y=x2﹣4x+3;(2)存在,抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)△ACE的最大面积278,此时E点坐标为(52,34).(1)利用待定系数法求二次函数解析式解答即可.(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D.(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF ,再根据直线l 与x 轴的夹角为45°求出两直线间的距离,再求出AC 间的距离,然后利用三角形的面积公式列式计算即可得解.解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0),点C (4,3),∴a b 30{16a 4b 33++=++=,解得a 1{b 4==-. ∴抛物线的解析式为y=x 2﹣4x+3.(2)存在.∵点A 、B 关于对称轴对称,∴点D 为AC 与对称轴的交点时△BCD 的周长最小. ∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2.设直线AC 的解析式为y=kx+b (k≠0),则k b 0{4k b 3+=+=,解得:k 1{b 1==-.∴直线AC 的解析式为y=x ﹣1.当x=2时,y=2﹣1=1.∴抛物线对称轴上存在点D (2,1),使△BCD 的周长最小.(3)如图,设过点E 与直线AC 平行线的直线为y=x+m ,联立243y x my x x =+⎧⎨=-+⎩,消掉y 得,x 2﹣5x+3﹣m=0.由△=(﹣5)2﹣4×1×(3﹣m )=0得m=134-.∴m=134-时,点E 到AC 的距离最大,△ACE 的面积最大.此时x=52,y=5133244-=-.∴点E 的坐标为(52,34-).设过点E 的直线与x 轴交点为F ,则F (134,0).∴AF=139144-=.∵直线AC 的解析式为y=x ﹣1,∴∠CAB=45°.∴点F 到AC 的距离为9292428⨯=. 又∵223(41)32AC =+-=.∴△ACE 的最大面积192273228=⨯⨯=,此时E 点坐标为(52,34-). 20.(1)y=-x 2+2x+3;(2)P (60)或P 3,02⎛⎫ ⎪⎝⎭;(3)存在点Q 113113,⎛⎫++ ⎪ ⎪⎝⎭或17,24⎛⎫- ⎪⎝⎭. (1)将点A 、B 坐标代入解析式求出b 、c 的值即可得;(2)∠PCB=∠CBD 有两种情况①P 在B 的右侧时延长BD 交y 轴于点H 由∠OCB=∠OBC=45°可证明∠HCB=∠CBP 从而△PCB ≌△HBC 由直线BD 即可求得:OH=OP=6从而得到P 点坐标;②P 在B 的左侧时此时PC ∥BD 根据一次函数解析式即可求出P ; (3)分以下两种情况分别求解①点Q 在y 轴右侧时由OB=OC 可得出OQ 是∠BOC 的平分线联立二次函数解析式与直线OQ 的解析式即可求解;②点Q 在y 轴左侧时可得这条对角线只能是BQ 过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别为FE 延长FQ 交x 轴于点G 设点Q 的坐标为(mn)根据S △BOQ =S △CBQ =S 梯形FQBE -S △FCQ -S △BEC 可得出关于mn 的关系式再与二次函数的解析式联立即可求解.解:(1)将点A (-10)B (30)代入y=-x 2+bx+c 得10930b c b c --+=⎧⎨-++=⎩解得23b c =⎧⎨=⎩∴二次函数的表达式为y=-x 2+2x+3;(2)①当点P 在点B 右侧时延长BD 交y 轴于点H∵y=-x 2+2x+3=-(x-1)2+4∴点D 的坐标为(14)设直线BD 的解析式为y=kx+b 则304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩即直线BD 的解析式为y=-2x+6 ∴点H 的坐标为(06)∵OB=OC=3∴∠OBC=∠OCB=45°∴∠HCB=∠CBP=135°又∠PCB=∠CBDBC=BC∴△PCB ≌△HBC∴CH=PB∴OH=OB=6故此时点P 的坐标为(60);②当点P (P′)在点B 左侧时直线BD 的表达式为:y=-2x+6∵∠P′CB=∠CBD 则P′C ∥BD则直线P′C 的表达式为:y=-2x+3当y=0x=32故此时点P′的坐标为3,02⎛⎫ ⎪⎝⎭综上所述点P 的坐标为(60)或3,02⎛⎫⎪⎝⎭; (3)存在.理由如下:①当点Q 在y 轴右侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是OQS △COQ =S △BOQ 如图而OB=OC 故OQ 是∠BOC 的平分线即OQ 的函数表达式为:y=x将y=x 与y=-x 2+2x+3联立得-x 2+2x+3=x 解得113+ 故此时点Q 的坐标为(1132+1132+); ②当点Q 在y 轴左侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是BQS △BOQ =S △CBQ 如图过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别。
专题45 待定系数法(解析版)
专题45 待定系数法1.待定系数法的含义一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
2. 待定系数法的应用(1)分解因式待定系数法是初中数学的一个重要方法。
用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。
在初中竞赛中经常出现。
a.确定所求问题含待定系数的解析式。
b.根据恒等条件,列出一组含待定系数的方程。
c.解方程或消去待定系数,从而使问题得到解决。
(2)求函数解析式初中阶段主要有正比例函数、反比例函数、一次函数、二次函数这几类函数,前面三种分别可设y=kx,y=k/x,y=kx+b的形式(其中k、b为待定系数,且k≠0).而二次函数可以根据题目所给条件的不同,设成y=ax2+bx+c(a、b、c为待定系数),y=a (x-h) 2+k(a、k、h为待定系数),y=a (x-x1)(x-x2)( a、x1、x2为待定系数)三类形式.根据题意(可以是语句形式,也可以是图象形式),确定出h、k、a、c、b、x1、x2等待定系数.一般步骤如下:a.写出函数解析式的一般式,其中包括未知的系数;b.把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组。
c.解方程(组)求出待定系数的值,从而写出函数解析式。
(3)解方程例如:已知一元二次方程的两根为x1、x2,求二次项系数为1的一元二次方程时,可设该方程为x2+mx+n=0,则有(x-x1)(x-x2)=0,即x2-(x1+x2)x+x1x2=0,对应相同项的系数得m=-(x1+x2),n=x1x2,所以所求方程为:x2-(x1+x2)x+x1x2=0.(4)分式展开首先用未知数表示化为部分分式和的形式,展开后,根据分子、分母的多项式分别相等可列出含有未知数的方程组,解方程组,带入所设的部分和可得结果。
高中数学:用待定系数法求函数的解析式
高中数学:用待定系数法求函数的解析式待定系数法是一种求未知数的方法。
一般用法是:将一个多项式表示成另一种含有待定系数的新的形式,从而得到一个恒等式,然后根据恒等式的性质得出系数应满足的方程或方程组,最后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
例1、已知一次函数y=kx+b(k,b为常数,),当x=4时,y的值为9;当x=2时,y的值为-3;求这个函数的关系式。
分析:将已知条件代入函数的解析式得到关于的方程再求解即可。
解:依题意得:∴y=6x-15思考:一般地,函数关系式中有几个系数,就需要有几个等式才能求出函数关系式。
如,一次函数关系:那么,如果要确定二次函数的关系式,又需要几个条件呢?例2、已知二次函数的图象经过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式。
分析:给出三个条件需要列三个等式,应设二次函数的解析式为一般式。
解:设函数的解析式为,则有解得∴y=1.5x2-1.5x+1例3、已知一个二次函数的图象经过点(0,1),它的顶点坐标为(8,9),求这个二次函数的关系式。
分析:本题的题目中给了顶点坐标,所以可设二次函数解析式为顶点式。
解:∵顶点坐标是(8,9)∴可设函数关系式为:y=又∵函数图象经过点(0,1)∴a×+9=1 解得a=∴函数关系式为:y=(x-8)+9例4、抛物线的图象经过(0,0)与(12,0)两点,其顶点的纵坐标是3,求它的函数关系式。
分析:根据抛物线的对称性,知顶点的坐标是(6,3)方法一:可设函数关系式为:再将(0,0)点的坐标代入得,解得,所以,所求抛物线解析式为方法二:设函数关系式为:由题意,得,解得所以,所求抛物线解析式为思考:利用已知条件求二次函数的解析式,常用的方法是待定系数法,但可根据不同的条件选用适当形式求的解析式。
如:(1)给出三点坐标,宜使用一般式:(2)已知抛物线的顶点坐标与对称轴有关或与最大(小)值有关时,常用顶点式:▍▍ ▍▍。
抛物线的解析式的三种形式应用例析
抛物线的解析式的三种形式解题例析松江区立达中学庄士忠卢栋才 201600抛物线的解析式有三种形式:①一般式:(a≠0);②顶点式:,(h,k)是顶点坐标;③交点式:(a≠0),其中x1,x2是方程的两个实根。
在具体解答中,需要根据题目的条件,直接或间接选择相应的形式以简化计算,一般利用待定系数法进行。
利用待定系数法确定二次函数的解析式的步骤可以总结为五个字:设、列、求、定。
例1、已知二次函数图像顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。
(试用两种不同的方法)分析:根据所给条件中有顶点坐标的特点,可以选用顶点式。
解法一:设二次函数的解析式为:因为二次函数图像过点(1,0)所以所以所以函数解析式为。
分析:根据所给条件中顶点坐标可知,抛物线的对称轴为x=-2,利用抛物线的对称性,可求得点(1,0)关于对称轴x=-2的对称点(-5,0),可选用交点式。
解法二:设二次函数的解析式为:,因为二次函数图像过点(-2,3)所以所以函数解析式为。
点评:当题目条件中有顶点坐标时,选用顶点式;当条件中有两个与x轴的交点时,一般选用交点式。
但我们注意到,解法二是在知道抛物线与x轴的一个交点后,利用对称轴可从顶点坐标中得到,再利用抛物线的对称性获得另外一个与x轴的交点坐标,再利用交点式获得结果。
两种方法各有千秋,仔细体会必定会有所收获。
当然此题也可使用一般式,但不如这两种方法简单。
例2、已知二次函数,当x=-1时有最小值-4,且图像在x轴上截得线段长为4,求函数解析式。
分析:当题目条件中点的条件不足三个时,要充分利用二次函数的对称性转化条件。
在本题中由于所给条件能得到一个顶点坐标(-1,-4),另外一个条件是图像在x轴上截得的线段长,条件似乎不是特别充分。
仔细分析,有“当x=-1时有最小值-4”就知道对称轴,再有“图像在x轴上截得线段长为4”,利用对称性可得图像与x轴的交点坐标为(-3,0),(1,0),从而可利用交点式解决问题。
待定系数法在初中数学解题中的思路与方法
2023年5月下半月㊀解法探究㊀㊀㊀㊀待定系数法在初中数学解题中的思路与方法◉福建省晋江市安海中学㊀黄华志㊀㊀摘要:待定系数法是初中数学中一种应用十分广泛且行之有效的解题方法.待定系数法的实质就是方程思想,它把待定的未知数与已知数等同看待来建立等式,即得方程(组).本文中结合典型例题,探讨了如何在各类题型中灵活运用待定系数法解题的思路与方法.关键词:多项式除法;因式分解;解方程;恒等变形;求函数解析式㊀㊀在初中数学中,待定系数法是一种十分重要㊁应用范围广且非常实用的求未知数的解题思想和方法[1].待定系数法运用的是 执果索因 的思维方法,其基本思路是先判断所求的结果的结构具有某种确定的形式,其中含有某些待定的系数,然后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或者找到这些待定系数间的某种关系.待定系数法可广泛应用于多项式除法㊁因式分解㊁解方程(组)㊁恒等式的变形与证明㊁研究二次函数的性质等各类数学问题的解法之中,现将其常见的解题思路与方法技巧归类解析如下.1在多项式除法中的运用待定系数法在多项式的整除㊁求商式㊁余式等问题中运用广泛.例1㊀求(3x3-2x2+1)ː(3x2-3x+1)的商式和余式.解:设商式为x+a,余式为p x+q,则3x3-2x2+1=(x+a)(3x2-3x+1)+p x+q.令x=0,则a+q=1.令x=1,则(a+1)+p+q=2.令x=-1,则7(a-1)-p+q=-4.可得方程组a+q=1,a+p+q=1,7a-p+q=3.ìîíïïï解得a=13,p=0,q=23.ìîíïïïïïï所以商式为x+13,余式为23.思路与方法:本题被除式的最高项为3x3,除式的最高项为3x2,则商式的最高次数为1且系数也为1.故可设商式为x+a,余式为p x+q,可得关于x的恒等式3x3-2x2+1=(x+a)(3x2-3x+1)+p x+q,即对一切实数x均成立,因此对x取0,1,-1当然也应成立,从而得到关于a,p,q的方程组,这是特殊值法的运用.例2㊀已知x4+4x3+6p x2+49x+r能被x3+3x2+9x+3整除,求p,q,r的值.解:设商式为x+m,则x4+4x3+6p x2+4q x+r=(x+m)(x3+3x2+9x+3)=x4+(3+m)x3+(9+3m)x2+(3+9m)x+3m.比较对应项系数,得3+m=4,9+3m=6p,3+9m=4q,3m=r.ìîíïïïï解方程组,得m=1,p=2,q=3,r=3.ìîíïïïï思路与方法:本题的解题思路是先要假定商式,因为x4ːx3=x,所以可假定商式为x+m,这里p, q,r,m都是待定系数,然后根据被除式恒等于商式乘除式的关系,就可以确定p,q,r,m的值.这种通过比较对应项系数而得到关于待定系数间的关系式的解题技巧十分重要.2在因式分解中的运用在对较复杂的二元二次多项式进行因式分解时,有时只需要将其部分因式分解成两个一次因式的乘积形式,就能够使我们在分解中确定因式的过程变得简捷明了.例3㊀已知2x2+x y-y2-k x+8y-15能分解成两个一次因式之积,试求这个有理系数多项式.解法1:由十字相乘法,得2x2+x y-y2=(2x-y)(x+y).设2x2+x y-y2-k x+8y-15=(2x-y+m) (x+y+n)=2x2+x y-y2+(2n+m)x+(m-n) y+m n.比较对应项系数,得2n+m=-k,m-n=8,m n=-15.ìîíïïï解得m=3,n=-5,k=7,ìîíïïï或m=5,n=-3,k=1.ìîíïïï97Copyright©博看网. All Rights Reserved.解法探究2023年5月下半月㊀㊀㊀故所求的有理系数多项式为2x 2+x y -y 2-x +8y -15,或2x 2+x y -y 2-7x +8y -15.解法2:由-y 2+8y -15=(-y +3)(y -5),故设2x 2+x y -y 2-k x +8y -15=(a x -y +3)(b x +y -5)=a b x 2+(a -b )x y -y 2+(3b -5a )x +8y -15.比较对应项系数,得a b =2,a -b =1,3b -5a =-k .ìîíïïï解得a =2,b =1,k =7,ìîíïïï或a =-1,b =-2,k =1.ìîíïïï故所求的有理系数多项式为2x 2+x y -y 2-x +8y -15,或2x 2+x y -y 2-7x +8y -15.思路与方法:解法1把前三项分解成两个一次因式相乘的形式(2x -y )(x +y ),再把原式变形为(2x -y +m )(x +y +n ),即可运用比较对应项系数的方法顺利获解;解法2也是采用待定系数法,把-y 2+8y -15分解成两个一次因式之积的形式(-y +3)(y -5),再通过变形㊁对比对应项系数的方法求解.例4㊀满足等式p 2+q 2=7p q 的正实数p ,q ,能使关于x ,y 的多项式x y +p x +q y +1分解成两个一次因式的积,求p ,q 的值.解:由p 2+q 2=7p q (p >0,q >0),可得㊀㊀㊀㊀㊀㊀p +q =3p q ①因为多项式x y +p x +q y +1能分解成两个一次因式的积,所以可设x y +p x +q y +1=(a x +b ) (c y +d )=a c x y +a d x +b c y +b d .比较对应项系数,得a c =1,b d =1,a d =p ,b c =q .所以㊀㊀㊀㊀㊀㊀p q =a b c d =1.②由①②式,可得p =32+52,q =32-52;或p =32-52,q =32+52.思路与方法:由条件p 2+q 2=7p q (p >0,q >0),运用配方法可得出p +q 与p q 的关系;又由x y +p x +q y +1能分解成两个一次因式的积,利用待定系数法求出p q 的值,从而巧妙地求出p +q 的值,进而可得出p ,q 的值.3在解方程中的运用在初中阶段学生还没有学过高次方程的解法,但如果发现某些一元高次方程的根存在某种关系,也可以运用待定系数法解这类方程.另外,有些特殊的高次方程也能够尝试用待定系数法求解[2].例5㊀已知方程2x 4-5x 3-24x 2+53x -20=0有两个根的积等于2,试解这个方程.解:设2x 4-5x 3-24x 2+53x -20=(x 2+a x +2)(2x 2+b x -10)=2x 4+(2a +b )x 3+(a b -6)x 2+(-10a +2b )x -20,比较对应项系数,得2a +b =-5,a b -6=-24,-10a +2b =53.ìîíïïï解得a =-92,b =4.{所以原方程可化为(x 2-92x +2)(2x 2+4x -10)=0.解方程,得x 1=12,x 2=4,x 3=-1+6,x 4=-1-6.思路与方法:由根与系数的关系可知,两根之积为2的一元二次方程,如果二次项的系数是1,则常数项是2,由此我们可以作出假设来求解.例6㊀解方程:x 4+(x -4)4=626.解法1:由于626=625+1=54+14,可以看出5与-1是方程的两根,因此可令x 4+(x -4)4-626=2(x +1)(x -5)(x 2+p x +q ).在上式中,取x =0,得q =37;取x =4,得p =-4.于是原方程可变为2(x +1)(x -5)(x 2-4x +37)=0.因为方程x 2-4x +37=0无实数根,所以原方程的根为x 1=-1,x 2=5.解法2:因为626=54+14,所以原方程可化为x 4+(x -4)4=54+14,即(x 4-54)+[(x -4)4-14]=0⇔(x 2+25)(x 2-25)+[(x -4)2+1] [(x -4)2-1]=0⇔(x 2+25)(x +5)(x -5)+(x -3)(x -5)(x 2-8x +17)=0⇔(x -5)(x 3-3x 2+33x +37)=0⇔(x -5)[(x 3+1)-3(x 2-11x -12)]=0⇔(x -5)(x +1)(x 2-4x +37)=0.解得x 1=5,x 2=-1,这就是原方程的根.思路与方法:解法1运用了待定系数法,根据626=625+1=54+14,推知方程有两个实根-1与5,用待定系数法将x 4+(x -4)4-626分解因式;解法2主要运用了因式分解法,充分利用了关系式x 4+(x -4)4=54+14,即(x 4-54)+[(x -4)4-14]=0,再将左边分解因式.4在代数式恒等变形中的运用用待定系数法可对某些代数式按照某种要求进行恒等变形,具体方法是先假定一个符合条件的含有待定系数的恒等式,然后根据恒等式的性质,求出待定系数的值,或消去待定系数,使问题获得解决.例7㊀证明x y (3x +2)(5y +2)可化为具有整数系数的两个多项式的平方差.证明:设x y (3x +2)(5y +2)=A 2-B 2(A ,B 代08Copyright ©博看网. All Rights Reserved.2023年5月下半月㊀解法探究㊀㊀㊀㊀表整式),则(3x y +2y )(5x y +2x )=(A +B )(A -B ).令A +B =3x y +2y ,A -B =5x y +2x .{解得A =4x y +x +y ,B =-x y +y -x .所以x y (3x +2)(5y +2)=(4x y +x +y )2-(-x y +y -x )2.思路与方法:题目要求将x y (3x +2)(5y +2)转变成两个整式的平方差的形式,但这两个整式我们并不知道,也不能盲目拼凑,所以不妨设这两个整式分别为A ,B ,尝试用待定系数法求解.例8㊀求证:多项式x 4-6x 3+13x 2-12x +4是一个完全平方式.证明:设原式=(x 2+p x +q )2=x 4+2p x 3+(p 2+2q )x 2+2p q x +q2.比较对应项系数,得2p =-6,p 2+2q =13,2p q =-12,q 2=4.ìîíïïïï解得p =-3,q =2.{所以x 4-6x 3+13x 2-12x +4=(x 2-3x +2)2.思路与方法:本题是一个四次多项式,所以它应是一个二次三项式的平方,于是我们可以假定所给的多项式恒等于(x 2+p x +q )2,式中的p 和q 是待定系数.5在二次函数中的运用求二次函数的解析式类问题,一般可用待定系数法求解.这类题型中通常都含有三个待定系数,需找到题中三个独立的条件,再求出相应的待定系数.解题过程中要善于发现和挖掘隐含条件.例9㊀已知抛物线过点C (-1,-1),它的对称轴是直线x =-2,且在x 轴上截取长度为22的线段,求该抛物线的解析式.解法1:由对称轴直线x =-2,可设抛物线解析式为y =a (x +2)2+k .由抛物线的特征可知,其对称轴垂直平分其在x 轴上截取的线段,因此可知该抛物线过点A (-2+2,0),B (-2-2,0).又抛物线过点C (-1,-1),将点A ,C 的坐标代入解析式,可得a (-1+2)2+k =-1,a (-2+2+2)2+k =0,{即a +k =-1,2a +k =0,{解得a =1,k =-2.{所以y =(x +2)2-2.故该抛物线的解析式为y =x 2+4x +2.解法2:设抛物线解析式为y =a x 2+b x +c .由解法1中分析可知抛物线过(-2+2,0),(-2-2,0)以及(-1,-1)三点,代入可得a -b +c =-1,(-2+2)2a +(-2+2)b +c =0,(-2-2)2a +(-2-2)b +c =0.ìîíïïïï解得a =1,b =4,c =2.ìîíïïï所以,该抛物线的解析式为y =x 2+4x +2.解法3:由解法1中分析可知抛物线与x 轴的两交点坐标为(-2+2,0),(-2-2,0),因此可设解析式为y =a (x +2-2)(x +2+2),又过点(-1,-1),代入可求得a =1.所以解析式为y =(x +2-2)(x +2+2),即y =x 2+4x +2.思路与方法:解法1利用二次函数的顶点式y =a (x +2)2+k 来求解;解法2利用二次函数的一般式y =a x 2+b x +c 来求解;解法3利用二次函数的交点式y =a (x -x 1)(x -x 2)来求解.这三种方法都用到了待定系数法,其中最关键的是对条件 在x 轴上截取长度为22的线段 的技巧转化.例10㊀已知二次函数有最小值-2,且图象与x 轴两交点的距离是6,对称轴是直线x =-1,求其解析式.解:由题意可知,抛物线与x 轴的两个交点坐标分别为(2,0)和(-4,0),故设二次函数解析式为y =a (x -2)(x +4).把抛物线顶点的坐标(-1,-2)代入,求得a =29.所以二次函数的解析式为y =29(x -2)(x +4),即y =29x 2+49x -169.思路与方法:根据题设条件中对称轴是直线x =-1,图象与x 轴两交点的距离是6,可求出两交点坐标为(2,0)(-4,0),再用两点式求出解析式.通过对上述典型例题思路与方法的探究,我们充分感受到了运用待定系数法解题的广泛性㊁实用性㊁灵活性与巨大的优越性.学生平时需要多加强这方面的训练,进一步熟悉和掌握答题的方法与技巧,熟能生巧,运用自如,不断提高综合解题能力.参考文献:[1]祝朝富.待定系数法及其应用[J ].中等数学,2001(2):2G7.[2]于莹.用待定系数法解题[J ].数理化学习(初中版),2002(12):23G25.Z18Copyright ©博看网. All Rights Reserved.。
用待定系数法求解抛物线的解析式
用待定系数法求解抛物线的解析式用待定系数法求抛物线的解析式是中学数学的一个重要内容,也是中招的必考内容之一;而设出恰当的函数表达式则是成功解题的关键.本文列举数例加以剖析,供读者参考.一、一般式 y=ax 2+bx +c (a 、b 、c 为常数,且a ≠0)一般式y=ax 2+bx +c 又称为二次函数的标准形式.是最常见、运用最为广泛的一种形式.一般在已知抛物线上三个点的坐标时采用此式.例1.在平面直角坐标系中,AOB △的位置如图1 所示,已知90AOB ∠=,AO BO =,点A 的坐标为(31)-,. (1)求点B 的坐标;(2)求经过A O B ,,三点的抛物线的解析式.解:(1)作AC x ⊥轴,垂足为C ,作BD x ⊥轴垂足为D . 则90ACO ODB ∠=∠=,90AOC OAC ∴∠+∠=.又90AOB ∠=,90AOC BOD ∴∠+∠=OAC BOD ∴∠=∠. 又,AO BO = ACO ODB∴△≌△. 13OD AC DB OC ∴====,. ∴点B 的坐标为(13),. (2)因抛物线过原点,∴c=0, 故可设抛物线的解析式为2y ax bx =+.将(31)(13)A B -,,,两点代入,得9393 1.b a b +=⎧⎨-=⎩, 解得51366a b ==;. 故所求抛物线的解析式为251366y x x =+. 评析:本例考查几何背景下,二次函数解析式的求法,是比较典型的数形结合问题. 属于一般式y =ax 2+bx +c ,而这里c=0 .例2.如图2,已知一抛物线大门,其地面宽度AB=18m, 一同学站在门内,在离门脚B 点1m 远的D 处,垂直地面立一根1.7m 长的木杆,其顶端恰好顶在门上C 处.现将抛物线放在所给的直角坐标系中.(图1)(1)求抛物线的解析式; (2)求大门的高度.解:因抛物线关于y 轴对称,故b=0,可设抛物线的解析式为2y ax c =+,将A (-9,0)、C (8,1.7)代入上式,得:⎩⎨⎧=+=+-7.1)8(,0)9(22c a c a , 解得: ⎩⎨⎧==1.8,1.0c a , ∴y =-0.1x 2+8.1,当x=0时,y=8.1, 即大门高8.1m.评析:本题着意考查二次函数在日常生活中的应用,以及学生的建模能力.如果用一般式y=ax 2+bx +c ,那么可将A B C ,,三点的坐标代入建立三元方程组;这里设解析式为2y ax c =+,那么应注意不要同时选 A 、B 两点的坐标代入,因 a(9)2=a(-9)2,两个条件只相当于一个,无法求解.二、顶点式y=a(x -h)2+k .其中,a 是二次项的系数,(h,k)是抛物线的顶点坐标.在符合下列条件之一时,可选用顶 点式:⑴已知抛物线的顶点及抛物线上另一点的坐标;⑵已知抛物线的对称轴及抛物线上两点的坐标.例3.如图3,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;解:(1)由抛物线的对称轴是72x =, 可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得(图2)△ 227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725(326y x =--, 顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离. ∵OA 是囗OEAF 的对角线,∴2172264(2522OAE S S OA y y ==⨯⨯⋅=-=--+.(应为(x-27)2; 因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6.评析:本题考查二次函数的解析式及顶点坐标的求法,以及平行四边形的有关知识; 在已知抛物线的对称轴及抛物线上两个点的坐标用顶点式时,由于h 已知,所以需要再解一个关于a 、k 的二元一次方程组.本题的三种解法:⑴用顶点式;⑵因抛物线的对称轴为直线x =27,由抛物线的对称性求出 x 轴上另一点的坐标为A ’(1,0),然后用一般式;⑶ 求出A ’(1,0)后用交点式;显然,利用顶点式或交点式较为简捷.例4.如图4,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在⊙C 上. (1)求ACB ∠的大小; (2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式.解:(1)1CH =,半径2CB =60BCH ∠=,120ACB ∴∠=(2)1CH =,半径2CB =HB ∴=(1A ,(1B .(图5)(3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13),. 设抛物线解析式2(1)3y a x =-+ ,把点(1B +代入上式,解得1a =-, 222y x x ∴=-++ 评析:本例考查几何背景下抛物线的对称性以及解析式的求法,是比较典型的数形结 合问题.本题的另两种解法:⑴在求出A 、B 、C 三点的坐标后,直接用一般式;⑵用交点式y=a(x -x 1)(x -x 2).三、交点式y =a (x -x 1)(x -x 2).其中,a 是二次项的系数,x 1、x 2分别是抛物线与x 轴的两个交点的横坐标.例5.如图5,二次函数的图象过A 、C 、B 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正 半轴上,且AB=OC (1)求点C 的坐标;(2)求二次函数的解析式,并求出函数的最大值.解:(1)点A 的坐标为(-1,0),点B 的坐标为(4,0), 则AB=41-+- =5. ∴AB=OC=5.∵点C 在y 轴正半轴上,∴点C 的坐标为(0,5).(2)设抛物线的解析式为: y =a (x +1)(x -4). 将C 点的坐标代入, 得: 5= a (0+1)(0-4), ∴ a=-45∴抛物线的解析式为 y =-45(x +1)(x -4) =5415452++-x x . 评析:运用两点式时,应注意:(1) 所设两点式y =a (x -x 1)(x -x 2)中,x 1、x 2分别是抛物线与x 轴两交点的横坐标; (2)在将点的坐标代入上式时,所选点一定是x 轴之外的点(本例也即A 、B 之外的点).例6.如图6,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B坐标为(m 0m >),在BC 边上选取适当的点E 和点F ,将O C E △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)解:(2)B m ,,由题意可知AG AB ==OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+=222m ∴+=.又0m >,2m ∴=,∴OA=BC=2.(2)解法一:过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,. 又由(1)知(20)A ,,设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,∴c=0.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩ , 解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+. 它的对称轴为1x =.解法二:如图6,过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,. 又由(1)知(20)A ,,∴点A O ,关于直线l 对称,∴点(11)G ,为抛物线的顶点. 于是可设过O G A ,,三点的抛物线解析式为2(1)1y a x =-+,抛物线过点(00)O ,,20(01)1a ∴=-+,解得1a =-. ∴ 所求抛物线为 22(1)(1)12y x x x =--+=-+. 它的对称轴为1x =.解法三:过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,. 又由(1)知(20)A ,,O 、A 两点在x 轴上,故可设过O G A ,,三点的抛物线解析式为H(图6)y =a (x -0)(x -2).又抛物线过点G (1,1), ∴1= a (1-0)(1-2), ∴a=-1,∴所求抛物线为y =-1 (x -0)(x -2) = -x 2+2x, 它的对称轴为1x =. (3) 答:存在满足条件的点P 有(10),,(11)-,,(11-,,(11+,.参考习题1. 已知一抛物线与x 轴的交点是A(-2,0)、B (1,0),且经过点C(2,8). (1)求该抛物线的解析式;(温馨提示:用一般式或交点式) (2)求该抛物线的顶点坐标.2.抛物线的对称轴为x =-1,且过A (2,0),B (0,-4) . 求此二次函数的解析式. (温馨提示:可用顶点式y=a(x -h)2+k .)3.如图7,一场足球比赛中,一球员从球门正前方10m 处将球踢起,当球飞行的水平距离为6m 时,球到达最高点,此时球的高度为3 m,已知球门高2.44m ,问球能否射中球门?4.在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.(温馨提示:三种解法:⑴用顶点式;⑵易知抛物线的对称轴为x=1,再由抛物线的对称性求出 x 轴上另一点的坐标为B’(-1,0),用一般式;⑶将顶点(14)A -,代入顶点坐标公式,将(30)B ,代入一般式y=ax 2+bx +c ,解三元方程组. 显然,利用顶点式最为简捷明了.)5.用交点式求例4中抛物线的解析式. 附:参考答案1.解:(1)设解析式为 y=ax 2+bx +c (a ≠0)可得解析式为:y=2x 2+2x -4(2)y= 2(x+21)2-29, ∴抛物线的顶点坐标为(21,-29) 2. 2142y x x =+-; 3. 设y=a(x -6)2+3,将(0,0)代入得y=-121(x -6)2+3,x=10时,y=1.67<2.44, 球能入门.4.解:(1) 设解析式为2(1)4y a x =--,可得 2(1)4y x =--,即223y x x =--.在已知抛物线的顶点及另一点的坐标用顶点式时,由于h 、k 已知,所以只要再解一个关于a 的方程即可.(2)令0y =,得2230x x --=,解得13x =,21x =-. ∴抛物线与x 轴的两个交点坐标分别为(30),和(10)-,.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与x 轴的另一个交点坐标为(40),. 5.略。
二次函数中的三角形问题二
文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.学习过程一、复习预习1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. (一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 判定:三边相等,三个角相等,有一个角是60°的等腰三角形是等边三角形。
(二)求作等腰三角形、直角三角形的方法:图一两圆一线图解图二两线一圆图解总结:(1)通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A、B点重合)即在两圆上以及两圆的公共弦上(2)通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A、B点重合)即在圆上以及在两条与直径AB垂直的直线上。
待定系数法求函数解析式
a b c 2 9a 3b c 5 4a 2b c 6 解出这个方程组即可
2. 顶点式:y=a (x-h)2+k
y a x h k 2.设顶点式:________________. 若已知二次函数图象的顶点坐标或对称轴 方程与最大值(或最小值),将已知条件代入所 设顶点式,求出待定系数,最后将解析式化为 一般形式.
b b 2 4ac 则A( b b 4ac ,0 ),B( ,0) 2a 2a
2
因此AB= |a|
已知抛物线 y
a( x 2) 9在x轴上
2
截得的线段长是6,求a的值。
例1.若函数y= -mxm+1+2mx+3的图象是 抛物线,求m的值及函数解析式.
解:由题意得 m+1=2 -m≠0 ∴m=1 解析式为:y= -x2+2x+3
(1)在抛物线y= -x2+2x+3上是否存在点P(点
C除外),使△ABP面积等于△ABC面积?
解:假设存在满足条件的点P, y C 3 P 3 Q Ax
则作PQ⊥x轴∵ S△ABp = S△ABC, ∴ AB×PQ/2= AB×OC/2, -1 ∴ PQ=CO=3, ∴ |y|=3, B 0 ∴ 3= -x2+2x+3, ∴x1=0,x2=2 。 ∴p(2,3)
y x 0 x 0
y=ax2+bx
y
1、画出y= -x2+ຫໍສະໝຸດ x+3的图象,并分析它的性质
y 3 C M(1,4) • 与x 轴的交点: ∵y=0, ∴ -x2+2x+3=0, ∴x1=3,x2= _1 -1 H 3 B 0 1 A x ∴A (3,0),B(_1,0) •与y轴的交点: ∵x=0, ∴y=3, x=1 ∴C(0,3) •∵ y= _(x2_2x)+3 = _(x2_2x+1)+3+1 = _(x_1)2+4 ∴对称轴是直线x=1 •顶点坐标是M(1,4)