列管式换热器说明书

合集下载

列管式换热器安全操作规程

列管式换热器安全操作规程

列管式换热器安全操作规程列管式换热器是一种重要的热交换设备,广泛应用于化工、石油、能源、制药等行业。

为了保障操作人员和设备安全,下面给出列管式换热器的安全操作规程:一、操作前的准备1.1 操作人员必须熟悉列管式换热器的结构、性能和操作步骤,了解设备的工作原理和安全要求。

1.2 在操作前要检查设备及周围环境的安全状态,清除设备周围的杂物和可能引发事故的障碍物。

1.3 根据工艺要求选择适当的换热介质和操作参数,确保操作过程中的安全性和效果。

二、换热器的操作2.1 换热器的运行前必须进行检查,确认设备无损伤、漏水、放松、堵塞等异常情况。

如发现异常情况应及时停机处理。

2.2 换热器运行期间,操作人员要做好观察工作,密切关注设备的运行状态,包括温度、压力、流量等参数的变化,及时发现并处理异常情况。

2.3 确保设备的出口温度、压力稳定在工艺要求的范围内,避免发生过热、过压等意外情况。

2.4 若需停机维修或暂时停用换热器,应首先关闭进出口阀门,排空内部介质,进行安全停机操作。

三、操作时的安全措施3.1 换热器操作人员应穿戴好防护装备,包括工作服、安全鞋、安全帽、防护眼镜等,保护自身安全。

3.2 换热器操作过程中应遵循安全操作程序,严禁违规操作、强行加料、强制启动等行为。

3.3 使用化学介质操作时要注意防止介质泄漏,必要时应开展防护措施,如设立防护围栏、配备应急处理设备等。

3.4 换热器操作人员应定期接受安全培训和检查,提高安全意识和操作技能。

四、维护与检修4.1 换热器定期进行维护和检修,包括清洗换热管道、更换密封件、检查阀门等,确保设备正常运行和安全性。

4.2 在进行维护和检修时,必须停机并切断相关供能管线,防止用能设备误操作,造成事故。

4.3 维护和检修过程中,要按照规定程序操作,严禁违规拆卸、更换配件等行为。

4.4 维修和检修结束后,应对设备进行整理和清理,保持设备的整洁和环境卫生。

五、紧急情况处置5.1 在紧急情况下,如发生泄漏、事故等,操作人员首先要确保自身安全,迅速采取措施停止设备运行,并上报相关人员和部门。

列管换热器实验装置说明书

列管换热器实验装置说明书

列管换热器实验装置说明书天津大学化工基础实验中心2011.10一、实验目的:本实验装置是以水蒸气-空气为传热介质,采用列管换热器对流换热,用于教学实验中,通过对列管换热器对流传热系数、总传热系数K 的测定,加深了解间壁传热的基本概念和基本理论,了解各种影响因素对传热效率的影响。

二、换热器实验简介:1、列管换热器传热系数的测定:管壳式换热器又称列管式换热器。

是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

这种换热器结构较简单,操作可靠,可采用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的换热器类型。

壳体多为圆筒形,内部装有管束,管束两端固定在管板上。

进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。

总传热系数K 通过实验可测定 Om iS t Q K ⨯∆=(1)式中:K —列管换热器总传热系数,W/(m 2·℃); Q i —管内传热速率,W ; S O —管外换热面积,m 2; m t ∆—平均温度差,℃。

m t ∆由下式确定: 逆m m t t ψ∆=∆ (2)12211221lnt T t T t T t T t m -----=∆)()(逆 (3) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T 1,T 2 —热流体的入口、出口温度,℃;t w 逆 —逆流时平均温度差,℃;ψ—温差校正系数,由于实验用列管换热器采用单管程单壳程所以ψ=1。

管内换热面积: Lo d n S o o π= (4)式中:d O —内管管外径,m ;L O —传热管测量段的实际长度,m 。

由热量衡算式:)(12t t Cp W Q m m i -= (5)其中质量流量由下式求得:3600mm m V W ρ=(6) 式中: m V —冷流体在管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。

列管式换热器设计说明书

列管式换热器设计说明书

摘要:列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。

参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。

再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。

关键词:列管式换热器,乙醇,水,温度,固定管板式。

Abstract:The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .⨯41510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchangeis9BEM400 2.530 225Ⅰ----, and the diameter of the receiver is400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.目录1前言 (3)2设计条件 (3)3设计方案的确定 (3)3.1设计原则 (3)3.2结构初选 (4)4列管式换热器的设计计算 (10)4.1列管式换热器型号的初选 (10)4.2核算总传热系数: (13)5列管式换热器的初步计算及选型 (15)5.1试算并初选换热器规格 (15)5.2设计校核 (19)6设备尺寸的确定及强度校核 (22)6.1计算圆筒厚度 (22)6.2封头设计 (23)6.3拉杆定距管尺寸 (24)6.4管板 (25)6.5容器法兰 (26)6.6接管与接管补强 (27)6.7管箱的计算 (33)6.8折流挡板 (33)6.9焊接方式 (34)6.10支座 (34)6.11辅助设备 (38)7设计结果概要 (39)8课程设计心得 (40)9参考文献 (42)1前言艰辛知人生,实践长才干。

列管式换热器生产工艺流程说明

列管式换热器生产工艺流程说明

列管式换热器生产工艺流程说明下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!列管式换热器是一种常见的换热设备,主要用于在两种不同介质之间进行热量交换。

列管式换热器-课程设计说明书

列管式换热器-课程设计说明书

列管式换热器-课程设计说明书《化工原理》列管式换热器课程设计说明书学院:班级:学号:姓名:指导教师:时间:年月日目录一、化工原理课程设计任务书 (2)二、确定设计方案 (3)1.选择换热器的类型2.管程安排三、确定物性数据 (4)四、估算传热面积 (5)1.热流量2.平均传热温差3.传热面积4.冷却水用量五、工艺结构尺寸 (6)1.管径和管内流速2.管程数和传热管数3.传热温差校平均正及壳程数4.传热管排列和分程方法5.壳体内径6.折流挡板 (7)7.其他附件8.接管六、换热器核算 (8)1.热流量核算2.壁温计算 (10)3.换热器内流体的流动阻力七、结构设计 (13)1.浮头管板及钩圈法兰结构设计2.管箱法兰和管箱侧壳体法兰设计3.管箱结构设计4.固定端管板结构设计5.外头盖法兰、外头盖侧法兰设计............146.外头盖结构设计7.垫片选择8.鞍座选用及安装位置确定9.折流板布置10.说明八、强度设计计算 (15)1.筒体壁厚计算2.外头盖短节、封头厚度计算3.管箱短节、封头厚度计算 (16)4.管箱短节开孔补强校核 (17)5.壳体接管开孔补强校核6.固定管板计算 (18)7.浮头管板及钩圈 (19)8.无折边球封头计算9.浮头法兰计算 (20)九、参考文献 (20)一、化工原理课程设计任务书某生产过程的流程如图3-20所示。

反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。

已知混合气体的流量为231801kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

已知:混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg = ℃ 热导率10.0279w m λ= ℃ 粘度51 1.510Pa s μ-=⨯循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg = K 热导率10.624w m λ= K 粘度310.74210Pa s μ-=⨯二、确定设计方案1.选择换热器的类型两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。

安装列管换热器的使用说明书1

安装列管换热器的使用说明书1

列管换热器一、概述列管换热器是一种高效换热器。

它主要由传热板、定距柱、连接管、头盖及衬垫等部件组成。

两块厚约2.5~6mm的金属板卷成一对同心圆的螺旋形流道,流道始于中心,终于边缘。

中心处用隔板将两边流体隔开,甲、乙两流体在金属板两边的流道内逆流流动而实现了热交换。

本公司目前生产全逆流式结构的列管换热器。

二、列管换热器的工作特点和应用列管换热器的性能类似于板式换热器。

但也有其独特之处,其主要优点为:1、传热效率高。

列管换热器内介质螺旋型流动的离心力能增强湍流。

据实验,当Re=1400~1800时就能形成湍流,且因流阻较管壳式小而使流速可以提高,结果使传热系数K可提高至2.5倍。

此外,全逆流列管换热器的传热平均温差最大,这有助于提高传热效率。

2、结构紧凑,不用管材。

由于板型传热面的面积大,单位体积传热面可达44-100m2/m3,约为管壳式换热器的2~3倍,加之传热系数和平均温差都大,这就必然导致结构的紧凑和轻巧。

3、不易污塞。

由于单流道、高流速、污垢不易沉积,一旦有所沉积使流道截面减小随即导致流速增高,从而加强了对污塞物的冲刷作用。

这种“自洁”作用,管壳式换热器是没有的。

据统计显示,列管污塞的速率只及管壳式的十分之一。

4、能有效利用低温热源,精密控制温度。

由开双螺旋流道能较完全地形成逆流传热且流道较长,有助于降低换热器设计所允许的(两种介质之间)有利于连续均匀地换热或升降温度。

这就为利用一些低温热源(如地下热源)或精密控制介质温度提供了有利条件,从经验数据知道,板式和列管换热器的介质温差是最低的。

5、流阻较小。

试验表明,与同样条件的管壳式换热器相比,列管换热器的流阻较小。

列管换热器相对于列管式换热器,也有其自身的不足之处。

在设计、制造和安装使用过程中需要注意掌握的有以下几个方面:承压能力受限。

这一点在安装使用当中,要求用户按铭牌上的设计参数使用,不可超压和超温工作;以保证其安全使用。

容量受限。

由于单流道流通能力较小。

列管式换热器设计说明

列管式换热器设计说明

第一章列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。

列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。

目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。

例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。

1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。

为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。

列管式换热器课程设计说明书

列管式换热器课程设计说明书

列管式换热器课程设计说明书1.工原理课程设计任务书一、设计题目:设计一煤油冷却器二、设计条件:1、处理能力 160000吨/年2、设备型式列管式换热器3、操作条件允许压力降:0.02MPa 热损失:按传热量的10%计算每年按330天计,每天24小时连续运行三、设计容4、前言5、确定设计方案(设备选型、冷却剂选择、换热器材质及载体流入空间的选择)6、确定物性参数7、工艺设计8、换热器计算(1)核算总传热系数(传热面积)(2)换热器流体的流动阻力校核(计算压降)9、机械结构的选用(1)管板选用、管子在管板上的固定、管板与壳体连接结构(2)封头类型选用(3)温差补偿装置的选用(4)管法兰选用(5)管、壳程接管10、换热器主要结构尺寸和计算结果表11、结束语(包括对设计的自我评书及有关问题的分析讨论)12、换热器的结构和尺寸(4#图纸)13、参考资料目录2.流程图3.工艺流程图水(30℃)煤油(140℃)浮头式换热器水(50℃)可循环利用产品:煤油(80℃)4.设计计算4.1设计任务与条件某生产过程中,用自来水将煤油从140℃冷却至80℃。

已知换热器的处理能力为160000吨/年,冷却介质自来水的入口温度为30℃,出口温度为50℃,允许压力降为0.02MPa ,热损失按传热量的10%计算,每年按330天计,每天24小时连续运行,试设计一台列管式换热器,完成该生产任务。

4.2设计计算4.2.1确定设计方案(1) 选择换热器的类型 两流体温度变化情况: 热流体进口温度1T 140℃,出口温度2T 80℃, 冷流体进口温度1t 30℃,出口温度2t 50℃。

进口温度差1T -1t =110℃>100℃,因此初步确定选用浮头式换热器。

(2) 管程安排 由于自来水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器热流量下降,而且管程较壳程易于清洗,再加上热流体走壳程可以使热流体更易于散热,减小能耗,所以从总体考虑,应使自来水走管程,混合气体走壳程。

钢制列管式固定管板换热器结构设计手册

钢制列管式固定管板换热器结构设计手册

钢制列管式固定管板换热器结构设计手册钢制列管式固定管板换热器是一种常见的换热设备,常用于化工、石油、制药等行业中的热交换过程。

下面是钢制列管式固定管板换热器结构设计手册的相关参考内容:一、引言1.1 设计目标:介绍钢制列管式固定管板换热器的设计目标,包括换热效率、压降、耐压能力等。

1.2 设计依据:列出设计所依据的国家标准、行业规范和相关技术要求。

二、钢制列管式固定管板换热器概述2.1 结构类型:介绍钢制列管式固定管板换热器的基本结构和组成部件,包括管束、固定管板、壳体等。

2.2 工作原理:详细描述换热器的工作原理,包括流体流动路径、热交换过程等。

2.3 应用范围:列举钢制列管式固定管板换热器的主要应用领域和工况条件。

三、设计计算3.1 换热器尺寸计算:以给定的换热面积和流体参数为基础,计算换热器的尺寸,包括壳体内径、管束长度等。

3.2 管板和管束的布置:设计管绞口的位置和数量,确定管束在壳体中的布置方式。

3.3 板间支撑:介绍板间支撑的设计原则和布置方式,确保管束的稳定性和承压能力。

3.4 温度和压力设定:根据工作条件和材料的耐受能力,确定换热器的设计温度和设计压力。

四、工艺流程和材料选型4.1 工艺流程:详细描述换热器的制造工艺流程,包括加工、焊接、组装等环节。

4.2 材料选型:介绍换热器壳体、管束、管板等主要部件的材料选型,考虑材料的耐腐蚀性、耐压能力和可焊接性。

五、结构设计5.1 壳体设计:包括壳体的结构类型、材料选型和强度计算等。

5.2 管束设计:确定管束的尺寸、材料选型和支撑方式,以确保管束在工作条件下的稳定性和换热效率。

5.3 固定管板设计:确定固定管板的尺寸、材料选型和布置方式,以保证管束和管板之间的紧密度和承压能力。

5.4 密封设计:考虑换热器在工作过程中的温度和压力变化,设计适当的密封装置,确保换热器的密封性能。

六、安全性分析和性能验收6.1 安全性分析:对换热器在不同工况下的安全性进行分析,包括压力容器强度计算、应力分析等。

《换热器说明书》word版

《换热器说明书》word版

* 化工原课程设计 *换热器工艺初步设计学生姓名:学号:专业:环境工程班级:成绩:指导教师:设计时间:2012年12月20日至2013 年1月6日环境与生命科学系列管式换热器设计任务书一、设计任务及操作条件(1)处理能力:正戊烷23760kg/h;(2)设备型式:立式列管式换热器;(3)操作条件:①混合气体:入口温度51.7℃;②冷却介质:循环水,流量为70000kg/h入口温度32℃,出口温度35.67℃;③允许压强降:不大于5000000Pa;④每年按300天计算,每天24小时连续运行。

二、设计项目1.设计方案简介:设计工艺流程图;2.换热器的工艺计算:确定换热器的传热面积;3.换热器的主要结构尺寸设计;4.主要辅助设备选型;5.绘制换热器总装配图。

三、设计时间2012年12 月20 日~2013 年1 月6日四、设计内容1.目录;2.设计题目及原始数据(任务书);3.论述换热器总体结构(换热器型式、主要结构)的选择;4.换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);5.设计结果概要(主要设备尺寸、衡算结果等);6.主体设备设计计算及说明;7.参考文献。

目录1.简述 (4)2.方案设计和拟定 (5)3.换热器类型的选择 (6)3.1流动空间及流速的测定 (6)3.2确定物性数据 (7)3.3计算总传热系数 (7)3.3.1 热流量 (7)3.3.2平均传热温差 (7)3.3.3平均传热温差校正 (7)3.4估算传热面积 (8)3.5换热器结构尺寸的 (8)3.5.1 管径和管内流速 (8)3.5.2 管程数和传热管数 (8)3.5.3 传热管排列和分程方法 (9)3.5.4 壳体内径 (10)3.5.5 折流板 (11)3.5.6 接管 (11)3.5.6.1壳程进口接管: (11)3.5.6.2壳程出口接管: (11)3.5.6.3管程接管 (12)3.6换热器核算 (12)3.6.1 热量核算 (12)3.6.1.1 壳程对流传热系数 (12)3.6.1.2 管程对流传热系数 (12)3.6.1.3污垢系数 (13)3.6.1.4 传热系数K (13)A (13)3.6.1.5换热器的实际传热面积p3.6.2核算管壁温度w t (14)3.6.3 换热器内流体的流动阻力 (14)3.6.3.1计算压强降 (14)4. 换热器主要结构尺寸和计算结果 (16)附录 (17)参考文献 (18)列管式换热器设计书1.简述根据列管式换热器的结构特点,常将其分为固定管板式、浮头式、U形管式填料函式、滑动管板式、双管板式、薄管板式等类型。

气-气列管换热器实验指导书[1]

气-气列管换热器实验指导书[1]

气-气列管换热器实验指导书[1]气-气列管换热实验 (LH100B)——实验指导书气-气列管换热实验指导书第 1 页共 6页气-气列管换热实验 (LH100B)——实验指导书气-气列管换热实验一、实验目的1.测定列管式换热器的总传热系数。

2.考察流体流速对总传热系数的影响。

3.比较并流流动传热和逆流流动传热的特点。

二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面进行热量交换,称为间壁式换热。

如图(4-1)所示,间壁式传热过程热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有T TW tW t 图4-1间壁式传热过程示意图 Qm1cp1T1T2m2cp2t2t1KAtm式中:Q -传热量,J / s;m1 -热流体的质量流率,kg / s; cp1 -热流体的比热,J / (kg ℃); T1 -热流体的进口温度,℃;第 2 页共 6页气-气列管换热实验 (LH100B)——实验指导书T2 -热流体的出口温度,℃; m2 -冷流体的质量流率,kg / s; cp2 -冷流体的比热,J / (kg ℃);t1 -冷流体的进口温度,℃; t2 -冷流体的出口温度,℃;K -以传热面积A为基准的总给热系数,W / (m2 ℃);tm-冷热流体的对数平均温差,℃;热、冷流体间的对数平均温差可式计算。

tmT1t2T2t1Ttln12T2t1列管换热器的换热面积可式算得。

AndL其中,d为列管直径,L为列管长度,n为列管根数,以上参数取决于列管的设计,详见下文附表。

此可得换热器的总给热系数。

KQ Atm 在本实验装置中,为了尽可能提高换热效率,采用热流体走管内、冷流体走管间形式,但是热流体热量仍会有部分损失,所以Q应以冷流体实际获得的热能测算,即Q2V2Cp2(t2t1) 则冷流体质量流量m2已经转换为密度和体积等可测算的量,其中V2为冷流体的进口体积流量,所以2也应取冷流体的进口密度,即需根据冷流体的进口温度查表确定。

列管式换热器说明书

列管式换热器说明书

列管式换热器说明书⽬录⼀、设计任务 (2)⼆、概述与设计⽅案简介 (3)2.1 概述 (3)2.2设计⽅案简介 (3)2.2.1 换热器类型的选择 (3)2.2.2流径的选择 (5)2.2.3流速的选择 (5)2.2.4材质的选择 (6)2.2.5管程结构 (6)2.2.6 换热器流体相对流动形式 (6)三、⼯艺及设备设计计算 (6)3.1确定设计⽅案 (7)3.2确定物性数据 (7)3.3计算总传热系数 (7)3.4计算换热⾯积 (8)3.5⼯艺尺⼨计算 (8)3.6换热器核算 (10)3.6.1传热⾯积校核 (10)3.6.2.换热器内压降的核算 (11)四、辅助设备的计算及选型 (12)4.1拉杆规格 (12)4.2接管 (12)五、换热器结果总汇表 (13)六、设计评述 (14)七、参考资料 (14)⼋、主要符号说明 (14)九、致谢 (15)⼀、设计任务⼆、概述与设计⽅案简介2.1 概述在⼯业⽣产中⽤于实现物料间热量传递的设备称为换热设备,即换热器。

换热器是化⼯、动⼒、⾷品及其他许多部门中⼴泛采⽤的⼀种通⽤设备。

换热器的种类很多,根据其热量传递的⽅法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。

间壁式换热器⼜称表⾯式换热器或间接式换热器。

在这类换热器中,冷、热流体被固体壁⾯隔开,互不接触,热量从热流体穿过壁⾯传给冷流体。

该类换热器适⽤于冷、热流体不允许直接接触的场合。

间壁式换热器的应⽤⼴泛,形式繁多。

将在后⾯做重点介绍。

直接接触式换热器⼜称混合式换热器。

在此类换热器中,冷、热流体相互接触,相互混合传递热量。

该类换热器结构简单,传热效率⾼,适⽤于冷、热流体允许直接接触和混合的场合。

常见的设备有凉⽔塔、洗涤塔、⽂⽒管及喷射冷凝器等。

蓄热式换热器⼜称回流式换热器或蓄热器。

此类换热器是借助于热容量较⼤的固体蓄热体,将热量由热流体传给冷流体。

当蓄热体与热流体接触时,从热流体处接受热量,蓄热体温度升⾼后,再与冷流体接触,将热量传给冷流体,蓄热体温度下降,从⽽达到换热的⽬的。

列管换热器使用说明书_概述说明

列管换热器使用说明书_概述说明

列管换热器使用说明书概述说明1. 引言1.1 概述本篇文章是一份列管换热器使用说明书的概述说明。

列管换热器作为一种重要的传热设备,广泛应用于各个领域。

它具有高效、节能、可靠等特点,在工业生产和日常生活中起到了关键作用。

因此,正确理解和使用列管换热器对于提高能源利用效率,改善工艺性能,保证设备正常运行至关重要。

1.2 文章结构本文主要分为四个部分:引言、正文、使用说明书以及结论。

在引言部分,我们将对整篇文章进行概述并介绍其结构。

正文部分将详细介绍列管换热器的原理、构造和工作原理以及应用领域。

在使用说明书中,我们将提供列管换热器的安装指南、操作步骤和维护与保养方法。

最后,在结论部分,我们会总结列管换热器的优点和重要性,并展望其未来的发展方向。

1.3 目的撰写这篇文章的目的是为了向读者提供关于列管换热器相关知识和正确使用方法的指导。

通过深入了解列管换热器的原理、构造和工作原理,读者可以更好地理解其在各个领域中的应用。

此外,通过使用说明书的提供,读者能够正确安装、操作和进行维护与保养,以确保列管换热器的长期正常运行并发挥最佳性能。

以上就是“1. 引言”部分的内容介绍,请根据需要展开叙述,提供更加详尽的说明。

2. 正文:2.1 列管换热器原理列管换热器是一种常见的热交换设备,通过管道内部和外部的流体之间的传热来实现换热过程。

其原理基于传导、对流和辐射三种方式,通过将热量从一个介质转移到另一个介质来实现能量的转移。

在列管换热器中,管子内部通常是一种流体(如水或蒸汽),而管子外部通常是另一种流体(如空气或液态物质)。

这两种流体在不同温度下传递时,会产生温度梯度,并且由于温度差异而发生传热。

列管换热器具有高效率和紧凑的特点,因此在许多工业领域得到广泛应用。

2.2 列管换热器的构造和工作原理列管换热器由两个主要部分组成:壳体和管束。

壳体是一个容器,通常由金属制成,并具有进出口口和连接口。

壳体内包含着交错排列的管束,它们通过支撑装置固定在壳体内。

列管式换热器操作

列管式换热器操作
⑵停车后必须将换热器内残留的流体排出, 以防冻结和腐蚀
安全操作要点
1.开车时冷、热流体的进入次序:先冷后热 停车时冷、热流体的切断次序:先热后冷
2.开、停换热器时,勿将蒸汽阀或被加热介 质阀开的太猛
板式换热器的结构原理
板式换热器由许多波纹薄板按一定间隔排 列,夹紧组装于支架上构成。四周通过垫 片密封,板片和垫片的四个角孔形成了流 体的分配管和汇集管,同时将冷热流体分 开,使其分别在每块板片两侧的流道中流 动,通过板片进行热交换。
篮式过滤器
3. 正常操作
(1)经常检查冷热流体的进出 口温度和压力变化情况
(2)定期分析流体的成分,根 据成分变化确定有无内漏
润滑油酮苯脱蜡工艺中换热器内漏
3. 正常操作
(3)定期检查换热器有无渗漏, 外壳有无变形以及有无振动
(4)定期排放不凝性气体和冷凝 液
换热器管板变形
4. 停车
⑴ 停车时,要先关热流体阀,再关冷水,并 切断电源
注意的内容
3、当使用超过150℃或有腐蚀性、易燃介质 的,建议在板片束两侧加薄铁皮保护罩, 以防伤人及热量损失。
4、除事故状态时,阀门的开关都应缓慢进行, 特别是关闭阀门停止流体流动时,由于流体 突然停止流动,可能会产生超过正常压力几 倍的冲击压力.
谢谢观赏
列管式换热器操作
1. 检查准备
⑴ 水压试验 ⑵ 气密试验 ⑶ 检查仪表及阀门
水压试验Biblioteka 2. 开车(1)开车生产时,先通 入冷流体,再缓慢 通入热流体
(2)在通入热流体之前, 应先排除积水和污 垢,排除空气和其 他不凝性气体
2. 开车
(3)提前过滤和清除流体中 的颗粒固体杂质和纤维 质
(4)根据工艺要求调节冷流 体的流量、加热蒸汽的 压力,使之达到所需温 度

列管式换热器课程设计说明书

列管式换热器课程设计说明书

课程设计说明书学院:机电工程学院专业:自动化班级:⑴班目:列管式换热器的设计指导教师:________ 职称: ______目录、设计的目的、要求及任务 21.1设计目的 21.2设计要求 21.3设计任务 21. 3. 1列管式换热器的简介 21. 3. 2设计的工艺流程 31.3.3有关数据和已知条件 4 二控制方案的选择、52. 1主回路设计 52. 2副回路选择 62.3主、副调节器规律选择 62.4主、副调节器正反作用方式确定 62. 5工艺流程图7 三调节阀的选择、73. 1阀的类型选择73. 2确定起开与气关8仪表类型的选择四、84. 1流量变送器的选择84. 2温度变送器94. 3安全栅的选择10 五总结、11参考文献_____________________________________________________ 12一、设计的目的、要求及任务1.1设计目的本设计是学生第一次进行的综合性专业训练,是自动化专业的一个重要教学环节,其设计目的是进一步巩固和加深对所学理论知识的理解,培养学生独立分析和解决工程实际问题的能力, 使学生对自控设计有较完整的概念, 培养学生综合运用所学的控制理论、仪表、控制工程等知识进行工程设计的能力,进一步提高设计计算、制图、视图、编写技术文件,查阅参考文献与资料、仪表类型选择的能力。

1.2设计要求在设计内容选择上要结合具体的生产实际,题目要有一定的实际意义,做到理论联系实际。

自控设备设计要求采用计算机控制系统(如 DCS PLG FCS等)。

本设计应当在教师指导下,由学生独立完成下面内容:(1)设计说明书:包括设计指导思想和设计依据,自动化水平和控制方案的确定,设计计算,仪表选型,以及采用新技术新产品的依据,安全技术措施,重要的复杂调节系统的说明,设计中存在的问题等等;(2)填写表格:如自控设备汇总表、调节阀计算数据表、综合材料表等。

设计要求方案合理、计算数据准确、图面图形和标注符合国家标准和有关技术规范要求,说明书编写符合指导书规定要求。

化工原理课程设计--列管式换热器设计说明书(完整版)

化工原理课程设计--列管式换热器设计说明书(完整版)

东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。

食品工程列管式换热器选型设计说明书

食品工程列管式换热器选型设计说明书

食品工程列管式换热器选型设计说明书1.列管式换热器选型设计条件 1.1设计条件已知冷却水走管程,油品走壳程。

忽略热损失。

其他条件如下(见表1)表 1 设计条件1.2流体的物性数据(见表2)[1]水的参数在其平均温度下选取,t=(t 1+t 2)/2=(20+30)/2=25℃表 2 流体的物性参数2.选型设计计算步骤2.1计算传热量QQ=ms cp△t =7000×1.020×(90-60)=2.15×105 KJ/h=5.95×105 W由换热衡算式,Q= mS1cp1(T1-T2)= mS2cp2(t2-t1)得:m S2= Q/ cp2(t2-t1)=2.15×105/[4.179×(30-20)]=5137kg/h2.2计算传热温差△tm计算逆流平均温度差△tm,逆假设采用复杂折流的换热器,按逆流计算的平均温度差△tm,逆应乘校正系数ψ[1],选设换热器的流动类型为1壳程、偶数管程。

计算参数P和R:P=(t2-t1)/(T1-t1)=(30-20)/(90-20)=0.14R=(T1-T2)/(t2-t1)=(90-60)/ (30-20)=3.0热空气T190℃→ T2 60℃冷却水t230℃← t120℃△t1=60℃△t2=40℃△t1-△t2ln△t1/△t2△t m,逆==60-40ln 60/40= 49.3℃查化工单元操作课程设计书P53,按图3-7,查得ψ=0.97,符合ψ≥0.9的要求,得到[2]△tm =ψ△tm,逆=0.97×49.3=47.8℃ψ=0.97<1,这是由于复杂流动中同时存在逆流和并流。

因此,采用折流在经济上是比较合理的。

2.3初步确定传热面积A为求得传热面积A,需先求出总传热系数K,而K值又和对流传热系数、污垢热阻等有关。

在换热器的直径、流速等参数均未确定时,对流传热系数也无法计算,所以只能进行估算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、设计任务 (2)二、概述与设计方案简介 (3)2.1 概述 (3)2.2设计方案简介 (3)2.2.1 换热器类型的选择 (3)2.2.2流径的选择 (5)2.2.3流速的选择 (5)2.2.4材质的选择 (6)2.2.5管程结构 (6)2.2.6 换热器流体相对流动形式 (6)三、工艺及设备设计计算 (6)3.1确定设计方案 (7)3.2确定物性数据 (7)3.3计算总传热系数 (7)3.4计算换热面积 (8)3.5工艺尺寸计算 (8)3.6换热器核算 (10)3.6.1传热面积校核 (10)3.6.2.换热器内压降的核算 (11)四、辅助设备的计算及选型 (12)4.1拉杆规格 (12)4.2接管 (12)五、换热器结果总汇表 (13)六、设计评述 (14)七、参考资料 (14)八、主要符号说明 (14)九、致谢 (15)一、设计任务二、概述与设计方案简介2.1 概述在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。

换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。

换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。

间壁式换热器又称表面式换热器或间接式换热器。

在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。

该类换热器适用于冷、热流体不允许直接接触的场合。

间壁式换热器的应用广泛,形式繁多。

将在后面做重点介绍。

直接接触式换热器又称混合式换热器。

在此类换热器中,冷、热流体相互接触,相互混合传递热量。

该类换热器结构简单,传热效率高,适用于冷、热流体允许直接接触和混合的场合。

常见的设备有凉水塔、洗涤塔、文氏管及喷射冷凝器等。

蓄热式换热器又称回流式换热器或蓄热器。

此类换热器是借助于热容量较大的固体蓄热体,将热量由热流体传给冷流体。

当蓄热体与热流体接触时,从热流体处接受热量,蓄热体温度升高后,再与冷流体接触,将热量传给冷流体,蓄热体温度下降,从而达到换热的目的。

此类换热器结构简单,可耐高温,常用于高温气体热量的回收或冷却。

其缺点是设备的体积庞大,且不能完全避免两种流体的混合。

工业上最常见的换热器是间壁式换热器。

根据结构特点,间壁式换热器可以分为管壳式换热器和紧凑式换热器。

紧凑式换热器主要包括螺旋板式换热器、板式换热器等。

管壳式换热器包括了广泛使用的列管式换热器以及夹套式、套管式、蛇管式等类型的换热器。

其中,列管式换热器被作为一种传统的标准换热设备,在许多工业部门被大量采用。

列管式换热器的特点是结构牢固,能承受高温高压,换热表面清洗方便,制造工艺成熟,选材范围广泛,适应性强及处理能力大等。

这使得它在各种换热设备的竞相发展中得以继续存在下来。

使用最为广泛的列管式换热器把管子按一定方式固定在管板上,而管板则安装在壳体内。

因此,这种换热器也称为管壳式换热器。

常见的列管换热器主要有固定管板式、带膨胀节的固定管板式、浮头式和U形管式等几种类型。

2.2设计方案简介2.2.1 换热器类型的选择根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

1.固定管板式换热器这类换热器如图1-1所示。

固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

2. U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

3.浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

4.填料函式换热器填料函式换热器的结构如图1-4所示。

其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。

管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。

填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用。

按照设计任务书的要求,冷流体流体果汁入口温度36℃,出口温度72℃,热流体是水,入口温度95℃,出口70℃,壳壁与管壁温差较大,基于这些要求,应选择填料函式换热器,填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

2.2.2流径的选择在具体设计时考虑到尽量提高两侧传热系数较小的一个,使传热面两侧传热系数接近;在运行温度较高的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失;管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。

参考标准:(1)不洁净和易结垢的流体宜走管程,因管内清洗方便;(2)腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀,且清洗、检修方便;(3)压强高的流体宜走管程,以免壳体同时受压;(4)有毒流体宜走管程,使泄漏机会减少;(5)被冷却的流体宜走壳程,便于散热,增强冷却效果;(7)流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re>100)下即可达到湍流,但也可在管内采用多管程;(6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

综合以上标准,本次设计为果汁走壳程,水走管程。

2.2.3流速的选择介质循环水新鲜水一般液体易结垢液体低粘度油高粘度油气体流速管程流速1.0~2.0 0.8~1.5 0.5~3.0 >1.0 0.8~1.8 0.5~1.5 5~30m/s壳程流速0.5~1.5 0.5~1.5 0.2~1.5 >0.5 0.4~1.0 0.3~0.8 2~15m/s由于增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

故拟取流速为0.5m/s。

2.2.4材质的选择列管换热器的材料应根据操作压强、温度及流体的腐蚀性等来选用。

在高温下一般材料的机械性能及耐腐蚀性能要下降。

同时具有耐热性、高强度及耐腐蚀性的材料是很少的。

目前常用的金属材料有碳钢、不锈钢、低合金钢、铜和铝等;非金属材料有石墨、聚四氟乙烯和玻璃等。

根据实际需要,可以选择使用不锈钢材料。

2.2.5管程结构换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列,如下图所示。

(a) 正方形直列(b)正方形错列 (c) 三角形直列(d)三角形错列(e)同心圆排列正三角形排列结构紧凑;正方形排列便于机械清洗。

对于多管程换热器,常采用组合排列方式。

每程内都采用正三角形排列,而在各程之间为了便于安装隔板,采用正方形排列方式。

管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。

管板与管子的连接可胀接或焊接。

2.2.6 换热器流体相对流动形式换热器中流体的相对流向一般有顺流和逆流两种。

顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。

逆流时,沿传热表面两流体的温差分布较均匀。

在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小。

在完成同样传热量的条件下,采用逆流可使平均温差增大,换热器的传热面积减小;若传热面积不变,采用逆流时可使加热或冷却流体的消耗量降低。

前者可节省设备费,后者可节省操作费,故在设计或生产使用中应尽量采用逆流换热。

本次设计采用逆流的流动方式。

三、工艺及设备设计计算3.1确定设计方案3.1.1.换热器类型:填料函式换热器 3.1.2.流体流动形式两流体的温度变化情况:热流体进口温度:95℃,出口温度:70℃;冷流体进口温度:36℃,出口温度:72℃。

为了增大平均温差,节省操作费用,本次设计采用逆流的流动方式。

3.1.3.管程安排考虑到水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下,所以使水走管程,果汁走壳程;由于果汁有弱酸性,又因不锈钢管较碳钢管有较好的抗酸腐蚀性,故选用mm 225⨯Φ的不锈钢管。

3.2确定物性数据定型温度:对于一般液体和水等低黏度流体,其定性温度可取流体进、出口温度的平均值。

故壳程果汁的定性温度为 ℃5427236T =+=管程流体的定性温度为 t=℃.58227095=+果汁在50℃下有关物性数据如下:30/1030m kg =ρ ;C kg J C p ︒⋅=/31830C m W ︒⋅=/8.500λ;S P 10.8130⋅⨯=-a μ水在80℃下有关物性数据:3/.8971m kg =ρ ;C kg J C p ︒⋅=/4195C m W ︒⋅=/674.0λ;S P 100.3553⋅⨯=-a μ3.3计算总传热系数3.3.1.热流量Kw h KJ kg h kg 49.95/103.44C 36)-(72C 3.183KJ//3000T C W Q 5P00T =⨯=︒⨯︒⋅⨯=∆=3.3.2平均传热温差∵221<∆∆t t ∴℃5.2822334221=+=∆+∆=∆t t t m 3.3.3水用量hkg W /328070)-(954.195103.44T C Q 5P T =⨯⨯=∆= 3.3.4总传热系数K①管程传热系数2874310355.08.9715.0021.0Re 3=⨯⨯⨯==-μρdu >4000(湍流区) 对流传热系数:②壳程传热膜系数:假设14000=α 查[2]附图9得:管外污垢热阻C 00344.00R 20︒⋅=m 管内污垢热阻C 00172.00R 2︒⋅=m i不锈钢热导率C /142︒⋅=m w λC/5571400100172.00229.001425.0002.0021.0025.0000344.0021.00345425.00111300000︒⋅=+++⨯⨯+⨯+⨯=++++=m w R d bd d d R d d K m i i i i αλα3.4计算换热面积2m T 02.65.2855795490T K Q S'm =⨯=∆=考虑15%的面积裕度:263.6'15.1S m S ==3.5工艺尺寸计算3.5.1.管径和流速:取mm 225⨯Φ的不锈钢管 流速u=0.5m/s 3.5.2.管程数和传热管数:依据传热管内径和流速确定单程传热管数642.55.0021.0785.0)8.9713600/(3280422≈=⨯⨯⨯==ud q n i vs π(根)按单管程计算,所需的传热管长度为: 传热管长:m n d s 7.146025.014.393.6S L 0=⨯⨯==π按单程管设计,传热管过长,宜采用多管程结构。

相关文档
最新文档