(整理)平面向量空间向量知识点
高中数学必修知识点空间向量知识点
高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。
设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。
二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。
2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。
三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。
2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。
空间向量知识点总结简单
空间向量知识点总结简单一、空间向量的概念空间向量是指在空间中既有方向,又有大小的有向线段,它通常用两个端点来确定。
空间向量与数集合相似,但它比数多了方向和长度属性,而且可以进行加法运算。
二、空间向量的表示1. 向量的表示:(1)向量的坐标表示:设 A、B 两个点在空间直角坐标系中的坐标分别为 (x1, y1, z1) 和(x2, y2, z2),则向量 AB 可用有向线段 OA = (x2-x1, y2-y1, z2-z1) 表示。
(2)向量的分量表示:向量的三个分量包括它在 x 轴、y 轴和 z 轴上的投影。
2. 向量的线性运算:(1)向量的加法:两个向量的加法就是将其对应分量相加。
(2)向量的数乘:一个向量的数乘就是将其三个分量都乘以同一个实数。
(3)向量的减法:向量 C 是向量 A 减向量 B 的运算,其方向由 A 指向 B。
3. 向量的模:(1)向量的模长:在空间直角坐标系中,向量 (x, y, z) 的模长公式为√(x^2 + y^2 +z^2) 。
(2)单位向量:模长为 1 的向量称为单位向量。
三、向量的线运算1. 点积(数量积):两个向量的点积定义为:A · B = |A| × |B| × cosθ,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角。
性质:点积满足交换律、分配律、结合律。
应用:点积可以用来判断两个向量的夹角、求向量的投影、求向量的模等。
2. 叉积(向量积):两个向量的叉积定义为:A × B = |A| × |B| × sinθ × n,其中 |A| 和 |B| 分别为 A 和 B 的模长,θ 为 A 和 B 的夹角,n 为法向量。
性质:叉积不满足交换律,但满足分配律。
应用:叉积可以用来求向量的方向、求平行四边形或平行六面体的面积、求直线、平面的方程等。
四、空间向量的几何应用1. 平面向量的应用:(1)平行四边形面积公式:S = |A × B| = |A| × |B| × sinθ。
知识归纳:平面向量与空间向量
知识归纳:平面向量与空间向量平面向量及其运算一、知识导学模(长度):向量AB 的大小,记作|AB |。
长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。
2平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。
3相等向量:长度相等且方向相同的向量。
4相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。
记作-a。
5向量的加法:求两个向量和的运算。
已知a ,b 。
在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。
记作a b 。
6向量的减法:求两个向量差的运算。
已知a ,b 。
在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。
记作a -b 。
7实数与向量的积:(1)定义:实数λ与向量a 的积是一个向量,记作λa,并规定:①λa 的长度|λa |=|λ|·|a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a的方向相反;当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λμa =λμa ②λμa =λa μa ③λa b =λa λb8向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。
另外,设a =(1,y 1),b =2,y 2,则a b ⇔面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2使 a =λ11e +λ22e ,其中不共线向量1e 、2e叫做表示这一平面内所有向量的一组基底。
10定比分点设P 1,P 2是直线l 上的两点,点P 是不同于P 1,P 2的任意一点则存在一个实数λ,使21P P =λ21P P ,λ叫做分有向线段所成的比。
若点P 1、P 、P 2的坐标分别为1,y 1,,y ,(2,y2),则有特别当λ=1,即当点P 是线段P 1P 2的中点时,有⎪⎩⎪⎨⎧+=+=222121y y y x x x 11平面向量的数量积1定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cosθ叫做a 与b 的数量积或内积,记作a ·b ,即a ·b=|a ||b |cosθ规定:零向量与任一向量的数量积是0。
空间向量知识点归纳总结
空间向量知识点归纳总结知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示•同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图〕。
运算律:⑴加法交换律:a+b=b+a⑵加法结合律:(a + h) + ^=a + (b+^)⑶数乘分配律:A(a+b) = >M + Ab3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合, 那么这些向量也叫做共线向量或平行向量,N平行于5,记作allb o 当我们说向量办5共线(或ab)时,表示办5的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量旅b ^^6), ab 存在实数A,使a= Ah o4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量讣不共线,p与向量恥共面的条件是存在实数x, y使”=灯+ yb o5.空间向量根本定理:如果三个向量乳氏0不共面,那么对空间任一向量P,存在一个唯一的有序实数组,使p = xci + yb + z,c。
假设三向量打f不共面,我们把{a^c}叫做空间的一个基底, 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O.A.B.C是不共面的四点,那么对空间任一点P,都存在唯一的三个有序实数兀,中,使OP = xOA^yOB + zOC o6.空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O-小屮,对空间任一点A ,存在唯一的有序实数组(“⑵,使5X岚+昴+齐,有序实数组g⑵叫作向量A在空间直角坐标系O-W中的坐标,记作*,y,z), x叫横坐标,y叫纵坐标,乙叫竖坐标。
向量知识点与公式总结
向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。
命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。
重点考查定义和公式,重要以选择题或填空题型显现,难度一般。
由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。
命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。
向量知识点与公式总结
向量知识点与公式总结向量是数学中的一个重要概念,广泛应用于数学、物理等领域。
下面是关于向量的知识点和公式总结:一、向量的定义:1.向量是具有大小和方向的量,用箭头上面一点标记,如A、B等。
2. 向量可以表示为坐标形式(a1, a2, ..., an)或分量形式ai。
二、向量的运算:1.向量加法:向量A+B的结果是一个新的向量C,C的坐标等于A和B坐标对应位置元素的和。
2.向量减法:向量A-B的结果是一个新的向量C,C的坐标等于A和B坐标对应位置元素的差。
3.数乘:向量A乘以一个实数k,结果是一个新的向量B,B的坐标等于A每个坐标位置的值乘以k。
4.内积(点积):向量A和向量B的点积是一个实数,表示为A·B,等于A和B坐标对应位置元素的乘积和,再求和。
5.外积(叉积):向量A和向量B的叉积是一个新的向量C,C垂直于A和B所在平面,其大小等于A和B构成的平行四边形的面积,方向由右手定则确定。
三、向量的性质:1.数乘分配律:k(A+B)=kA+kB2.数乘结合律:(k1k2)A=k1(k2A)3.负向量:-A=(-1)A4.零向量:所有分量均为0的向量,用0或O表示,满足A+0=A。
5.单位向量:长度为1的向量,用u表示。
6.平行向量:方向相同或相反的向量。
7.相等向量:长度相等且方向相同的向量。
四、向量的模和单位向量:1.向量的模(长度):向量A的模表示为,A,定义为各个分量平方和的平方根。
A,= √(a1^2 + a2^2 + ... + an^22.单位向量:长度为1的向量,可将向量A除以其模得到单位向量u。
五、向量的投影:1.向量的投影是指在特定方向上的长度,用于量化向量在方向上的大小。
2.向量A在向量B上的投影等于A和B的内积除以B的模。
projB(A) = (A·B)/,B六、向量的夹角:1.向量的夹角是指两个向量之间的角度。
2.余弦公式:向量A和向量B的夹角θ满足如下关系:cosθ = (A·B)/(,A,B,)3. 内积性质:若A和B的夹角为θ,则cosθ = cos(θ+2πn),其中n为整数。
向量的知识点
专题一 空间向量及其运算一、空间向量的相关概念以及运算与平面向量的一样,例如:相等向量,单位向量,共线向量,向量的加法,减法,向量的数乘,向量的数量积(点乘)等等与平面向量的一样。
但唯一不一样的就是空间向量的坐标是由三个数组成,空间向量的坐标为(,,)a x y z =,平面向量的坐标为(,)a x y =(1)零向量:长度为0的向量叫做零向量,记作0(0,0,0)=,零向量的方向是任意的,零向量与任意向量平行或共线.(2)单位向量:长度为1的向量.非零向量a 的方向上的单位向量a a . (3)相等向量:长度相等方向相同的向量.(4)相反向量:长度相等方向相反的向量. a 的相反向量记为-a二、空间向量坐标的计算向量的坐标等于终点坐标减去起点坐标:若111222(,,),(,,)A x y z B x y z ,则212121(,,)AB x x y y z z =---三、空间向量的运算若已知111(,,)a x y z =,222(,,)b x y z =则1.向量的加法法则:三角形法则和平行四边形法则。
向量加法的坐标运算:121212(,,)a b x x y y z z +=+++2.向量的减法法则:共起点,连终点,方向由减向量指向被减向量。
向量减法的坐标运算: 121212(,,)a b x x y y z z -=---3.向量的数乘运算:111(,,)a x y z λλλλ=,a a λλ=, 当0λ>时,a λ与a 同向,当0λ<时,a λ与a 反向,当0λ=时,a λ= 04.向量的数量积运算(内积或点乘)121212cos a b a b x x y y z z θ•==++ (,a b θ=〈〉)四、向量的夹角 1.找向量夹角时注意向量必须共起点。
2. cos cos ,a b a b a b θ•=〈〉= ([]0,θπ∈)五、向量的摸长 221a a x ==+六、垂直向量1212121212000a b a b x x y y z z x x y y ⊥⇔•=⇔++=−−−−→+=平面向量七、共线向量1. 1221//(0),0a b a R b a x y x y λλ≠⇔∃∈=←−−−→-=平面向量使2.三点共线:,,,A B C R AB AC λλ⇔∃∈=三点共线使,,x y R OA xOB yOC ⇔∃∈=+使八、共面向量1. ,,(,),,a b c a b x y R c xa yb ⇔∃∈=+三个向量共面不共线使2.四点共面:,,,,,A B C D x y R AB x AC y AD ⇔∃∈=+三点共线使,,,1x y z R OA xOB yOC zOD x y z ⇔∃∈=++++=使且专题二 空间向量与立体几何一、直线的方向向量我们把直线上任意两点的向量或与它平行的非零向量称为直线的方向向量。
高中数学中的空间向量重点知识点归纳
高中数学中的空间向量重点知识点归纳在高中数学中,空间向量是一个十分重要的概念,它不仅在几何学中有广泛的应用,还在物理学等学科中起到关键作用。
掌握空间向量的相关知识对于解决现实生活和学习中的问题具有重要意义。
本文将对高中数学中空间向量的重点知识点进行归纳总结。
1. 空间向量的概念空间向量是指空间中的有方向的线段,它由起点和终点确定,并且可以平移。
空间向量常用字母表示,如AB、CD等。
空间向量具有大小和方向两个重要特征,可以用坐标表示,也可以用向量的箭头和尾巴表示。
2. 向量的坐标表示向量的坐标表示是指用数值表示向量在坐标系中的位置。
在三维直角坐标系中,空间向量可以用三个有序实数表示。
通常我们用尖括号 < a, b, c > 表示一个向量,其中a、b、c分别表示向量在x、y、z轴上的分量。
例如向量AB可以表示为< x2-x1, y2-y1, z2-z1 >,其中A的坐标为(x1, y1, z1),B的坐标为(x2, y2, z2)。
3. 向量的运算(1) 向量的加法向量的加法是指将两个向量相连接形成一个新的向量的运算。
假设有向量AB和向量BC,将它们的起点和终点相连得到一条新的向量AC,表示为向量AC = 向量AB + 向量BC。
向量的加法满足“平行四边形法则”,即将两个向量的起点相连得到的向量与两个向量终点相连得到的向量是相等的。
(2) 向量的数量乘法向量的数量乘法是指将向量与一个实数相乘得到一个新的向量。
假设有向量AB,将其与实数k相乘得到一个新的向量kAB。
当k>1时,新向量与原向量的方向相同;当0<k<1时,新向量与原向量的方向相反;当k<0时,新向量与原向量的方向相反。
(3) 向量的点积向量的点积是指将两个向量进行数量乘法后再求和得到一个实数的运算。
假设有向量AB和向量AC,将它们的数量乘法相加得到一个实数AB·AC,表示为AB·AC = |AB| |AC| cosθ,其中θ表示两个向量之间的夹角,|AB|和|AC|分别表示两个向量的模长。
空间向量(知识点梳理)
-@>% )一空间向量的概念1.空间向量的有关概念及线性运算(1)空间向量的定义:在空间内具有大小和方向的量叫作空间向量.(2)空间向量的表示:空间向量可用有向线段来表示.(3)零向量:起点与终点重合的向量叫作零向量.(4)空间向量的模(或长度):表示空间向量的有向线段的长度叫作向量的模(或长度).(5)共线向量(或平行向量):基线互相平行或重合的向量叫作共线向量(或平行向量).(6)共面向量:向量所在的直线与平面平行或在平面内,称向量与平面平行,平行于同一平面的向量叫作共面向量.(7)空间向量的加法㊁减法㊁数乘向量运算的定义㊁92.空间向量的有关定理(1)共线向量定理:对空间向量aң,bң(bңʂ0ң),aңʊbң的充要条件是存在实数k,使aң=k bң.推论:①对于空间任一点O,点P在直线A B上的充要条件是存在实数t,使O Pң=(1-t)O Aң+t O Bң或O Pң=xO Aң+y O Bң(其中x+y=1).②如果l为经过已知点A且平行于已知非零向量aң的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足关系式O Pң=O Aң+t aң,该方程称为直线方程的向量表达式.(2)共面向量定理:如果两个向量aң,bң不共线,则向量cң与向量aң,bң共面的充要条件是存在唯一的一对实数x,y,使cң=x aң+y bң.推论:空间一点P位于平面A B C内的充要条件是:存在有序实数对x,y,使C Pң=xC Aң+y C Bң,或对空间任一定点O,有O Pң=O Cң+xC Aң+y C Bң,该式称为平面C A B的向量表示式.(3)空间向量分解定理:如果三个向量aң,bң,cң不共面,那么对于空间任意一个向量pң,存在唯一的有序实数组x,y,z,使pң=x aң+y bң+z cң.其中不共面的三个向量aң,bң,cң叫作空间的一个基底,每一个向量aң,bң,cң叫8作基向量.3.空间向量的数量积(1)两个向量的夹角:对于两个非零向量aң,bң,在空间任取一点O,作O Aң=aң,O Bң=bң,则øA O B叫作向量aң,bң的夹角,记作<aң,bң>.注意:两个向量的夹角的取值范围是:0ɤ<aң,bң>ɤπ.(2)两个向量的数量积的定义:aң㊃bң=|aң||bң|㊃c o s<aң,bң>.二空间向量的坐标运算若向量aң=(a1,a2,a3),bң=(b1,b2,b3),则有:(1)aң+bң=(a1+b1,a2+b2,a3+b3);(2)aң-bң=(a1-b1,a2-b2,a3-b3);(3)λaң=(λa1,λa2,λa3);(4)aң㊃bң=a1b1+a2b2+a3b3;(5)距离公式:|aң|=aң2=a21+a22+a23;(6)夹角公式:c o s<aң,bң>=a1b1+a2b2+a3b3a21+a22+a23㊃b21+b22+b23;9(7)aңʊbң(bңʂ0ң)⇔a1=λb1,a2=λb2,a3=λb3(λɪR)或aңʊbң(bң与三条坐标轴都不平行)⇔a1b1=a2b2=a3b3;(8)aңʅbң⇔a1b1+a2b2+a3b3=0.三利用空间向量证明空间中的位置关系1.直线的方向向量与平面的法向量(1)直线的方向向量:基线和直线平行的向量叫作这条直线的方向向量.(2)平面的法向量:基线和平面垂直的向量叫作这个平面的法向量.2.利用空间向量证明空间中的位置关系(1)证明直线与直线平行的方法是:若直线l1和l2的方向向量分别为vң1和vң2,则l1ʊl2⇔vң1ʊvң2.(2)证明直线与平面平行的方法有两种:若直线l 的方向向量为vң,平面α内的两个不共线向量是vң1和vң2,平面α的法向量为nң,则有:①lʊα⇔存在实数x,y,使vң=x vң1+y vң2;②lʊα⇔vңʅnң.(3)证明平面与平面平行的方法是将其转化为直线与直线平行或直线与平面平行,然后利用向量方法证明.也可以用如下方法:若平面α和β的法向量分别为nң1和0010 n ң2,则αʊβ⇔n ң1ʊn ң2.(4)证明直线与直线垂直的方法是:若直线l 1和l 2的方向向量分别为v ң1和v ң2,则l 1ʅl 2⇔v ң1ʅv ң2.(5)证明直线与平面垂直的方法是:若直线l 的方向向量为v ң,平面α的法向量为n ң,则l ʅα⇔v ңʊn ң.(6)证明平面与平面垂直的方法是:若平面α和β的法向量分别为n ң1和n ң2,则αʅβ⇔n ң1ʅn ң2.四利用空间向量求空间角1.有关角的概念(1)空间角主要包括两条异面直线所成的角㊁直线与平面所成的角㊁二面角.(2)斜线与平面所成的角:平面的一条斜线和它在这个平面内的射影的夹角叫作斜线和平面所成的角.规定:若一条直线与一个平面平行或在平面内,则这条直线和平面所成的角为0;若一条直线与一个平面垂直,则这条直线和平面所成的角为π2.因此,斜线和平面所成的角的范围是0,π2();直线和平面所成的角的范围是0,π2[].(3)二面角的定义:从一条直线出发的两个半平面二面角的平面角:在二面角α-l-β的棱l上任取一点O,在两个半平面内分别作射线O Aʅl,O Bʅl,则øA O B叫作二面角α-l-β的平面角.直二面角:平面角是直角的二面角叫作直二面角,互相垂直的两个平面相交所形成的二面角就是直二面角.二面角的取值范围是[0,π].(4)最小角原理:斜线和平面所成的角,是斜线和这个平面所有直线所成角中的最小的角.(5)从角的顶点出发的一条直线,如果它和这个角的两条边所成的角相等,那么它在这个角所在平面内的射影是这个角的平分线.这个结论常用于确定一条直线在一个平面内的射影.(6)利用射影面积公式:S'=S㊃c o sθ,也可以求一些二面角的大小.2.利用空间向量求空间角的方法(1)若异面直线l1和l2的方向向量分别为vң1和vң2,它们所成的角为θ,则c o sθ=|c o s<vң1,vң2>|.(2)利用空间向量求直线与平面所成的角,可以有两种办法:一是分别求出直线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补02(3)利用空间向量方法求二面角,也有两种办法:一是分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;二是通过平面的法向量来求:设二面角的两个面的法向量分别为nң1和nң2,则二面角的大小等于<nң1,nң2>(或π-<nң1,nң2>).五利用空间向量求点到平面的距离1.定义一个点到它在一个平面内的正射影的距离叫作这个点到平面的距离.2.求法一是根据定义,按照作(或找) 证 求的步骤求解;二是利用空间向量,首先求出平面的单位法向量nң0,再任意找一个从该点出发的平面的斜线段对应的向量vң,则点到平面的距离为d=|nң0㊃vң|.10。
高中数学平面空间向量知识点总结
平面向量知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a =+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的方向相反;当0=λ时,0=a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx,λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=121y x +当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质空间向量与立体几何 1、空间向量及其运算:(1)空间中的平行(共线)条件:()//0,a b b x R a xb ≠⇒∃∈=(2)空间中的共面条件:,,a b c 共面(,b c 不共线),,x y R a xb yc ⇔∃∈=+推论:对于空间任一点O 和不共线三点A 、B 、C ,OP xOA yOB zOC =++ ()1x y z ++=,则四点O 、A 、B 、C 共面(3)空间向量分解定理:如果三个向量,,a b c 不共面,那么对空间任一向量p xa yb zc =++ (4)空间向量的加、减、数乘、数量积定义及运算若()()111222,,,,,a x y z b x y z ==,则:()121212,,a b x x y y z z ±=±±±()111,,a x y z λλλλ= 121212a b x x y y z z ⋅=++注1:数量积不满足结合律; 注2:空间中的基底要求不共面。
空间向量知识点归纳总结
空间向量知识点归纳总结(经典)(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a、b (b ≠0 ),a b a bλ=)1(=++=y x y x 其中a a±共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学平面向量与空间向量知识点总结
高中数学平面向量与空间向量知识点总结为了帮助高中数学学习者更好地掌握平面向量与空间向量的知识,以下是对于这两个概念的详细总结。
通过阅读本文,你将对平面向量与空间向量的定义、表示、运算以及相关性质有一个全面的了解。
平面向量1. 定义与表示平面向量是由起点和终点确定的有向线段,通常用→AB 或 AB 来表示,其中 A 为起点,B 为终点。
向量可以用坐标、分量、或单位向量的形式进行表示。
2. 向量的运算a) 向量的加法:平面向量的加法满足平行四边形法则,即将一个向量的起点放在另一个向量的终点,以第一个向量的终点为新向量的终点,新向量即为原向量的和。
b) 向量的数乘:将向量的每个分量乘以一个标量,得到的新向量即为原向量的数乘。
c) 两个向量的数量积:平面向量的数量积满足平行四边形的面积公式,即对于向量→A 和→B,其数量积为A·B = |A||B|cosθ,其中 |A| 和 |B| 分别表示向量的模长,θ 表示两个向量之间的夹角。
3. 向量的性质平面向量具有以下性质:a) 两个向量相等,当且仅当它们有相同的模长和方向。
b) 两个向量平行,当且仅当它们的夹角为 0°或 180°。
c) 三角形的三条边可以看作是由两个向量的和构成。
d) 对于任意向量 A,A+(-A) = 0,其中 0 表示零向量。
e) 若向量 A·B = 0,则称向量 A 和 B 互相垂直。
空间向量1. 定义与表示空间向量与平面向量相似,但是在三维空间中存在。
空间向量通常用→AB 或 AB 来表示,其中 A 为起点,B 为终点。
2. 向量的运算空间向量的运算与平面向量类似,但是需要注意三个维度的变化。
向量的加法、数乘等运算仍然适用。
3. 向量的性质空间向量的性质与平面向量类似,但在三维空间中,还需要考虑向量与平面的相交等问题。
总结通过对平面向量与空间向量的知识点的总结,我们可以得出以下结论:- 平面向量和空间向量的定义和表示方式类似,都是由起点和终点确定的有向线段。
空间向量知识点整理
专题二 空间向量第一节 什么是空间向量 教学过程(一)简单回顾平面向量(二)引入空间向量,并准确理解空间向量 1.空间向量的一般运算1)空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:向量一般用有向线段表示;同向等长的有向线段表示同一或相等的向量 2)空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下:b a AB OA OB +=+=;b a OB OA BA -=-=;)(R a ∈=λλ运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(⑷数乘结合律:()()a a λμλμ=3)平行六面体:平行四边形ABCD 平移向量a到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''. 它的六个面都是平行四边形,每个面的边叫做平行六面体的棱. 4)共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a ……①.其中向量a叫做直线l 的方向向量.在l 上取AB a =,则①式可转化为OP OA t AB =+……②,①②两式都称为空间直线的向量表示式. 5)共面向量向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量.说明:空间任意的两向量都是共面的.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在惟一实数,x y 使p xa yb =+.推论:空间一点P 位于平面ABC 内的充分必要条件是存在有序实数对,x y ,使CP xCA yCB =+……① 或对空间任一点O ,有OP OC xCA yCB =++……②或,(1)OP xOA yOB zOC x y z =++++=……③ 上面①式叫做平面ABC 的向量表达式.6)空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个惟一的有序实数组,,x y z ,使p xa yb zc =++.若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底.推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++7)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,O A a O B b ==,则A O B ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.8)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .9)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量, 作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影. 可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.10)空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 11)空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律). (3)()a b c a b a c ⋅+=⋅+⋅(分配律).12)讲解范例:例 1.已知线段,AB BD 在平面α内,BD AB ⊥,线段AC α⊥,若,,AB a BD b AC c ===,求,C D 间的距离.例2.已知平行六面体ABCD A B C D ''''-中,4,3,5,90AB AD AA BAD '===∠=,60BAA DAA ''∠=∠=,求AC '的长.例3.已知S 是边长为1的正三角形所在平面外一点,且1SA SB SC ===,,M N 分别是AB ,SC 的中点,求异面直线SM 与BN 所成角的余弦值.cba D C BA α例4.如图,长方体1111ABCD A B C D -中,4AB BC ==,E 为11A C 与11B D 的交点, F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB .同步练习:1.设a b ⊥,,,,36a cbc ππ<>=<>=,且||1,||2,||3a b c ===,求向量a b c ++的模.2.已知||2,||5a b ==,2,3a b π<>=,3p a b =-,17q a b λ=+,问实数λ取何值时p 与q 垂直.3.若0a b c ++=,且||3,||2,||1a b c ===,求a b b c c a ⋅+⋅+⋅的值.4.在棱长为1的正方体ABCD A B C D ''''-中,,E F 分别是,D D DB '中点,G 在棱CD 上,14CG CD =,H 为C G '的中点,(1)求证:EF B C '⊥;(2)求,EF C G '所成角的余弦; (3)求FH 的长1A2.空间向量的坐标运算1)简单回顾空间直角坐标系的建立及点的坐标表示 2)(1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(3)//a b b a λ⇔=112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩3)直线的方向向量及平面的法向量(1)直线的方向向量:我们把直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量 (2)平面的法向量:如果表示向量的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥,那么向量叫做平面α的法向量.注:①若l α⊥,则称直线l 为平面α的法线; ②平面的法向量就是法线的方向向量.③给定平面的法向量及平面上一点的坐标,可以确定一个平面. (3)在空间求平面的法向量的方法:(i )直接法:找一条与平面垂直的直线,求该直线的方向向量. (ii )待定系数法:建立空间直接坐标系 ①设平面的法向量为(,,)n x y z =②在平面内找两个不共线的向量111(,,)a x y z =和222(,,)b x y z =③建立方程组:0n a n b ⎧⋅=⎪⎨⋅=⎪⎩④解方程组,取其中的一组解即可.第二节 利用空间向量解决立体几何问题 应用1:量的计算 1)计算角度大小(1)求两异面直线所成的角点A ,B ∈直线a ,C ,D ∈直线b ,构成向量AB ,CD ,cos ,AB CD AB CD AB CD⋅=.设直线a 与直线b 所成的角为θ,则cos cos ,AB CD AB CDAB CDθ⋅==,即,AB CD 或其补角为直线()a AB 与()b CD 所成的角.例5. 如图,已知直棱柱ABC -A 1B 1C 1,在ABC ∆中,CA =CB =1,90BCA ∠=︒,棱AA 1=2,求异面直线BA 1,CB 1所成的角.(2)求直线和平面所成的角已知A ,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为:(1)当,0,2AB n π⎛⎫∈ ⎪⎝⎭时,,2AB n πθ=-;(2)当,,2AB n ππ⎛⎫∈⎪⎝⎭时,,2AB n πθ=-.例6. 棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为C 1D 1、B 1C 1的中点,(1)求证:E 、F 、B 、D 共面;(略,不用做了)(2)求点A 1D 与平面EFBD 所成的角的余弦值.(3)求二面角已知二面角l αβ--,m ,n 分别为面α,β的法向量,则二面角的平面角θ的大小与两个法向量所成的角相等或互补. 即,m n θ=或,m n π-.注:如何判断二面角的平面角和法向量所成的角的关系? ①通过观察二面角锐角还是钝角,再由法向量的成的角求之.②通过观察法向量的方向,判断法向量所成的角与二面角的平面角相等还是互补.AB C D ABCD 1111E Fn例7. 在四棱锥S-ABCD 中∠DAB=∠ABC =90°,侧棱SA ⊥底面AC ,SA=AB=BC =1,AD=2,求二面角A-SD-C 的余弦值的大小2)计算空间距离(1)求两条异面直线的距离已知两条异面直线a ,b ,m 是与两直线都垂直的向量, A a ∈,B b ∈则两条异面直线的距离AB m d m⋅=.例8. 长方体ABCD -A 1B 1C 1D 1中AB=2,AD=4,AA 1=6,E 是BC 的中点,F 是CC 1的中点,建立空间坐标系,求(1)异面直线D 1F 与B 1E 所成角的余弦值; (2)二面角D 1-AE-D 的余弦值; (3)异面直线B 1E 与D 1F 的距离.(2)求点到面的距离(注:线到面和面到面的距离均可转化为点到面的距离进行求解)已知平面α和点A ,B 且A α∉,B α∈,n 为平面α的法向量,则点A 到平面α的距离AB n d n⋅=.n例9. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , 2OA =,M 为OA 的中点,N 为BC 的中点. (1)证明:直线MN ‖平面OCD ;(2)求异面直线AB 与MD 所成角的大小; (3)求点B 到平面OCD 的距离.应用2:证明线与线、线与面和面与面的平行与垂直关系(略) 第三节 专题训练1.如右下图,在长方体ABCD -A 1B 1C 1D 1中,已知AB = 4, AD =3, AA 1= 2.E 、F 分别是线段AB 、BC 上的点,且EB = FB =1.(1)求二面角C -DE -C 1的正切值; (2)求直线EC 1与FD 1所成的余弦值.A E D CBA 1FD 1 C 1B 1ABCD P2.如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD ⊥平面P AB .(1)求证:AB ⊥平面PCB ;(2)求异面直线AP 与BC 所成角的大小; (3)求二面角C-P A-B 的大小的余弦值.3.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N .(1)求证:平面ABM ⊥平面PCD ;(2)求直线CD 与平面ACM 所成的角的大小; (3)求点N 到平面ACM 的距离.NO4.如图所示,已知在矩形ABCD 中,AB =1,BC =a (a >0),P A ⊥平面AC ,且P A =1. (1)试建立适当的坐标系,并写出点P 、B 、D 的坐标;(2)问当实数a 在什么范围时,BC 边上能存在点Q , 使得PQ ⊥QD ?(3)当BC 边上有且仅有一个点Q 使得PQ ⊥QD 时, 求二面角Q -PD -A 的大小.5. 如题(19)图,在ABC ∆中,90B ∠=︒,152AC =,D 、E 两点分别在AB 、AC 上. 使2AD AEDB EC==,3DE =. 现将ABC ∆沿DE 折成直二面角,求: (1)异面直线AD 与BC 的距离; (2)二面角A EC B --的正切值.QP DCBA。
空间向量知识点总结讲解
空间向量知识点总结讲解一、向量的基本概念1. 向量的定义:在数学中,向量是具有大小和方向的量,通常表示为有向线段。
向量可以用坐标表示,也可以用行向量或列向量表示。
2. 向量的运算:向量的运算包括加法、数量乘法、点乘、叉乘等。
向量之间的加法和数量乘法可以直接进行,而点乘和叉乘需要通过向量的坐标或分量进行计算。
3. 向量的性质:向量具有大小和方向两个基本属性,同时还具有平行四边形法则,向量共线与共面的性质等。
二、空间向量的概念1. 空间向量的定义:在三维空间中,向量的坐标可以用三个实数表示,即(x, y, z),这就是空间向量。
空间向量通常表示为有向线段,具有大小和方向。
2. 空间向量的运算:空间向量的运算与平面向量相似,可以进行向量的加法、数量乘法、点乘、叉乘等运算。
叉乘是空间向量特有的一种运算,用来得到垂直于两向量所在平面的向量。
3. 空间向量的坐标表示:空间向量的坐标表示为(x, y, z),用来描述向量的起始点和终点在三维空间中的位置。
4. 空间向量的性质:空间向量具有大小和方向的性质,同时还具有与平面向量相似的性质,如共线、共面等。
三、空间向量的线性运算1. 空间向量的线性组合:空间向量的线性组合是指将若干个向量以一定的比例相加得到新的向量的过程。
线性组合在向量空间中有重要的应用,可以通过线性组合来表示向量的线性相关性和线性无关性。
2. 空间向量的线性相关性和线性无关性:当一组向量能够用线性组合的方式得到零向量时,这组向量就是线性相关的;当一组向量不能用线性组合的方式得到零向量时,这组向量就是线性无关的。
线性相关性和线性无关性是向量空间中的重要概念。
3. 空间向量的线性空间:线性空间是指满足一定条件的向量集合,具有向量加法、数量乘法、满足线性组合封闭性、交换性、结合律等性质。
空间向量是线性空间的一个典型例子。
四、空间向量的应用1. 空间向量在几何中的应用:在几何学中,空间向量可以用来描述点、直线、面等几何对象的位置和方向关系,还可以用来解决几何问题,如判定点、线、面的位置关系、计算距离、计算面积等。
平面向量空间向量知识点
平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2++§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反.2、 平面向量共线定理:向量()≠与b 共线,当且仅当有唯一一个实数λ,使a b λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x ++=+,⑵()2121,y y x x --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则 ⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θ.3、 2a =.4、 =.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x b a +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= ⑷1221//0a b a b x y x y λ⇔=⇔-= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 2c o s a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=, 则.x x h y y k '=+⎧⎨'=+⎩ 函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=- §2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.(如图)1、 用向量方法判定空间中的平行关系 ⑴线线平行设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. 即:两直线平行或重合两直线的方向向量共线。
平面向量知识点归纳
平面向量知识点归纳■标准化文件发布号:(9556・EUATWK・MWUB・WUNN・INNUL・DDQTY・KII第一章平面向量2.1向量的基本概念和基本运算16、向量:既有大小,乂有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度.零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量•零向量与任一向量平 行・ 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:|«|-|/?|| < ii + h S 冋+ ”a +b =b +ci ;②结合律:(^a+h) + c = a + [b+c) ; ®« + 0 = 0 + J = « . ⑸坐标运算:设〃=(州』]),b=(x 2,y 2),则 a +b=^Xi+X ^y i+y 2 ).18、向量减法运算: (1)三角形法则的特点:共起点,连终点,方向指向被减向量•⑵坐标运算:设匝=(X ]川),3=(尤2*2)‘则“ 一〃=(坷一勺」一旳)・ 设A 、B 两点的坐标分别为(xpJi ).(兀2”2),则AB = (%j —勺,必一力) 19、向量数乘运算:⑴实数久与向量"的积是一个向量的运算叫做向量的数乘,记作加① I 加|=|2|同;② 当久>0时,加的方向与〃的方向相同;当久<0时,加的方向与〃的方向相 反;当2 = 0时,2a = 6・⑵运算律:①A (//d ) =(A//)d ;②(久+ 〃)〃 =加+炖;③几(刁+ /;)=加+兀.(3)坐标运算:设a=(x 9y ),则Aa = 2(x,y )=(Ax,2y ).⑷运算性质:①交换律:a-b=AC-AB = BC20、向量共线定理:向量a (a^6)与方共线,当且仅当有唯一一个实数2,使 设厅=(州,)\), “二也小),其中”工0,则当且仅当x }y 2-x 2y l = 0时,向量 &、b (b^O )共线.2.2平面向量的基本定理及坐标表示21、 平面向量基本定理:如果竹、®是同一平面内的两个不共线向量,那么对 于这一平面内的任意向量N 有且只有一对实数入、221使刁=人4 +人& .(不共线的向量石、&作为这一平面内所有向量的一组基底) 22、 分点坐标公式:设点P 是线段P,P 2±的一点,P|、P [的坐标分别是(“)也宀),当耳?=人瓯时,点P 的坐标是[牛竿,斗也 .(当\ 1 + /I 1 + 7V )2 = 1时,就为中点公式。
平面向量知识点归纳
平面向量知识点归纳■标准化文件发布号:(9556・EUATWK・MWUB・WUNN-INNUL-DDQTY・Kn第—童平面向量2.1向量的基本概念和基本运算16、向量:既有大小,乂有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度.零向量:长度为0的向量• 单位向量:长度等于1个单位的向量• 平行向量(共线向量):方向相同或相反的非零向量•零向量与任一向量平 行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:||«|-|/?|| < d + b <|^| + |/?a+b=b+a ;② 结合律:(& + b) + c : = d + (b + c :) ;(3 J + 0 = 6 + « = (i . (5)坐标运算:设0 =(不,)\), b=(x 2,y 2)t 贝IJ万+5 = (召+疋,开+儿)・«-^=AC-AB=BC(1)三角形法则的特点:共起点,连终点,方向指向被减向量・⑵坐标运算:设a = S = (x 2,y 2),则a-b=(x l -x 29y l -y 2).设A 、B 两点的坐标分别为(人切),(x 2,y 2),则AB = (^-y 2).19、向量数乘运算: (1)实数兄与向量万的积是一个向量的运算叫做向量的数乘,记作久刁・ ②当兄>0时,久/的方向与7的方向相同;当几<0时?久/的方向与〃的方向相 反;当 >1 = 0 时,Ad = 6 .⑵运算律:①;1(“町=(;1“)万;②(兄+〃)厅=脑+炖;③兄(刁+5)=肪+舫(3)坐标运算:设 a = (x,y).则 Aa = A(x,y) =(Ax 9Ay).20、 向量共线定理:向量耳〃工0)与5共线,当且仅当有唯一一个实数几,使 b = A,a . 设"&,)[), b=(x 2,y 2),其中,则当且仅当人儿-兀儿=°时 向量⑷运算性质:①交换律:18、向量减法运算: B&、6(5工0)共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果兀、&是同一平面内的两个不共线向量,那么对于这一平面内的任意向量X,有且只有一对实数&、,使万=入石+入瓦.(不共线的向量石、:作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P是线段Pf?上的一点,P】、的坐标分别是(%))(兀2,儿),当卒"匝时,点P的坐标是(芝牛,塔字)•(当2 = 1B寸,就为屮点公式。
《空间向量》基础知识点
《空间向量及其运算》2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:()()a b c a b c ++=++⑶数乘分配律:()a b a b λλλ+=+3.平行六面体平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作ABCD-A B C D ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱 4. 平面向量共线定理方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b=λa .要注意其中对向量a的非零要求.5. 共线向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.6. 共线向量定理:空间任意两个向量a 、b (b ≠0),a //b 的充要条件是存在实数λ,使a =λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t OA OP +=a .其中向量a叫做直线l 的方向向量.空间直线的向量参数表示式:t OA OP +=a或)(OA OB t OA OP -+=OB t OA t +-=)1(,中点公式.)(21OB OA OP+=7.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的8.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+ ①或对空间任一点O ,有OP OM xMA yMB =++② 或,(1)OP xOA yOB zOM x y z =++++= ③ 上面①式叫做平面MAB 的向量表达式9.空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++10 ,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥.11.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .12.向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影. 可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅.13.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=. (3)2||a a a =⋅.14.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律). (3)()a b c a b a c ⋅+=⋅+⋅空间向量的直角坐标及其运算1(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.常见坐标系①正方体如图所示,正方体''''ABCD A B C D -的棱长为a ,一般选择点D 为原点,DA 、DC 、'DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,则各点坐标为亦可选A 点为原点.在长方体中建立空间直角坐标系与之类似. ②正四面体如图所示,正四面体A BCD -的棱长为a ,一般选择A 在BCD ∆上的射影为原点,OC 、OD (或OB )、OA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为③正四棱锥如图所示,正四棱锥P ABCD -的棱长为a ,一般选择点P 在平面A A 'D B B ' D 'C C 'yzxBC AD O z xyADP O x zABCD 的射影为原点,OA (或OC )、OB (或OD )、OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为④正三棱柱如图所示,正三棱柱 '''ABC A B C -的底面边长为a ,高为h ,一般选择AC 中点为原点,OC (或OA )、OB 、OE (E 为O 在''A C 上的射影)所在直线分别为x 轴、y轴、z 轴建立空间直角坐标系O xyz -,则各点坐标为3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.4 123(,,)a a a a =,123(,,)b b b b =,则22123||a a a a a a =⋅=++,21||b b b b =⋅=+.5.夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2||(AB AB x ==,或,A B d =空间向量应用一、直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.在空间直角坐标系中,由111(,,)A x y z 与222(,,)B x y z 确定直线AB 的方向向量是212121(,,)AB x x y y z z =---.平面法向量 如果a α⊥,那么向量a 叫做平面α的法向量. 二、证明平行问题1.证明线线平行:证明两直线平行可用112233//,,()a b a b a b a b R λλλλ⇔===∈或312123//a a a a b b b b ⇔==. 2.证明线面平行直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若a n ⊥即0a n ⋅=则//a α. 3.证明面面平行平面α的法向量为1n ,平面β的法向量为2n ,若12//n n 即12n n λ=则//αβ. 三、证明垂直问题 1.证明线线垂直证明两直线垂直可用1122330a b a b a b a b a b ⊥⇔⋅=++= 2.证明线面垂直直线l 的方向向量为a ,平面α的法向量为n ,且l α⊄,若//a n 即a n λ=则a α⊥. 3.证明面面垂直平面α的法向量为1n ,平面β的法向量为2n ,若12n n ⊥即120n n ⋅=则αβ⊥.x y四、夹角1.求线线夹角设123(,,)a a a a =,123(,,)b b b b =,(0,90]θ∈︒︒为一面直线所成角,则:||||cos ,a b a b a b ⋅=⋅⋅<>;21cos ,||||a a ba b a b a ⋅<>==⋅+;cos |cos ,|a b θ=<>. 2.求线面夹角如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得sin |sin(,)|2OP AP πθ=-<>|cos ,|OP AP =<>|cos ,|n AP =<>|cos ,|n PA =<>||||||n PA n PA ⋅=.3.求面面夹角设1n 、2n 分别是二面角两个半平面α、β的法向量, 当法向量1n 、2n 同时指向二面角内或二面角外时,二面角θ的大小为12,n n π-<>;当法向量1n 、2n 一个指向二面角内,另一外指向二面角外时,二面角θ的大小为12,n n <>. 五、距离1.求点点距离设111(,,)A x y z ,222(,,)B x y z ,,A B d =||(AB AB AB x =⋅=2.求点面距离如图,A 为平面α任一点,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ易得||||sin |||cos ,|PO PA PA PA n θ=⋅=⋅<>||||||||PA n PA PA n ⋅=⋅⋅||||PA n n ⋅=. 3.求线线距离求异面直线间的距离可以利用向量的正射影性质直接计算.如图,设两条异面直线a 、b 的公垂线的方向向量为n , 这时分别在a 、b 上任取A 、B 两点,则向量在n 上的正射影长就是两条异面直线a 、b 的距离.即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.直线a 、b 的距离||||||||n AB n d AB n n ⋅=⋅=. 4.求线面距离一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离叫做这条直线到这个平面的距离.直线到平面的距离可转化为求点到平面的距离. 5.求面面距离和两个平行平面同时垂直的直线叫做两个平行平面的公垂线.公垂线夹在这两个平行平面间的部分叫做两个平行平面的公垂线段.公垂线段的长度叫做两个平行平面间的距离. 平面和平面间的距离可转化为求点到平面的距离.。
平面向量知识点归纳
第一章平面向量2.1向量的基本概念和基本运算16、 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. r r r ⑶三角形不等式:〔a b| a b a b r r ⑷运算性质:①交换律:abba ; 「匚-■: -:二 r r r r r r r 「r 「r ②结合律:a b ca b c :③aOOaa . ⑸坐标运算:设a %X1,y2卷l b% X2X1y218、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设 a % X1,y2卷r b y1X1uuu 设 、 两点的坐标分别为 x 1,y 1 , x 2, y 2,则 为 x 2,y 1 y 219、向量数乘运算: ⑴实数与向量a 的积是一个向量的运算叫做向量的数乘,记作a .①I a丨脚; ②当 0时, a 的方向与 a 的方向相同;当 0时, a 的方向与a 0时,a r 0.⑵运算律:① r a a :②r a r r a a ; ③a b ⑶坐标运算:设 a x,y , 则a x,y x, y .的方向相反;当20、向量共线定理:向量 a a r a 设X2r 1UuU ILH IrHrU= AC-AB = BCr r与b 共线,当且仅当有唯一一个实数 ,使ba .「 「ry 2 ,其中b 0,则当且仅当x 1y 2x 2y 1 0时,向量a 、br o共线. 2.2平面向量的基本定理及坐标表示 ir uu 21、平面向量基本定理:如果 ei 、e ,是同一平面内 的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1、 2,使a 1Uuu u ur 2O 2 .(不共线的向量e 、e 2作22、分点坐标公式:设点 是线段1 2上的一点,1、 2的坐标分别是h ,X 2』2,uu ujir2时,点的坐标是X 1 X 2 % y 2(当1时,就为中点公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量AB 的大小,也就是向量AB 的长度(或称模),记作AB u u u r ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义 1、 三角形加法法则和平行四边形加法法则.2、b a +≤b a +.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, λ的方向与的方向相同;当0<λ时, λ的方向与的方向相反. 2、 平面向量共线定理:向量()0≠a a 与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x j y i x a ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x y x ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x b a --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则 ⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θ.3、 2=.4、=.5、 0=⋅⇔⊥b a b a .§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x b y x a ==,则:⑴2121y y x x +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r⑷1221//0a b a b x y x y λ⇔=⇔-=r r r r2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式cos a ba bθ⋅==r r r r4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=u u u r , 则.x x h y y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =r平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB u u u r 为直线l 的一个方向向量;与AB u u u r平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n r 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥r ,如果n α⊥r,那么向量n r叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =r.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==r u r.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩r r r r .⑤解方程组,取其中一组解,即得平面α的法向量.(如图)1、 用向量方法判定空间中的平行关系 ⑴线线平行设直线12,l l 的方向向量分别是a b r r 、,则要证明1l ∥2l ,只需证明a r ∥b r ,即()a kb k R =∈r r. 即:两直线平行或重合两直线的方向向量共线。
⑵线面平行①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r ,则要证明l ∥α,只需证明a u ⊥r r,即0a u ⋅=r r.即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u r ,平面β的法向量为v r ,要证α∥β,只需证u r ∥v r ,即证u v λ=r r.即:两平面平行或重合两平面的法向量共线。
3、用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b r r、,则要证明12l l ⊥,只需证明a b ⊥r r ,即0a b ⋅=r r . 即:两直线垂直两直线的方向向量垂直。
⑵线面垂直①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r ,则要证明l α⊥,只需证明a r ∥u r,即a u λ=r r .②(法二)设直线l 的方向向量是a r ,平面α内的两个相交向量分别为m n u r u u r、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩r u r r r则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。
⑶面面垂直若平面α的法向量为u r ,平面β的法向量为v r ,要证αβ⊥,只需证u v ⊥r r ,即证0u v ⋅=r r.即:两平面垂直两平面的法向量垂直。
4、利用向量求空间角 ⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BDAC BDθ⋅=u u u r u u u r u u u r u u u r⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a r ,平面α的法向量为u r ,直线与平面所成的角为θ,a r与u r的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a ua uϕθ⋅==r r r⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n u r r 、,再设m n u r r、的夹角为ϕ,OABOABl二面角l αβ--的平面角为θ,则二面角θ为m n u r r、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角:◆如果θ是锐角,则cos cos m nm nθϕ⋅==u r ru r r ,即arccos m nm nθ⋅=u r r u r r ;◆ 如果θ是钝角,则cos cos m nm nθϕ⋅=-=-u r ru r r ,即arccos m n m nθ⎛⎫⋅ ⎪=-⎪⎝⎭u r r u r r . 5、利用法向量求空间距离 ⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a r为直线l 的方向向量,b r =PQ uuu r ,则点Q 到直线l 距离为h =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n r ,则P 到平面α的距离就等于MP u u u r在法向量n r 方向上的投影的绝对值.即cos ,d MP n MP =u u u r r u u u u r n MPMP n MP⋅=⋅r u u u ru u u r r u u u r n MP n ⋅=r u u u r r⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等。
由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。
即.n MPd n⋅=r u u u r r⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。
即.n MP d n⋅=r u u u r r⑸异面直线间的距离设向量n r 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP u u u r在向量n r方向上投影的绝对值。
即.n MPd n⋅=r u u u r r6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。