近几年全国物理竞赛复赛力学
29届全国中学生物理竞赛复赛(高清试题图片Word答案)

1234567第29届全国中学生物理竞赛复赛试卷参考答案一、由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立x坐标系,以下简称系. 设物块下底面的坐标为,在物块未完全浸没入湖水时,x其所受到的浮力为g式中为重力加速度.物块的重力为设物块的加速度为,根据牛顿第二定律有将(1)和(2)式代入(3)式得将系坐标原点向下移动而建立新坐标系,简称系. 新旧坐标的关系为把(5)式代入(4)式得式表示物块的运动是简谐振动. 若,则,对应于物块的平衡位置. 由式可知,当物块处于平衡位置时,物块下底面在系中的坐标为0物块运动方程在系中可写为利用参考圆可将其振动速度表示为式中为振动的圆频率在(8)和(9)式中和分别是振幅和初相位,由初始条件决定. 在物块刚被释放Ax=0时,即时刻有,由(5)式得由(8)至(12)式可求得(13) 将(10)、(13)和(14)式分别代人(8)和(9)式得由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在系中看,物块下底面坐标为时,物块刚好被完全浸没;由(5)式x b 知在系中这一临界坐标值为(17) 即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下处. 注意到在Xb振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠,下面分两种A情况讨论:I.. 由(13)和(17)两式得在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期物块从初始位置出发往返一次所需的时间II.. 由(13)和(17)两式得A X b (21) 在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下. 设从t初始位置起,经过时间物块刚好全部浸入湖水中,这时. 由(15)和(17)11b式得(22) cos11取合理值,有 (23) arccos11由上式和(16)式可求得这时物块的速度为2 (24) V(t)1-11此后,物块在液体内作匀减速运动,以表示加速度的大小,由牛顿定律a有 (25) 设物块从刚好完全浸入湖水到速度为零时所用的时间为,有t2(26) 12由(24)-(26)得2(27)112()物块从初始位置出发往返一次所需的时间为22(28) 2()2arccos111II12()评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分.10二、 1. i.通过计算卫星在脱离点的动能和万有引力势能可知,卫星的机械能为负值. 由开普勒第一定律可推知,此卫星的运动轨道为椭圆(或圆),地心为椭圆的一个焦点(或圆的圆心),如图所示.由于卫星在脱离点的速度垂直于地心和脱离点的连线,因此脱离点必为卫星椭圆轨道的远地点(或近地点);设近地点(或远地点)离地心的距离为,r R 0.80R 卫星在此点的速度为.由开普勒第v a 二定律可知2式中为地球自转的角速度e令表示卫星的质量,根据机械能守m恒定律有1G(2)由2r20.80R(1)和(2)式解得可见该点为近地点,而脱离处为远地点. 【(3)式结果亦可由关系式:直接求得】同步卫星的轨道半径满足2R由(3)和(4)式并代入数据得4可见近地点到地心的距离大于地球半径,因此卫星不会撞击地球. ii.由开普勒第二定律可知卫星的面积速度为常量,从远地点可求出该常量为s2设和分别为卫星椭圆轨道的半长轴和半短轴,由椭圆的几何关系有 ab 110.280.80R (7) 220.800.2822 (8) 2T卫星运动的周期为(9) s代人相关数值可求出(10)9.5h 卫星刚脱离太空电梯时恰好处于远地点,根据开普勒第二定律可知此时刻卫星具有最小角速度,其后的一周期内其角速度都应不比该值小,所以卫星始终不比太空电梯转动得慢;换言之,太空电梯不可能追上卫星.设想自卫星与太空电梯脱离后经过,卫星到达近地点,而此时太空电梯已转过此(约14小时)1.5T点,这说明在此前卫星尚未追上太空电梯.由此推断在卫星脱落后的0-12小时内二者不可能相遇;而在卫星脱落后12-24小时内卫星将完成两个多周期的运动,同时太空电梯完成一个运动周期,所以在12-24小时内二者必相遇,从而可以实现卫星回收. 2.根据题意,卫星轨道与地球赤道相切点和卫星在太空电梯上的脱离点分别为其轨道的近地点和远地点.在脱离处的总能量为1GMmGMm2(11)m(R)x2xxe此式可化为32GM xx(12) 123e e e这是关于的四次方程,用数值方法求解可得R x4(13)4.7 3.010kmxe表示卫星与赤道相切点v【亦可用开普勒第二定律和能量守恒定律求得.令R xe即近地点的速率,则有2eex和 121GMm1GMm22(R)ex2R2R ex由上两式联立可得到方程532GM2GM xxx02323eee其中除外其余各量均已知, 因此这是关于的五次方程. 同样可以用数值方法解得.】RRR xxx卫星从脱离太空电梯到与地球赤道相切经过了半个周期的时间,为了求出卫星运行的周期,设椭圆的半长轴为,半短轴为,有xe (14) 222ex (15)因为面积速度可表示为12(16) sx2所以卫星的运动周期为(17) s代入相关数值可得 h(18) 6.8卫星与地球赤道第一次相切时已在太空中运行了半个周期,在这段时间内,如果地球不转动,卫星沿地球自转方向运行180度,落到西经处与赤道相切. 但由于地球自转,在这(180110)期间地球同时转过了角度,地球自转角速度,因此卫星与地球赤道T/2360/24h15/h相切点位于赤道的经度为西经(19)1801101212即卫星着地点在赤道上约西经121度处. 评分标准:本题23分.第1问16分,第i小问8分,(1)、(2)式各2分,(4)式2分,(5)式和结论共2分.第ii小问8分,(9)、(10)式各2分,说出在0-12小时时间段内卫星不可能与太空电梯相遇并给出正确理由共2分,说出在12-24小时时间段内卫星必与太空电梯相遇并给出正确理由共2分.5%第2问7分,(11)式1分,(13)式2分,(18)式1分,(19)式3分. (数值结果允许有的相对误差)三、 13解法一如图1所示,建直角坐标,轴与挡板垂直,轴与挡板重合. 碰撞前体系质心的速xy Oxy,方向沿x轴正方向,以表示系统的质心,以和表示碰撞后质心的速度分量,vPvv度为Py0Px表示墙作用于小球的冲量的大小. 根据质心运动定理有 JC (1)(2)由(1)和(2)式得(3)Px3m (4)可在质心参考系中考察系统对质心的角动量. 在球 O C x 与挡板碰撞过程中,质心的坐标为(5)(6)l P3CP球碰挡板前,三小球相对于质心静止,对质心的角C C 动量为零;球碰挡板后,质心相对质心参考系仍是C静止的,三小球相对质心参考系的运动是绕质心的转动,若转动角速度为,则三小球对质心的角动量P图(7)式中、和分别是、和三球到质ABClllAPBPCP心的距离,由图1可知(8)cos sin(9)sin(10)CP9由(7)、(8)、(9)和(10)各式得(11)3在碰撞过程中,质心有加速度,质心参考系是非惯性参考系,在质心参考系中考察动力学问题时,必须引入惯性力. 但作用于质点系的惯性力的合力通过质心,对质心的力矩等于零,不影响质点系对质心的角动量,故在质心参考系中,相对质心角动量的变化仍取决于作用于球C的冲量的冲量矩,即有(12)3【也可以始终在惯性参考系中考察问题,即把桌面上与体系质心重合的那一点作为角动量的参考点,则对该参考点(12)式也成立】由(11)和(12)式得 14 sin球相对于质心参考系的速度分量分别为(参考图1)CP球相对固定参考系速度的x分量为 C (16)由(3)、(6)、(13)和(16)各式得 J (17)Cx02根据题意有 (18)由(17)和(18)式得 2 (19)由(13)和(19)式得(20) l 球若先于球与挡板发生碰撞,则在球与挡板碰撞后,整ABC 个系统至少应绕质心转过角,即杆至少转到沿y 方向,如图2所示. 系统绕质心转过所需时间(21) 在此时间内质心沿x 方向向右移动的距离 B (22)若 (23)则球先于球与挡板碰撞. 由(5)、(6)、(14)、(16)、(18)、BA (21)、(22)和(23)式得 图2 3 (24)即(25) 评分标准: 本题25分.(1)、(2)、(11)、(12)、(19)、(20)式各3分,(21)式1分,(22)、(23)式各2分.(24)或(25)式2分. 15解法二 如图1所示,建直角坐标系,轴与挡板垂直,x Oxy y v 、、、、和 分vvvvvv 以轴与挡板重合,vy AyByCyAxBxCxAyBy 别表示球与挡板刚碰撞后、和三球速度的分量,ABCC vv B A O 根据题意有 AxBxx (1) v Cy 以表示挡板作用于球的冲量的大小,其方向沿轴x J C 的负方向,根据质点组的动量定理有 C(2)(3)图1 AyByCy以坐标原点为参考点,根据质点组的角动量定理有(4)因为连结小球的杆都是刚性的,故小球沿连结杆的速度分量相等,故有(5)(6)(7)(7)式中为杆与连线的夹角. 由几何关系有(8)(9)解以上各式得(10)(11)(12)(13)16(14)0By(15)cosCy0按题意,自球与挡板碰撞结束到球(也可能球)碰撞挡板墙前,整个系统不受外力作用,ABC系统的质心作匀速直线运动. 若以质心为参考系,则相对质心参考系,质心是静止不动的,、A和三球构成的刚性系统相对质心的运动是绕质心的转动. 为了求出转动角速度,可考察球BCB相对质心的速度.由(11)到(15)各式,在球与挡板碰撞刚结束时系统质心的速度2(16) 2vv AxBxCx sin Px03m 3AyByCy (17) 0 Py3m 这时系统质心的坐标为(18) cosP1 (19)sin P3不难看出,此时质心正好在球的正下方,至球的距离为,而球相对质心的速度 y PBBBP 12(20) sin BPxBxPx03 (21) 0BPy 可见此时球的速度正好垂直,故整个系统对质心转动的角速度 B BP (22) ylP 若使球先于球与挡板发生碰撞,则在球与挡板ABC y 碰撞后,整个系统至少应绕质心转过角,即杆至少ABπ/2转到沿y 方向,如图2所示. 系统绕质心转过所需时间 π/2 A 1π 2 (23)x O 在此时间内质心沿x 方向向右移动的距离 P B(24)Px 若 C (25) PP 17 图2则球先于球与挡板碰撞. 由以上有关各式得(26)即(27) 评分标准: 本题25分. (2)、(3)、(4)、(5)、(6)、(7)式各2分,(10)、(22)式各3分,(23)式1分,(24)、(25)式各2分,(26)或(27)式2分. 四、 参考解答: 1.虚线小方框内2n 个平行板电容器每两个并联后再串联,其电路的等效C 电容满足下式 t11n (1) C2Ct1即 2C (2) t1n 式中 S(3)虚线大方框中无限网络的等效电容满足下式 C t2(4)即 C (5)t22整个电容网络的等效电容为 CC2Ct1t2 (6)等效电容器带的电量(即与电池正极连接的电容器极板上电量之和)(7)当电容器a两极板的距离变为2d后,2n个平行板电容器联成的网络的等效满足下式电容C t1(8)由此得(9)t1整个电容网络的等效电容为(10)整个电容网络的等效电容器带的电荷量为(11)在电容器a两极板的距离由d变为2d后,等效电容器所带电荷量的改变为(12)电容器储能变化为(13)在此过程中,电池所做的功为(14)(3外力所做的功为(15)设金属薄板插入到电容器a后,a的左极板所带电荷量为,金属薄板左侧带电荷量为,右侧带电荷量为,a的右极板带电荷量为,与并联的电容器左右两极板带电荷量分别为和.由于电容器a和与其并联的电容器两极板电压相同,所以有(16)SSC由(2)式和上式得(17)d上式表示电容器a左极板和与其并联的电容器左极板所带电荷量的总和,也是虚线大方框中无限网络的等效电容所带电荷量(即与电池正极连接的电容器的C t2极板上电荷量之和). 整个电容网络两端的电压等于电池的电动势,即 19(18)(1)c2CC t2将(2)、(5)和(17)式代入(18)式得电容器a左极板带电荷量(5)(2)(19)(313)2kd(313)d评分标准:本题21分. 第1问13分,(2)式1分,(5)式2分,(6)、(7)、(10)、(11)、(12)式各1分,(13)式2分,(14)式1分,(15)式2分. 第2问8分,(16)、(17)、(18)、(19)式各2分. 五、参考解答: c a 如图1所示,当长直金属杆在ab位置以速度水平v向右滑动到时,因切割磁力线,在金属杆中产生由b指向a的感应电动势的大小为ll 1 2 (1)式中为金属杆在ab位置时与大圆环两接触点间的长LII 1 2 度,由几何关系有2222R(2)111100在金属杆由ab位置滑动到cd位置过程中,金属杆与大 b d 圆环接触的两点之间的长度可视为不变,近似为.2RL1图 1 将(2)式代入(1)式得,在金属杆由ab滑动到cd过程中感应电动势大小始终为(3)1以、和分别表示金属杆、杆左和右圆弧中的电流,方向如图1所示,以表示a、b两IIIU21ab端的电压,由欧姆定律有(4)ab110 (5)ab220式中,和分别为金属杆左、右圆弧的弧长.根据提示,和中的电流在圆心处产生的磁感llll1212应强度的大小分别为Il11 (6)1m2R1Il22(7)2m2R1方向竖直向上,方向竖直向下.BB12由(4)、(5)、(6)和(7)式可知整个大圆环电流在圆心处产生的磁感应强度为 20(8)无论长直金属杆滑动到大圆环上何处,上述结论都成立,于是在圆心处只有金属杆的电流I所产生磁场. 在金属杆由ab滑动到cd的过程中,金属杆都处在圆心附近,故金属杆可近似视为无限长直导线,由提示,金属杆在ab位置时,杆中电流产生的磁感应强度大小为 2I (9)3mR1100方向竖直向下.对应图1的等效电路如图2,杆中的电流 a(10)IIIRR 1 2 右左右左左右其中为金属杆与大圆环两接触点间这段金属杆的电阻,R R R左ab 和分别为金属杆左右两侧圆弧的电阻,由于长直金属杆非R右常靠近圆心,故 b (11)图 2 ab111右左利用(3)、(9)、(10)和(11)式可得v800kBm (12)3由于小圆环半径,小圆环圆面上各点的磁场可近似视为均匀的,且都等于长直金属杆在圆心处产生的磁场. 当金属杆位于ab处时,穿过小圆环圆面的磁感应通量为(13)当长直金属杆滑到cd位置时,杆中电流产生的磁感应强度的大小仍由(13)式表示,但方向相反,故穿过小圆环圆面的磁感应通量为(14)在长直金属杆以速度从ab移动到cd的时间间隔内,穿过小圆环圆面的磁感应通量的v改变为(15)由法拉第电磁感应定律可得,在小圆环中产生的感应电动势为大小为(16)在长直金属杆从ab移动cd过程中,在小圆环导线中产生的感应电流为(17)于是,利用(12)和(17)式,在时间间隔内通过小环导线横截面的电荷量为(18)i评分标准:本题25分. (3)式3分,(4)、(5)式各1分,(8)、(10)式各3分,(12)式3分, (15)式4分,(16)、(17)式各2分,(18)式3分. 六、参考解答: nn设重新关闭阀门后容器A中气体的摩尔数为,B中气体的摩尔数为,12则气体总摩尔数为(1) 12把两容器中的气体作为整体考虑,设重新关闭阀门后容器A中气体温度为,B中气体温度为,重新关闭阀门之后与打开阀门之前气体内能的变化可表12示为(2)由于容器是刚性绝热的,按热力学第一定律有(3) pV令表示容器A的体积, 初始时A中气体的压强为,关闭阀门后A中气体压强为,由理想气体状态方程可知 1pV (4)(5)由以上各式可解得由于进入容器B中的气体与仍留在容器A中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A中的那部分气体经历了一个绝热Vp过程,设这部分气体初始时体积为(压强为时),则有10(6) 11011 22利用状态方程可得(7)由(1)至(7)式得,阀门重新关闭后容器B中气体质量与气体总质量之比RC(8)Rn评分标准:本题15分. (1)式1分,(2)式3分,(3)式2分,(4)、(5)式各1分,(6)式3分,(7)式1分,(8)式3分. 七、答案与评分标准: 1. 19.2 (4分,填19.0至19.4的,都给4分) 10.2 (4分,填10.0至10.4的,都给4分) 2. 20.3 (4分,填20.1至20.5的,都给4分) 4.2 (4分,填4.0至4.4的,都给4分) 八、参考解答:在相对于正离子静止的参考系S中,导线中的正离子不动,导电电子以速向下匀速运动;在相对于导电电子静止的参考系中,导线中导电电子不动,v度0向上匀速运动.下面分四步进行分析. v正离子以速度第一步,在参考系中,考虑导线2对导线1中正离子施加电场力的大小和方向.若S系中一些正离子所占据的长度为,则在系中这些正离子所占据的长l,由相对论中的长度收缩公式有度变为(1),由于离子设在参考系S和中,每单位长度导线中正离子电荷量分别为和的电荷量与惯性参考系的选取无关,故(2)由(1)和(2)式得(3)设在S系中一些导电电子所占据的长度为,在系中这些导电电子所占据l,则由相对论中的长度收缩公式有的长度为(4)同理,由于电子电荷量的值与惯性参考系的选取无关,便有(5)分别为在参考系S和中单位长度导线中导电电子的电荷量. 式中,和在参照系中,导线2单位长度带的电荷量为(6)它在导线1处产生的电场强度的大小为(7)q电场强度方向水平向左.导线1中电荷量为的正离子受到的电场力的大小为(8)电场力方向水平向左第二步,在参考系中,考虑导线2对导线1中正离子施加磁场力的大小和向上运动的正离子形成的电流为 v方向.在参考系中,以速度(9)导线2中的电流在导线1处产生磁场的磁感应强度大小为(10)磁感应强度方向垂直纸面向外.导线1中电荷量为的正离子所受到的磁场力的大小为 2v(11)方向水平向右,与正离子所受到的电场力的方向相反. 第三步,在参考系S中,考虑导线2对导线1中正离子施加电场力和磁场力的大小和方向.由题设条件,导线2所带的正电荷与负电荷的和为零,即(12)因而,导线2对导线1中正离子施加电场力为零(13)注意到在S系中,导线1中正离子不动(14)导线2对导线1中正离子施加磁场力为零(15)式中,是在S系中导线2的电流在导线1处产生的磁感应强度的大小.于是,B在S系中,导线2对导线1中正离子施加电场力和磁场力的合力为零. 第四步,已说明在S系中导线2对导线1中正离子施加电场力和磁场力的合力为零,如果导线1中正离子还受到其他力的作用,所有其它力的合力必为零(因为正离子静止).在系中,导线2对导线1中正离子施加的电场力和磁场力的合力的大小为因为相对系,上述可能存在的其它力的合力仍应为零,而正离子仍处在勻速运动状态,所以(16)式应等于零,故(17)由(8)、(11)和(17)式得 k2e (18)km 评分标准:本题18分. (1)至(18)式各1分. 26。
全国中学生高中物理竞赛集锦(力学)答案

T0-mg=ma(15)
T0=2T(16)
由(14)、(15)和(16)式得
(17)
托盘的加速度向上,初速度v2向下,设经历时间t2,托盘速度变为零,有
v2=at2(18)
由(7)、(12)、(17)和(18)式,得
(19)
即砝码1自与弹簧分离到速度为零经历的时间与托盘自分离到速度为零经历的时间相等。由对称性可知,当砝码回到分离位置时,托盘亦回到分离位置,即再经历t1,砝码与弹簧相遇。题中要求的时间
(23)
评分标准:本题20分。
第一小问13分:求得式(15)、(16)各3分,式(17)2分,求得式(19)并说明“ ”取“+”的理由给5分。第二小问7分:式(20)2分,式(22)2分,式(23)3分。
第二十届复赛
三、参考解答
位于通道内、质量为 的物体距地心 为 时(见图复解20-3),它受到地球的引力可以表示为
(1)
(2)
因而
(3)
由能量守恒
(4)
由(3)、(4)两式及mB=2mA得
(5)
(6)
评分标准:
本题(15)分.(1)、(2)式各3分,(4)式5分,(5)、(6)两式各2分。
九、设从烧断线到砝码1与弹簧分离经历的时间为△t,在这段时间内,各砝码和砝码托盘的受力情况如图1所示:图中,F表示△t时间内任意时刻弹簧的弹力,T表示该时刻跨过滑轮组的轻绳中的张力,mg为重力,T0为悬挂托盘的绳的拉力。因D的质量忽略不计,有
要求作斜抛运动的摆球击中 点,则应满足下列关系式:
,(5)
(6)
利用式(5)和式(6)消去 ,得到
(7)
由式(3)、(7)得到
(8)
第31届全国中学生物理竞赛复赛试题及答案(归档整理)

第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是 [][]-=f t 1③ [][]=r l ④ [][][]ρ-=m l 3⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132即[][][][]αββγγ--+-=t l m t 132 ⑦由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩解为311,,222αβγ=-=-=⑪将⑪式代入①式得 =f 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s-1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③[]m =r ④[]kg m ρ-=⋅3⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨21γ= ⑩ 解为311,,222αβγ=-=-=⑪将⑪式代入①式得f =⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为ff =f ∝2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④此即lnln ii fp p p p γ= ⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)i f ih h h h h h γ+=+-+ ⑧利用近似关系式:1, ln(1)x x x +≈当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==-- ⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T ①00bc://=f p T p T ②由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③此即lnln i i fp p p p γ= ④由力学平衡条件有0i i p p gh ρ=+ ⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)i f ih h h h h h γ+=+-+ ⑦利用近似关系式:1, ln(1)x x x +≈当,以及 00/1, /1i f h h h h ,有 000///i ii f i fh h h h h h h h h γ==-- ⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分. 三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N , (,0,0)2b-式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A Bx0=+=∑xxF N N ①A B sin 0ϕ=++-=∑yyyF Q N N mg② A B cos 0ϕ=+-=∑z z zF N N mg ③ 0sin 0x M mgh Q z ϕ=-⋅=∑ ④B A 022=-=∑y z z b bM N N⑤ 0A B 022z y yb bM Q x N N =⋅+-=∑⑥ 联立以上各式解得sin mgh Q z ϕ=,A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z z N N mg ϕ== 即0M 0sin (0,,0)mgh z ϕ=Q , ⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N , ⑧ 0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩ M 点移动的起始位置为0M ,由⑩式得 00022-=-b x b x z z z z⑪或00022b x b x zz z ⎛⎫-=- ⎪⎝⎭ ⑫ 这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为 .此时与速率v 对应的指向中心C 的小球加速度大小为21a R=v①同时,对应于圆环角速度,指向OO 轴的小球加速度大小为2(sin )sin R a R ωωθθ= ②该加速度的指向中心C 的分量为22(sin )sin R a a Rωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤ 在小球下滑至角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度0和转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在角位置处取角度增量,圆心角所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上角位置到竖直轴OO 的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨[或:由转动惯量的定义可知圆环绕竖直轴OO 的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为CRzl r2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬ 根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m g m m ⑮ 式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有20020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得=v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分. 五、(20分) (1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =,10cm f =,代入透镜成像公式111u f+=v ①得像距为20cm =v ② 其横向放大率为1uβ=-=-v③ 可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样.(2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm,利用两个相似三角形CRR'∆与CBB'∆的关系,得CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE 相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有620DR'=cm, DE'=cm, EE'=2.5cm,77ACOBB'CRBR'B'利用两个相似三角形DRR'∆与DEE'∆的关系,得 DR'20/72RR'=EE'= 2.5cm 0.75cm DE'20/7ar -=⨯⨯= ⑤ 可见当圆形光阑半径a r =,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm 处,则当圆形光阑半径逐渐减小时,圆盘像的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分; 第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)固定金属板和可旋转金属板之间的重叠扇形的圆心角 的取值范围为00θθθ-≤≤.整个电容器相当于2N 个相同的电容器并联,因而1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200012(), 2()12(2), 2θθθθπθθθππθθθ⎧⨯--≤≤-⎪⎪=⎨⎪⨯--<<⎪⎩R A R 当当③由②③式得200012000(), 4()(2), 4θθθθπθπθθππθθθπ⎧--≤≤-⎪⎪=⎨-⎪-<<⎪⎩R ksC R ks当当④由①④式得DRER' E'20002000(), 2()(2),2θθθθπθπθθππθθθπ⎧--≤≤-⎪⎪=⎨-⎪-<<⎪⎩NR ks C NR ks 当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max 2NR C ksθπ=⑦ 充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max 2NR Q E ksθπ=⑧ 断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当 ⑨ 设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T F r F l U ⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当0 2πθθ==时, ()θT 发散,这表明所用的平行板电容公式需要修改.当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks⑫(3)当0cos V V t ω=,则其电容器所储存能量为[]222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-, ⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-, ⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m i B k r=①由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋.两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆= ②考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆==④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤其方向指向轴心.(2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥图(a)圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆ ⑦由于1N ,有22(1)-=N N i I 内⑧由⑦⑧式得224π=m k I P r 内⑨代入题给数据得1221.0210N/m P =⨯⑩一个大气压约为5210N/m ,所以710atm P ≈⑪即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫式中,因此有1212=mm I I k k l l⑬即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=mI B k R内⑭方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2) + 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R⑯若要求2222244ππ+>外内外内()m m k I I I k I R r ⑰只需满足222222 = ++<外内外内I I I R M NMr I N ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点的距离之比34/l l :333444I L l I L l == ⑲式中,33CL l =,44CL l =,CO l =. 由此得33443434I I I I l l l l +==+ ⑳考虑到磁场分布的对称性,全部电流在C 点的磁感应强度应与CO 垂直. 穿过3L 和4L 段的电流在C 点产生的磁感应强度的垂直于CO 的分量之和为3344C 3434cos cos 2cos mm m I I I IB k k k l l l l θθθ+=+=+ ○21○21 设过C 点所作的直线34CL L 与直线CO 的夹角为θ,直线34CL L 与圆的半径4OL 的夹角为α(此时,将微小弧元视为点). 由正弦定理有34sin()sin sin()l l l αθααθ==-+○22○22 式中,3OCL θ=,4CL O α=. 于是343434C 342cos 2sin cos [sin()sin()]m m m I I I I I I B k k k l l l lθαθαθαθ+++===+++- ○23○23 即穿过两段微小圆弧的电流3I 和4I 在C 点产生的磁场沿合磁场方向的投影等于3I 和4I 移至圆柱轴在在C点产生的磁场.整个圆周可以分为许多“对”这样的圆弧段,因此沿柱轴通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,mI B k l r l=>内○24○24 方向垂直于C 点与圆心O 的连线,满足右手螺旋法则.评分标准:本题26分.第(1)问6分,②③式各1分,④式2分,⑤式1分,方向1分;第(2)问6分,⑥~⑪式各1分;第(3)问3分,⑫⑬式各1分,对称性分析正确1分;第(4)问6分,⑮⑯各2分,⑰⑱式各1分;第(5)问5分,⑲○21○21○22○23○24式各1分. 八、(20分)(1)由题给条件,观察到星系的谱线的频率分别为1414.54910Hz ν'=⨯和142 6.14110Hz ν'=⨯,它们分别对应于在实验室中测得的氢原子光谱的两条谱线1和2.由红移量z 的定义,根据波长与频率的关系可得νννννν''--==''112212z①式中,ν'是我们观测到的星系中某恒星发出的频率,而是实验室中测得的同种原子发出的相应的频率. 上式可写成11221111(1),(1)νννν=+=+'' z z由氢原子的能级公式2=n E E n , ②得到其巴耳末系的能谱线为00222ν=-E E h n ③由于z 远小于1,光谱线红移后的频率近似等于其原频率.把1ν'和2ν'分别代入上式,得到这两条谱线的相应能级的量子数1234≈≈≈≈, n n ④从而,证实它们分别由n=3和4向k =2的能级跃迁而产生的光谱,属于氢原子谱线的巴尔末系.这两条谱线在实验室的频率分别为14012211() 4.56710Hz 23=--=⨯E v h , 14022211() 6.16610Hz 24=--=⨯E v h 根据波长与频率的关系可得,在实验室中与之相对应的波长分别是12656.4nm 486.2nm λλ==, ⑤(2)由①式可知1122121()0.00402νννννν''--=+=''z ⑥由于多普勒效应,观测到的频率νν'=因为vc ,推导得z = v /c从而,该星系远离我们的速度大小为860.0040 2.99810 m/s 1.210 m/s v ==⨯⨯=⨯zc ⑦(3)由哈勃定律,该星系与我们的距离为641.210 Mpc 18Mpc 6.78010v D H ⨯===⨯ ⑧评分标准:本题20分. 第(1)问14分,①式2分,③④⑤式各4分;第(2)问4分,⑥⑦式各2分;第(3)问2分,⑧式2分. (有效数字位数正确但数值有微小差别的,仍给分)。
第19届全国中学生物理竞赛复赛试题与解答

第十九届全国中学生物理竞赛复赛试卷地、市题号-一- -二二三四五六七总计学校姓名一、(20分)某甲设计了一个如图复19-1所示的“自动喷泉”装置,其中A、B、C为三个容器,D、E、F为三根细管。
管栓K 是关闭的。
A、B、C及细管均盛有水,容器水面的高度差分别为h i和h2,如图所示。
A、B、C的截面半径为12cm ,D的半径为0.2cm .甲向同伴乙说:“我若拧开管栓K,会有水从细管口喷出。
”乙认为不可能。
理由是:“低处的水自动走向高处,能量从哪儿来?”甲当即拧开K,果然见到有水喷出,乙哑口无言,但不能明白自己的错误何在。
甲又进一步演示。
在拧开管栓K前,先将喷管D的上端加长到足够长,然后拧开K ,管中水面即上升,最后水面静止于某个高度。
1 •论拧开K后水柱上升的原因。
2•当D管上端足够长时,求拧开K后D中静止水面与A中水面的高度差。
3 •论证水柱上升所需的能量来源。
性别现读年级准考证号全卷共七题,总分为140分。
二、(18分)在图复19-2中,半径为R的圆柱形区域内有匀强磁场,磁场方向垂直图面指向纸外,磁感强随时间均匀变化,变化率△ B/ △ t = K (K为一正值常数)。
圆柱形区域外空间中没有磁场。
沿图中AC弦的方向画一直线,并向外延长,弦AC与半径OA的夹角a = n /4。
直线上有一任意点,设该点与A点的距离为x,求从A沿直线到该点的电动势大小。
三、(18分)如图复19-3所示,在水平光滑的绝缘桌面上,有三个带正电的质点1、2、3 ,位于边长为L的等边三角形的三个顶点处,C为三角形的中心。
三个质点的质量皆为m,带电量皆为q。
质点1、3之间和2、3之间用绝缘的轻而细的刚性杆相连,在3的连接处为无摩擦的铰链。
已知开始时三个质点的速度为零,在此后运动过程中,当质点3运动到C处时,其速度为多少?1卜1LJC •\>31L2图复19-3得分四、(18分)有人设计了下述装置用以测量线圈的自感系数。
第37届全国中学生物理竞赛复赛试题解析,附试卷及答案

总评这套题作为复赛题的难度还是比较大的。
从这套题我们大概可以看出来,计算量增大、基础知识向大学普通物理靠拢(甚至直接用普通物理作为最底层的基础)、微积分作为最基本的数学工具、题目模型直接采用现实科研前沿模型已经成为物理竞赛的趋势。
这一套题从题型、模型新颖程度、计算量和阅读分析能力上来看逐渐向国际比赛的风格靠拢,是一套非常优秀的考题(虽然对于基础不扎实的考生来说并不友好)。
第一题热学题,采用了现实生活中的装置作为模型,比较考验抽象出模型的能力。
该题计算量较大,加上需要自己理解模型,对于未经过此类建模计算题目训练的同学难度较大。
较有区分度。
第二题这套卷子为数不多的较为常规的题目。
第一问考察刚体的动力学,第二题运动学分析。
考查基础知识,对刚体力学基础扎实的同学来说应该不难。
但要注意计算的仔细程度,第二问的运动学量矢量运算稍显复杂。
第三题考察交流电路系统。
需要对交流电路的微分方程有一个扎实的基础知识。
虽然这道题给出了解的形式降低了一部分难度,但是具体的计算量还是较大的。
对于理解谐振系统的解的物理意义的要求也很高。
同时交流电也是一个冷门考点,如果考生在备赛的时候忽略了这一部分知识的复习,那么这道题拿到高分的希望渺茫。
第四题基础的高能粒子物理题目。
回旋加速器应该是很常见的模型,具体原理应该要求考生掌握。
这套卷子中的常规送分题目,要把握好。
第五题相对论题目,内容比较基础,但涉及到繁杂的参照系变换。
对于在平时学习中弄不清参照系变换的考生有极大的考验。
并且由于过程繁杂,这道题对考生的细心程度和阅读理解能力造成了了不小的考验。
第六题光学题,并且和相对论结合。
这道题的模型和科研前沿结合较为紧密,并考察了光在介质中的传播的相对论变换。
计算量相对不大,但对于平时只练习常规题目的考生来说是个很大的挑战。
第七题引力波。
这直接用了近年来的科研最前沿的模型。
但冷静分析后在这道题里面引力波只是一个“能量损失的原因”,并不需要分析引力波的具体物理机制。
2023年全国中学生物理竞赛复赛试题参考解答

全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
全国物理竞赛复赛试题

1、一个物体在光滑的水平面上以初速度v₀做匀速直线运动,突然受到一个与运动方向相同的恒力作用,则物体将A、继续做匀速直线运动B、速度增大,做匀加速直线运动C、加速度减小,做变加速直线运动D、速度减小,做匀减速直线运动(答案)B。
解析:物体在光滑水平面上原本做匀速直线运动,说明合力为零。
当受到一个与运动方向相同的恒力作用时,合力不再为零,且合力方向与运动方向相同,因此物体会做匀加速直线运动,速度增大。
2、关于光的折射现象,下列说法正确的是A、光从一种介质进入另一种介质时,传播方向一定改变B、光从一种介质进入另一种介质时,速度的改变量与入射角有关C、光从光密介质射入光疏介质时,若入射角大于临界角,则会发生全反射D、光从光疏介质射入光密介质时,折射角总是小于入射角(答案)D。
解析:A选项错误,因为当光线垂直界面入射时,传播方向不变。
B选项错误,光在介质中的速度由介质的折射率决定,与入射角无关。
C选项错误,应该是光从光密介质射入光疏介质时,若入射角大于或等于临界角,才会发生全反射。
D选项正确,根据折射定律,光从光疏介质射入光密介质时,折射角总是小于入射角。
3、在静电场中,下列说法中正确的是A、电势为零的点,电场强度也一定为零B、电场强度的方向处处与等势面垂直C、由静止释放的正电荷,仅在电场力作用下的运动轨迹一定与电场线重合D、电场中任一点的电场强度的方向总是指向该点电势降落的方向(答案)B。
解析:A选项错误,电势是相对的,可以人为规定某点为电势零点,但电场强度是由电场本身决定的,两者无必然联系。
B选项正确,电场强度的方向是电势降低最快的方向,因此与等势面垂直。
C选项错误,只有当电场线是直线,且电荷初速度为零或初速度方向与电场线方向相同时,电荷的运动轨迹才与电场线重合。
D选项错误,电场强度的方向是电势降低最快的方向,但不一定是电势降低的方向。
4、关于简谐振动,下列说法正确的是A、简谐振动的加速度大小与位移大小成正比,方向总与位移方向相同B、简谐振动的周期与振幅无关,仅由系统本身的性质决定C、物体做简谐振动时,经过相同的位移,速度大小一定相同D、物体做简谐振动时,速度减小时,加速度一定减小(答案)B。
物理竞赛1-35届真题分类02力学(无答案)

真题分类--力学(17初赛)二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。
一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。
将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。
物块在桌面上运动时,绳将缠绕在立柱上。
已知当绳的张力为0 2.0NT =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .(15届复赛)二、(25分)如图2所示,有两条位于同一坚直平面内的水平轨道,相距为h 。
轨道上有两个物体A 和B ,它们通过一根绕过定滑轮O 的不可伸长的轻绳相连接。
物体A 在下面的轨道上以匀速率v 运动。
在轨道间的绳子与轨道成300角的瞬间,绳子BO 段的中点处有一与绳相对静止的小水滴P 与绳子分离,设绳长BO 远大于滑轮直径,求:1、小水滴P 脱离绳子时速度的大小和方向。
2、小水滴P 离开绳子落到下面轨道所需要的时间。
(18届复赛)六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分1G 的质量为1m ,下部分2G 的质量为2m ,弹簧夹在1G 与2G 之间,与二者接触而不固连.让1G 、2G 压紧弹簧,并将它们锁定,此时弹簧的弹性势能为己知的定值0E .通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这—释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分1G 升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h 的时刻解除锁定.1.在第一种方案中,玩具的上部分1G 升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化来的?2.在第二种方案中,玩具的上部分1G 升空可能达到的最大高度(亦从井口算起)为多少?并定量地讨论其能量可能是从何种形式的能量转化来的.(19届复赛)七、(26分)一根不可伸长的细轻绳,穿上一粒质量为m 的珠子(视为质点),绳的下端固定在A 点,上端系在轻质小环上,小环可沿固定的水平细杆滑动(小环的质量及与细杆摩擦皆可忽略不计)。
21---30届全国物理竞赛力学部分复赛试题

(第20届全国中学生物理竞赛复赛题)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?己知M=20m,地球半径0R =6400 km.假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的.(第20届全国中学生物理竞赛复赛题)有一半径为R的圆柱A,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A相同,半径为r的较细圆柱B,用手扶着圆柱A,将B 放在A的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B与墙面间的静摩擦系数和圆柱B的半径r的值各应满足什么条件?(第20届全国中学生物理竞赛复赛题)如图所示,将一铁饼状小物块在离地面高为h 处沿水平方向以初速v 抛出.己知物块碰地弹起时沿竖直方向的分速度的大小与碰前沿竖直方向的分速度的大小之比为e (<1).又知沿水平方向物块与地面之间的滑动摩擦系数为μ(≠0):每次碰撞过程的时间都非常短,而且都是“饼面”着地.求物块沿水平方向运动的最远距离.(第21届全国中学生物理竞赛复赛题)二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.已知轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测定太空中某星体与地心在某时刻的距离.(最后结果要求用测得量和地球半径R 表示)(第21届全国中学生物理竞赛复赛题)如图所示,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上(图中纸面),A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式”的(不能对小球产生垂直于杆方向的作用力).已知杆AB 与BC 的夹角为 ,< /2.DE 为固定在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,已知在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.(第22届全国中学生物理竞赛复赛题)图中的AOB 是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R 的1/4圆周连接而成,它们的圆心1O 、2O 与两圆弧的连接点O 在同一竖直线上.B O 2沿水池的水面.一小滑块可由弧AO 的任意点从静止开始下滑. 1.若小滑块从开始下滑到脱离滑道过程中,在两个圆弧上滑过的弧长相等,则小滑块开始下滑时应在圆弧AO 上的何处?(用该处到1O 的连线与竖直线的夹角表示).2.凡能在O 点脱离滑道的小滑块,其落水点到2O 的距离如何?O 1O 2O ABABCπ-αDE(第22届全国中学生物理竞赛复赛题) 如图所示,在一个劲度系数为 k 的轻质弹簧两端分别拴着一个质量为 m 的小球A 和质量为 2m 的小球B .A 用细线拴住悬挂起来,系统处于静止状态,此时弹簧长度为l .现将细线烧断,并以此时为计时零点,取一相对地面静止的、竖直向下为正方向的坐标轴Ox ,原点O 与此时A 球的位置重合如图.试求任意时刻两球的坐标.(第23届全国中学生物理竞赛复赛题)有一竖直放置、两端封闭的长玻璃管,管内为真空,管内有一小球自某处自由下落(初速度为零),落到玻璃管底部时与底部发生弹性碰撞.以后小球将在玻璃管内不停地上下跳动。
2012年第29届全国中学生物理竞赛复赛试题+答案与评分标准(word版)..

b r r rrbr r r'gbr r(0)X b r r¢=- (11) (0)0V = (12) 由(8)至(12)式可求得A b rr¢= (13) j =p (14) 将(10)、(13)和(14)式分别代人(8)和(9)式得()()cos X t b t rw r ¢=+p (15) ()()sin V t gb t r w r¢=-+p (16) 由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在x 系中看,物块下底面坐标为b 时,物块刚好被完全浸没;由(5)式知在X 系中这一临界坐标值为b 1X X b r r ¢æö==-ç÷èø (17)即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下b X 处. 注意到在振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠A ,下面分两种情况讨论:I .b A X £. 由(13)和(17)两式得r r ¢³2 (18) 在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期 22b T gr wr ¢p ==p(19)物块从初始位置出发往返一次所需的时间从初始位置出发往返一次所需的时间I 2bt T gr r ¢==p(20) II .bA X >. 由(13)和(17)两式得2r r ¢< (21) 在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下. 设从初始位置起,经过时间1t 物块刚好全部浸入湖水中,这时()1b X t X =. 由(15)和(17)式得()1cos 1t r r w rr¢¢+p =-(22) 取合理值,有1arccos 1b t g r r p r r éù¢æö=--êúç÷¢èøëû(23) 由上式和(16)式可求得这时物块的速度为21()1-1V t g b rr r r ¢æö=--ç÷¢èø(24) 此后,物块在液体内作匀减速运动,以a ¢表示加速度的大小,由牛顿定律有a g r r r ¢-¢=¢ (25) 设物块从刚好完全浸入湖水到速度为零时所用的时间为2t ,有()120V t a t ¢-= (26) 由(24)-(26)得2211()b t g rr r r r r r ¢¢æö=--ç÷¢¢-èø(27) 物块从初始位置出发往返一次所需的时间为2II 1222()2arccos 111()b b t t t g g r rr r rp r r r r r r éù¢¢¢æöæö=+=--+--êúç÷ç÷¢¢¢-èøèøëû (28)评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分. 二、参考答案: 1. i.i.通通过计算卫星在脱离点的动能和万有引力势能可知,卫星的机械能为负值. 由开普勒第一定律可推知,此卫星的运动轨道为椭圆(或圆),地心为椭圆的一个焦点(或圆的圆心),如图所示.由于卫星在脱离点的速度垂直于地心和脱离点的连线,因此脱离点必为卫星椭圆轨道的远地点(或近地点);设近地点(或远地点)离地心的距离为r ,卫星在此点的速度为v .由开普勒第二定律可知()20.80r R w v = (1)式中e (2/)T w p =为地球自转的角速度.令m 表示卫星的质量,根据机械能守恒定律有R0.80R ab()222110.80220.80GMm GMm m mR r Rw -=-v (2) 由(1)和(2)式解得0.28r R » (3)(3)可可见该点为近地点,而脱离处为远地点. 【(3)式结果亦可由关系式:()2210.800.8020.80GMm GMm m R r R Rw -=-+直接求得】同步卫星的轨道半径R 满足22GM R R w = (4)由(3)(3)和和(4)(4)式式并代入数据得 41.210km r »´ (5) 可见近地点到地心的距离大于地球半径,因此卫星不会撞击地球.ii.ii. 由开普勒第二定律可知卫星的面积速度为常量,从远地点可求出该常量为()2s 10.802R s w =(6) 设a 和b 分别为卫星椭圆轨道的半长轴和半短轴,由椭圆的几何关系有 0.280.802R Ra +»(7) 2220.800.282ba R -æö»-ç÷èø(8) 卫星运动的周期T 为sabT p s = (9) 代人相关数值可求出9.5h T » (10)卫星刚脱离太空电梯时恰好处于远地点,根据开普勒第二定律可知此时刻卫星具有最小角速度,其后的一周期内其角速度都应不比该值小,所以卫星始终不比太空电梯转动得慢;换言之,太空电梯不可能追上卫星.设想自卫星与太空电梯脱离后经过1.5T (约14小时),卫星到达近地点,而此时太空电梯已转过此点,这说明在此前卫星尚未追上太空电梯由此推断在卫星脱落后的0-12小时内二者不可能相遇;而在卫星脱落后12-24小时内卫星将完成两个多周期的运动,同时太空电梯完成一个运动周期,所以在12-24小时内二者必相遇,从而可以实现卫星回收. 2.2.根根据题意,卫星轨道与地球赤道相切点和卫星在太空电梯上的脱离点分别为其轨道的近地点和远地点.在脱离处的总能量为2xx x e 1()2GMm GMm m R R R R w -=-+ (1111)) 此式可化为3x x23e e 21eR R GM R R R w æöæö+=ç÷ç÷èøèø (12)这是关于x R 的四次方程,用数值方法求解可得4x e4.7 3.010km R R »»´ (1313)) 【x R 亦可用开普勒第二定律和能量守恒定律求得.令e v 表示卫星与赤道相切点即近地点的速率,则有2e e x R R w =v和22e x e x11()22GMm GMmm m R R R w -=-v 由上两式联立可得到方程得到方程53x x x 2323e e e 220e eR R R GM GMR R R R R w w æöæö--+=ç÷ç÷èøèø 其中除x R 外其余各量均已知, 因此这是关于x R 的五次方程. 同样可以用数值方法解得x R .】 卫星从脱离太空电梯到与地球赤道相切经过了半个周期的时间,为了求出卫星运行的周期T ¢,设椭圆的半长轴为a ¢,半短轴为b ¢,有,有xe 2R R a +¢= (14) 22xe 2R R b a -æö¢¢=-ç÷èø(15) 因为面积速度可表示为因为面积速度可表示为2s x 12R s w ¢= (16) 所以卫星的运动周期为所以卫星的运动周期为s a b T p s ¢¢¢=¢(17) 代入相关数值可得代入相关数值可得6.8T ¢»h (18) 卫星与地球赤道第一次相切时已在太空中运行了半个周期,在这段时间内,如果地球不转动,卫星沿地球自转方向运行180度,落到西经(180110)°-°处与赤道相切. 但由于地球自转,在这期间地球同时转过了/2T w ¢角度,地球自转角速度360/24h 15/h w =°=°,因此卫星与地球赤道相切点位于赤道的经度为西经赤道相切点位于赤道的经度为西经1801101212T w q ¢=°-°+»° (19) 即卫星着地点在赤道上约西经121度处. 评分标准: 本题23分. 第1问16分,第i 小问8分,(1)、(2)式各2分,(4)式2分,(5)式和结论共2分.第ii 小问8分,(9)、(10)式各2分,说出在0-12小时时间段内卫星不可能与太空电梯相遇并给出正确理由共2分,说出在12-24小时时间段内卫星必与太空电梯相遇并给出正确理由共2分.第2问7分,(11)式1分,分, (13)式2分,(18)式1分,(19)式3分. (数值结果允许有5%的相对误差)的相对误差)三、三、参考解答: 解法一解法一如图1所示,建直角坐标Oxy ,x 轴与挡板垂直,y 轴与挡板重合. 碰撞前体系质心的速度为0v ,方向沿x 轴正方向,轴正方向,以以P表示系统的质心,表示系统的质心,以以Px v 和Pyv 表示碰撞后质心的速度分量,J 表示墙作用于小球C 的冲量的大小. 根据质心运动定理有根据质心运动定理有Px 033J m m -=-v v (1)Py 030m =-v (2)由(1)和()和(22)式得)式得0Px33mv J m-=v (3)Py 0=v (4)可在质心参考系中考察系统对质心的角动量. 在球C 与挡板碰撞过程中,质心的坐标为与挡板碰撞过程中,质心的坐标为P c o s x l a=- (5) P 1s i n 3y l a =- (6)球C 碰挡板前,三小球相对于质心静止,对质心的角动量为零;球C 碰挡板后,质心相对质心参考系仍是静止的,三小球相对质心参考系的运动是绕质心的转动,若转动角速度为w ,则三小球对质心P 的角动量的角动量222AP BP CP L m l m l m l w w w =++ (7)式中AP l 、BP l 和 CP l 分别是A 、B 和C 三球到质心P 的距离,由图1可知可知22222AP 1cos sin 9l l l a a =+ (8)222BP 1sin 9l l a = (9)22222CP 4cos sin 9l l l a a =+ (10)由(由(77)、(8)、(9)和()和(101010)各式得)各式得)各式得222(12cos )3L ml w a =+ (11)在碰撞过程中,质心有加速度,质心参考系是非惯性参考系,在质心参考系中考察动力学问题时,题时,必须引入惯性力必须引入惯性力. 但作用于质点系的惯性力的合力通过质心,但作用于质点系的惯性力的合力通过质心,对质心的力矩等于零,不对质心的力矩等于零,不A BCaOxyP CP lb图1 影响质点系对质心的角动量,故在质心参考系中,相对质心角动量的变化仍取决于作用于球C 的冲量J 的冲量矩,即有的冲量矩,即有 2sin3J l L a = (12)【也可以始终在惯性参考系中考察问题,即把桌面上与体系质心重合的那一点作为角动量的参考点,则对该参考点(12)式也成立】式也成立】由(11)和(12)式得)式得2sin (12cos )J ml aw a =+ (13) 球C 相对于质心参考系的速度分量分别为(参考图1)CPx CP P sin (sin ||)l l y w b w a =-=--v (14) CPy CP cos cos l l w b w a =-=-v (15) 球C 相对固定参考系速度的x 分量为分量为Cx CPx Px =+v v v(16) 由(3)、(6)、(1313)) 和 (1616)各式得)各式得)各式得Cx 02(12cos )J m a =-++v v (17) 根据题意有据题意有0Cx =v (18)由(由(171717)和()和()和(181818)式得)式得)式得20(12cos )J m a =+v (19) 由(1313)和()和()和(191919)式得)式得)式得sin la w =v (20) 球A 若先于球B 与挡板发生碰撞,则在球C 与挡板碰撞后,整个系统至少应绕质心转过p/2角,即杆AB 至少转到沿y方向,如图2所示. 系统绕质心转过p/2所需时间所需时间12t pw = (21) 在此时间内质心沿x 方向向右移动的距离方向向右移动的距离 Px x t D =v (22) 若P P y x x D +> (23) 则球B 先于球A 与挡板碰撞. 由(5)、(6)、(14)、(16)、(18)、(21)、(22)和(23)式得)式得3arctan 1a >+p(24)即36>a (25) 评分标准: 本题25分(1)、(2)、(11)、(12)、(19)、(20)式各3分,(21)式1分,(22)、(23)式各2分.(24)或(25)式2分. x OPAC B 图2 y解法二解法二如图1所示,建直角坐标系Oxy ,x 轴与挡板垂直,y 轴与挡板重合,以Ax v 、Ay v 、Bx v 、By v 、Cx v 和 Cy v 分别表示球C 与挡板刚碰撞后A 、B 和C 三球速度的分量,根据题意有根据题意有Cx 0=v (1) 以J 表示挡板作用于球C 的冲量的大小,其方向沿x 轴的负方向,根据质点组的动量定理有的负方向,根据质点组的动量定理有A xB x 03J m m m-=+-v v v (2) A y By Cy 0m m m =++v v v (3) 以坐标原点O 为参考点,根据质点组的角动量定理有为参考点,根据质点组的角动量定理有()A y By 0sin cos cos cos sin Jl m l l m l m l a a a a a =+++v v v (4) 因为连结小球的杆都是刚性的,故小球沿连结杆的速度分量相等,故有为连结小球的杆都是刚性的,故小球沿连结杆的速度分量相等,故有Ax Bx =v v (5)Cy By Bx sin sin cos a a a =-v v v (6) Ax A y Cy cos sin sin q q q -=-v v v (7)(7)式中q 为杆AB 与连线AC 的夹角. 由几何关系有由几何关系有22cos cos 13cos aq a =+ (8)2sin sin 13cos aq a =+ (9) 解以上各式得解以上各式得20(12cos )J m a =+v (10)2Ax 0sin a =v v (11)A y 0sin cos a a =v v (12)2Bx 0sin a =v v (13) By 0=v (14)Cy 0sin cos a a =-v v (15)ABC C aOxyAyvAx v Bx v By vCy vP图1 按题意,自球C 与挡板碰撞结束到球A (也可能球B )碰撞挡板墙前,整个系统不受外力作用,系统的质心作匀速直线运动. 若以质心为参考系,则相对质心参考系,质心是静止不动的,A 、B 和C 三球构成的刚性系统相对质心的运动是绕质心的转动. 为了求出转动角速度,可考察球B 相对质心的速度相对质心的速度..由(11)(11)到到(15)(15)各式,在球各式,在球C 与挡板碰撞刚结束时系统质心P 的速度的速度2Ax Bx Cx Px 02sin 33m m m m a ++==v v vv v (16)A y By CyPy 03m m m m++==v v v v (17)这时系统质心的坐标为这时系统质心的坐标为P c o s x l a=- (18) P 1sin 3y l a =- (19)不难看出,此时质心P 正好在球B 的正下方,至球B 的距离为P y ,而球B 相对质心的速度相对质心的速度2B P x B x P x 01s i n 3a =-=v v v v (20) BPy0=v (21)可见此时球B 的速度正好垂直BP ,故整个系统对质心转动的角速度,故整个系统对质心转动的角速度0sin BPx P y law ==v v (22)若使球A 先于球B 与挡板发生碰撞,则在球C 与挡板碰撞后,整个系统至少应绕质心转过π/2角,即杆AB 至少转到沿y 方向,如图2所示. 系统绕质心转过π/2所需时间所需时间 1π2t w=(23) 在此时间内质心沿x 方向向右移动的距离方向向右移动的距离Px x t D =v (24) 若P P y x x D +> (25) 则球B 先于球A 与挡板碰撞. 由以上有关各式得由以上有关各式得 3arctan 1a >+p(26) 即36>a (27) 评分标准:本题25分. (2)、(3)、(4)、(5)、(6)、(7)式各2分,(10)、(22)式各3分,(23)式1分,(24)、(25)式各2分,(26)或(27)式2分. xOPAC B 图2 y四、四、参考解答:1.虚线小方框内2n 个平行板电容器每两个并联后再串联,其电路的等效电容t1C 满足下式 t112n C C =(1) 即t12CC n= (2) 式中4S C kdp =(3) 虚线大方框中无限网络的等效电容t 2C 满足下式t 211112248C C C C æö=+++×××ç÷èø(4)即t 22CC =(5)整个电容网络的等效电容为t 1t 2tt 1t 224C C C C C C n ==++ (6)等效电容器带的电量(即与电池正极连接的电容器极板上电量之和)t t (4)2S q C n kdee p ==+ (7)当电容器a 两极板的距离变为2d 后,2n 个平行板电容器联成的网络的等效电容t1C ¢满足下式t111223n C C C -=+¢ (8) 由此得t1631CC n ¢=+ (9)整个电容网络的等效电容为t1t 2tt1t 26313C C C C C C n ¢¢==¢++ (10)整个电容网络的等效电容器带的电荷量为t t 3(313)2S q C n kd ee p ¢¢==+ (11)在电容器a 两极板的距离由d 变为2d后,等效电容器所带电荷量的改变为t t t (313)(4)2S q q q n n kdep ¢D =-=-++ (12)电容器储能变化为e p e e S S 2d x e2211100R R æö-ç÷èøl 2 l 1 I 1 I 2 a b I c d 圆环接触的两点之间的长度L 可视为不变,近似为12R .将(2)式代入(1)式得,在金属杆由ab 滑动到cd 过程中感应电动势大小始终为过程中感应电动势大小始终为12BR e =v (3) 以I 、1I 和2I 分别表示金属杆、杆左和右圆弧中的电流,方向如图1所示,以ab U 表示a 、b 两端的电压,由欧姆定律有两端的电压,由欧姆定律有ab 110U I l r = (4) ab 220U I l r = (5) 式中,1l 和2l 分别为金属杆左、右圆弧的弧长分别为金属杆左、右圆弧的弧长..根据提示,1l 和2l 中的电流在圆心处产生的磁感应强度的大小分别为感应强度的大小分别为111m21I l B k R = (6)222m21I l B k R = ((7) 1B 方向竖直向上,2B 方向竖直向下方向竖直向下..由(4)、(5)、(6)和(7)式可知整个大圆环电流在圆心处产生的磁感应强度为)式可知整个大圆环电流在圆心处产生的磁感应强度为 0210B B B =-= (8)无论长直金属杆滑动到大圆环上何处,上述结论都成立,于是在圆心处只有金属杆的电流I 所产生磁场所产生磁场..在金属杆由ab 滑动到cd 的过程中,金属杆都处在圆心附近,故金属杆可近似视为无限长直导线,由提示,金属杆在ab 位置时,杆中电流产生的磁感应强度大小为位置时,杆中电流产生的磁感应强度大小为3m12100IB k R = (9) 方向竖直向下方向竖直向下..对应图1的等效电路如图2,杆中的电流,杆中的电流 I R R R R R e=++右左右左 (10)其中R 为金属杆与大圆环两接触点间这段金属杆的电阻,R 左和R 右分别为金属杆左右两侧圆弧的电阻,由于长直金属杆非常靠近圆心,故常靠近圆心,故a b 1112,=R R r R R R rp »»右左 (11) 利用(3)、(9)、(10)和(11)式可得)式可得m 3110800(4)k B B R r r p =+v (12)由于小圆环半径21R R <<,小圆环圆面上各点的磁场可近似视为均匀的,小圆环圆面上各点的磁场可近似视为均匀的,且都等于长直金且都等于长直金属杆在圆心处产生的磁场. 当金属杆位于ab 处时,穿过小圆环圆面的磁感应通量为处时,穿过小圆环圆面的磁感应通量为2ab 23R B f p = (13) 当长直金属杆滑到cd 位置时,杆中电流产生的磁感应强度的大小仍由(13)式表示,但方向相反,故穿过小圆环圆面的磁感应通量为反,故穿过小圆环圆面的磁感应通量为2cd 23()R B f p =- (14) 在长直金属杆以速度v 从ab 移动到cd 的时间间隔t D 内,穿过小圆环圆面的磁感应通量的改变为的改变为2c d a b 232R B f f f p D =-=- (15)I I 2 I 1 b a R 左图 2 εR ab R 右由法拉第电磁感应定律可得,在小圆环中产生的感应电动势为大小为由法拉第电磁感应定律可得,在小圆环中产生的感应电动势为大小为223i 2R B t tp f e D =-=D D (16) 在长直金属杆从ab 移动cd 过程中,在小圆环导线中产生的感应电流为过程中,在小圆环导线中产生的感应电流为23i i2002R B I R r r t e p ==D (17)于是,利用(12)和(17)式,在时间间隔t D 内通过小环导线横截面的电荷量为内通过小环导线横截面的电荷量为 23m 2i01010800(4)R B k BR Q I t r R r r r p =D ==+v ((18)评分标准:本题25分. (3)式3分,(4)、(5)式各1分, (8)、(10)式各3分,(12)式3分, (15)式4分,(16)、(17)式各2分,(18)式3分. 六、六、参考解答:设重新关闭阀门后容器A 中气体的摩尔数为1n ,B 中气体的摩尔数为2n ,则气体总摩尔数为12n n n =+ (1)把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为1T ¢,B 中气体温度为2T ,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为()()111221U n C T T n C T T ¢D =-+- (2)由于容器是刚性绝热的,按热力学第一定律有0U D = (3)令1V 表示容器A 的体积, 初始时A 中气体的压强为1p ,关闭阀门后A 中气体压强为1p a ,由理想气体状态方程可知111p V n RT =(4) 1111()p Vn RT a =¢(5)由以上各式可解得()112111a a ¢-=¢-T T T T T由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为10V (压强为1p 时),则有11011()C R C R C Cp Vp V a ++= (6)利用状态方程可得1101111()p V p V T T a =¢(7) 由(1)至(7)式得,阀门重新关闭后容器B 中气体质量与气体总质量之比222RC C R C RR C Rn na a a a +++--=-- (8)评分标准:本题15分. (1)式1分,(2)式3分,(3)式2分,(4)、(5)式各1分,(6)式3分,(7)式1分,(8)式3分. 七、七、答案与评分标准: 1. 19.2 1. 19.2 (4分,填19.0至19.4的,都给4分)10.2 10.2 (4分,填10.0至10.4的,都给4分)2. 20.3 2. 20.3 (4分,填20.1至20.5的,都给4分) 4.2 (4分,填4.0至4.4的,都给4分) 八、八、参考解答:在相对于正离子静止的参考系S 中,导线中的正离子不动,导电电子以速度0v 向下匀速运动;在相对于导电电子静止的参考系S ¢中,导线中导电电子不动,正离子以速度0v 向上匀速运动.下面分四步进行分析. 第一步,在参考系S ¢中,考虑导线2对导线1中正离子施加电场力的大小和方向.若S 系中一些正离子所占据的长度为l ,则在S ¢系中这些正离子所占据的长度变为l +¢,由相对论中的长度收缩公式有221+¢=-l l c v (1) 设在参考系S 和S ¢中,每单位长度导线中正离子电荷量分别为l 和l+¢,由于离子的电荷量与惯性参考系的选取无关,故l l l l ++¢¢= (2) 由(1)和(2)式得221-c v设在S 系中一些导电电子所占据的长度为l ,在S ¢系中这些导电电子所占据的长度为l -¢,则由相对论中的长度收缩公式有2021-¢=-l l cv (4) 同理,由于电子电荷量的值与惯性参考系的选取无关,便有 2021l l -¢-=-cv (5)式中,l -和l-¢分别为在参考系S 和S ¢中单位长度导线中导电电子的电荷量. 在参照系S ¢中,导线2单位长度带的电荷量为220022220022()111ll l l l l +-¢¢¢=+=+--=--c c c cv v v v (6) 它在导线1处产生的电场强度的大小为 2e e 02202221l l ¢¢==-k k E ac a cv v (7)电场强度方向水平向左.导线1中电荷量为q 的正离子受到的电场力的大小为 2e 0e 220221l +¢¢==-k q f qE c a cv v (8)电场力方向水平向左. 第二步,在参考系S ¢中,考虑导线2对导线1中正离子施加磁场力的大小和方向.在参考系S ¢中,以速度0v 向上运动的正离子形成的电流为2021l l +¢¢==-I cv v v (9)导线2中的电流I ¢在导线1处产生磁场的磁感应强度大小为 m 0m 202221l ¢¢==-k k I B a a c v v(10) 磁感应强度方向垂直纸面向外.导线1中电荷量为q 的正离子所受到的磁场力的大小为221-a c ve kk =。
近几年全国物理竞赛复赛力学

近几年全国物理竞赛复赛力学1.(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00 v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . (30届复赛)2.如图所示,两根刚性轻杆AB 和BC 在B 段牢固粘接在一起,AB 延长线与BC 的夹角α为锐角,杆BC 长为l ,杆AB 长为αcos l 。
在杆的A 、B 和C 三点各固连一质量均为m 的小球,构成一刚性系统。
整个系统放在光滑水平桌面上,桌面上有一固定的光滑竖直挡板,杆AB 延长线与挡板垂直。
现使该系统以大小为0v 、方向沿AB 的速度向挡板平动。
在某时刻,小球C 与挡板碰撞,碰撞结束时球C 在垂直于挡板方向的分速度为零,且球C 与挡板不粘连。
若使球C 碰撞后,球B 先于球A 与挡板相碰,求夹角α应满足的条件。
(29届复赛)3.(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
(28届复赛)Pr PθPS P04、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦因数为μA ,B 、D 两点与光滑竖直墙面接触,杆A B 和CD 接触处的静摩擦因数为μC ,两杆的质量均为m ,长度均为l .(1)已知系统平衡时AB 杆与墙面夹角θ,求CD 杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
高中物理竞赛十年复赛真题热学纯手打word版含答案

十年真题-热学复赛1.34届复赛7如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程正循环指沿图中箭头所示的循环,其中自A到B为直线过程,自B到A为等温过程.双原子理想气体的定容摩尔热容为R,R为气体常量.1求直线AB过程中的最高温度;2求直线AB过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c;3求整个直线AB过程中所吸收的净热量和一个正循环过程中气体对外所作的净功.解析:1直线AB过程中任一平衡态气体的压强p和体积V满足方程=此即p=p0-V①根据理想气体状态方程有:pV=νRT②由①②式得:T==+③由③式知,当V=V0时,④气体达到直线AB过程中的最高温度为:T max=⑤2由直线AB过程的摩尔热容C m的定义有:dQ=νC m dT⑥由热力学第一定律有:dU=dQ-pdV⑦由理想气体内能公式和题给数据有:dU=νC V dT=νRdT⑧由①⑥⑦⑧式得:C m=C V+=R+⑨由③式两边微分得:=⑩由⑩式带入⑨式得:C m=由⑥⑩ 式得,直线AB过程中,在V从增大到的过程中,C m>0,>0,故>0,吸热在V从增大到的过程中,C m<0,<0,故>0,吸热在V从增大到V0的过程中,C m>0,<0,故<0,放热由式可知,系统从吸热到放热转折点发生在V=V c=处由③式和上式得:T c==3对于直线AB过程,由⑥⑩式得:dQ=νCm dV=pdV=pdV将上式两边对直线过程积分得,整个直线AB过程中所吸收的净热量为:Q直线==p0=p0V0直线AB过程中气体对外所做的功为:W直线==p0V0等温过程中气体对外所做的功为:W等温===-ln2一个正循环过程中气体对外所做的净功为:W=W直线+W等温=p0V0参考评分:第1问10分,①②式各3分,④⑤式各2分;第2问20分,⑥⑦⑧⑨⑩ 式各2分;第3问10分,式各2分.2.33届复赛2秋天清晨,气温为℃,一加水员到实验园区给一内径为、高为的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一内径为的透明圆柱形观察柱,底部与罐相连连接处很短,与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜不溶于水,与罐壁无摩擦,闭了罐顶的加水口.此时加水员通过观察柱上的刻度看到罐内水高为.1从清晨到中午,气温缓慢升至℃,问此时观察柱内水位为多少假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.2从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少求这个过程中罐内空气的热容量.已知罐外气压始终为标准大气压p0=×105pa,水在℃时的密度为ρ0=×103kg·m-3,水在温度变化过程中的平均体积膨胀系数为×10-4K-1,重力加速度大小为g=s2,绝对零度为-℃.解析:1清晨加完水封闭后,罐内空气的状态方程为p0V0=nRT0①至中午时由于气温升高,罐内空气压强增大,设此时罐内空气的压强、体积和温度分别为p、V1、T1,相应的状态方程为:p1V1=nRT1②1此时观察柱和罐内水位之差为:Δh=++③式中右端第三项是由原罐内和观察柱内水的膨胀引起的贡献,l0=为早上加水后观察柱内水面的高度,S1=πm2,S2=4π×10-4m2分别为罐、观察柱的横截面积.由力平衡条件有:p1=p0+ρ1gΔh1④式中ρ1=是水在温度为T1时的密度.⑤联立①②③④⑤式得:ρ1gS′Δh2+p0S1+λρ1gV0-p0V0=0⑥式中S′=,λ=1-κT1-T0⑦解⑥得:Δh==⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V1-V0=S′Δh-κT1-T0S1l0=-由上式和题给数据得,中午观察柱内水位为:l1=Δh-+l0=⑨2先求罐内空气从清晨至中午对外所做的功.解法一早上罐内空气压强p0=×105pa,中午观察柱内水位相对于此时罐内水位升高Δh,罐内空气压强升高了Δp=ρ1gΔh=×103pa⑩因Δp<<p0,认为在准静态升温过程中罐内平均压强=p0+Δp=×105pa罐内空气体积缩小了ΔV=可见<<1,这说明式是合理的.罐内空气对外做功W=ΔV=-×103J解法二缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水温为T时水的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为:p=p0+V1-V0+κT1-T0S1l0=p0+由题设数据和前门计算结果可知,κT-T0<κT1-T0=<=这说式右端分子中与T有关的项不可略去,而右端分母中与T有关的项可略去.于是式:p=p0+V1-V0+κT1-T0S1l0=p0+利用状态方程,上式可改写成p=-从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J解法三缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水在温度为T时的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为p=p0+V-V0+κT1-T0S1l0=p0+=p0+S1l0+≈p0++V-V0-S1l01-κT-T0=p0++≈p0++V-V0-S1l01+κT0+PV=p0++V-2V01+κT0+PV=p0++V-2V01+κT0+PV式中应用了κT-T0<κT1-T0=,<=式可改写成p==-+从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J现计算罐内空气的内能变化.由能量均分定理知,罐内空气中午相对于清晨的内能改变为:ΔU=nRT1-T0=T1-T0=×104J式中5是常温下空气分子的自由度.由热力学第一定律得罐内空气的吸热为:ΔQ=W+ΔU=×104J从封闭水罐后至中午,罐内空气在这个过程中的热容量为:C==×103J/K参考评分:第1问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第2问10分,⑩ 式各1分,式各2分,式1分.3.32届复赛7如图,1mol单原子理想气体构成的系统分别经历循环过程abcda和abc′a.已知理想气体在任一缓慢变化过程中,压强p和体积V满足函数关系p=fV.1试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为Cπ=C V+,式中,C V和R分别为定容摩尔热容和理想气体常数;2计算系统经bc′直线变化过程中的摩尔热容;3分别计算系统经bc′直线过程中升降温的转折点在p-V图中的坐标A和吸放热的转折点在p-V图中的坐标B;4定量比较系统在两种循环过程的循环效率.解析:1根据热力学第一定律有:dU=δQ+δW①这里对于1mol理想气体经历的任一缓慢变化过程中,δQ、δW和dU可分别表示为δQ=CπdT、δW=-pdV、dU=CVdT②将理想气体状态方程pV=RT两边求导得p+V=R③式中利用了=,根据③式有:=④联立①②③④式得:Cπ=C V+⑤2设bc′过程方程为p=α-βV⑥根据Cπ=C V+可得该直线过程的摩尔热容为:Cπ=C V+⑦式中C V=R是单原子理想气体的定容摩尔热容.对bc′过程的初态3p1,V1和终态p1,5V1有:3p1=α-βV1、p1=α-5βV1⑧由⑧式得:α=p1、β=⑨由⑥⑦⑧⑨式得:Cπ=⑩3根据过程热容的定义有:Cπ=式中,ΔQ是气体在此直线过程中,温度升高ΔT时从外界吸收的热量.由⑩ 式得:ΔT=RΔQΔQ=由式可知,bc′过程中的升降温的转折点A在p-V图上的坐标为AV1,p1由⑩式可知,bc′过程中的吸放热的转折点B在p-V图上的坐标为BV1,p14对于abcda循环过程,ab和bc过程吸热,cd和da过程放热Qab=nC V T b-T a=RT b-RT a=3p1V1Qbc=nC p T c-T b=RT c-RT b=15p1V1式中已知n=1mol,单原子理想气体定容摩尔热容C V=R,定压摩尔热容C V=R气体在abcda循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda===对于abc′a循环过程,ab和bB过程吸热,Bc′和c′a过程放热.由热力学第一定律可得bB过程吸热为:Q bc′=ΔU bB-W bB=nC V T B-T b+p B+3p1V B-V1=所以循环过程abc′a的效率为ηabc′a===由式可知,ηabc′a>ηabcda参考评分:第1问5分,①②③④⑤式各1分;第2问5分,⑥⑦⑧⑨⑩式各1分;第3问7分,式1分,式各2分,式各1分;第4问5分,式各1分.4.31届复赛2一种测量理想气体的摩尔热容比γ=C p/C V的方法Clement-Desormes方法如图所示:大瓶G内装满某种理想气体,瓶盖上通有一个灌气放气开关H,另接出一根U形管作为压强计M.瓶内外的压强差通过U形管右、左两管液面的高度差来确定.初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U形管液面的高度差h i.然后打开H,放出少量气体,当瓶内外压强相等时,即刻关闭H.等待瓶内外温度又相等时,记录此时U形管液面的高度差hf.试由这两次记录的实验数据h i和h f,导出瓶内气体的摩尔热容比γ的表达式.提示:放气过程时间很短,可视为无热量交换;且U形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化→解析:解法一瓶内理想气体经历如下两个气体过程:pi,V0,T0,N i p0,V0,T,N f p f,V0,T0,N f其中,p i,V0,T0,N i、p0,V0,T,N f、p f,V0,T0,N f分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV=NkT,考虑到由于气体初、末态的体积和温度相等,有=①另一方面,设V′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p0时的体积,即:p i,V0,T,N i p0,V′,T0,N i此绝热过程满足=②由状态方程有p0V′=N i kT和p0V0=N f kT,所以=③联立①②③式得=④此即γ=⑤由力学平衡条件有p i=p0+ρgh i⑥pf=p0+ρgh f⑦式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由⑤⑥⑦式得γ=⑧利用近似关系式:当x<<1,ln1+x≈x,以及<<1,<<1有γ==⑨参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab,再通过等容升温过程bc达到末态p i,V1,T0p0,V0,Tp f,V0,T0其中,p i,V1,T0、p0,V0,T、和p f,V0,T0分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程ab:p1γ-1Tγ=pγ-1Tγ①bc:=②由①②式得:=③此即γ=④由力学平衡条件有p i=p0+ρgh i⑤pf=p0+ρgh f⑥式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由④⑤⑥式得⑦利用近似关系式:当x <<1,ln1+x ≈x ,以及<<1,<<1有γ==⑧参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分. 5.30届复赛6温度开关用厚度均为的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为×10-5/度和×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.忽略加热时金属片厚度的变化.解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2.对于钢片r -φ=l +Δl 1①Δl 1=lα1T 2-T 1②式中,d =.对于青铜片r +φ=l +Δl 2③Δl 2=lα2T 2-T 1④联立以上各式得r =d =×102mm⑤参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分.6.29届复赛6如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 内装有某种理想气体,温度为T 1;B 内为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的内能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+CR C pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A 中气体的摩尔数为n 1,B 中气体的摩尔数为n 2,则气体总摩尔数为n =n 1+n 2①把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为T 1′,B 中气体温度为T 2,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为ΔU =n 1CT 1′-T 1+n 2CT 2-T 1②由于容器是刚性绝热的,按热力学第一定律有ΔU =0③令V 1表示容器A 的体积,初始时A 中气体的压强为p 1,关闭阀门后A 中气体压强为αp 1,由理想气体状态方程可知n =④ n 1=⑤由以上各式可解得:T 2=由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V 10压强为p 1时,则有p 1=αp 1⑥ 利用状态方程可得=⑦由①②③④⑤⑥⑦式得,阀门重新关闭后容器B 中气体质量与气体总质量之比=⑧参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.28届复赛6如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P0.用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A室中有一电加热器Ω.已知在ArrayA、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V.现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体的末态体积和A室中气体的末态温度.设A、B两室中气体1摩尔的内能为U=RT,式中R为普适气体常量,T为绝对温度在电加热器对A室中气体加热的过程中,由于隔板N是导热的,B室中气体的温度要升高,活塞M将向右移动.当加热停止时,活塞M有可能刚移到气缸最右端,亦可能尚未移到气缸最右端.当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:1设加热恰好能使活塞M移到气缸的最右端,则B室气体末态的体积V=2V0①B根据题意,活塞M向右移动过程中,B中气体压强不变,用T B表示B室中气体末态的温度,有=②由①②式得T B=2T0③由于隔板N是导热的,故A室中气体末态的温度T A=2T0④下面计算此过程中的热量Q m.在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A=RT A-T0⑤由④⑤两式得Q A=RT0⑥B室中气体经历的是等压过程,在过程中B室气体对外做功为W=p0V B-V0⑦B由①⑦式及理想气体状态方程得W B=RT0⑧内能改变为ΔU B=RT B-T0⑨由④⑨两式得ΔU B=RT0⑩根据热力学第一定律和⑧⑩两式,B室气体吸收的热量为Q B=ΔU B+W B=RT0由⑥ 两式可知电加热器提供的热量为Q m=Q A+Q B=6RT0若Q0=Q m,B室中气体末态体积为2V0,A室中气体的末态温度2T0.2若Q0>Q m,则当加热器供应的热量达到Q m时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q0-Q m是A、B中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A室中气体末态的温度为T A′,有Q-Q m=RT A′-2T0+RT A′-2T0由两式可求得T A′=+T0B中气体的末态的体积V′=2V0B3若Q0<Q m,则隔板尚未移到气缸最右端,加热停止,故B室中气体末态的体积V B″<2V0.设A、B两室中气体末态的温度为T A″,根据热力学第一定律,注意到A室中气体经历的是等容过程,其吸收的热量Q A=RT A″-T0B室中气体经历的是等压过程,吸收热量Q=RT A″-T0+p0V B″-V0B利用理想气体状态方程,上式变为Q B=RT A″-T0由上可知Q0=Q A+Q B=6RT A″-T0T0所以A室中气体的末态温度T A″=+T0B室中气体的末态体积V″=T A″=V0B参考评分:本题20分.得到Q0=Q m的条件下①④式各1分;式6分,得到Q0>Q m的条件下的式4分,式2分;得到Q0<Q m的条件下的式4分,式2分.8.27届复赛7地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射假定不计大气对太阳辐射的吸收一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射红外波段的电磁波.热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J与表面的热力学温度T的四次方成正比,即J=σT4,其中σ是一个常量.已知太阳表面温度T s=×103K,太阳半径R s=×105km,地球到太阳的平均距离d=×108km.假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=.1如果地球表面对太阳辐射的平均反射率α=,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少2如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=,其余部分的反射率处α2=.间冰雪被盖面占总面积多少时地球表面温度为273K.解析:1根据题意,太阳辐射的总功率P S=4πRσT,太阳辐射各向同性的向外传播.设地球半径为r E,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I=σTπr①地球表面反射太阳辐射的总功率为αP I.设地球表面的温度为T E,则地球的热辐射总功率为:P E=4πrσT②考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I+βP E.当达到热平衡时,输入的能量与输出的能量相等,有:P I+βP E=αP I+P E③由以上各式得:T E=T S错误未定义书签;④带入数值有:T E=287K⑤2当地球表面一部分被冰雪覆盖后,以α′表示地球表面对太阳辐射的平均反射率,根据题意这时地区表面的平均温度为T E=273K.利用④式可求得:α′=⑥设冰雪覆盖的地表面积与总面积之比为x,则:α′=α1x+α21-x⑦由⑥⑦两式并带入数据得:x=30%⑧参考评分:本题15分.第1问11分,①式3分,②式1分,③式4分,④式2分,⑤式1分;第2问4分,⑥式2分,⑧式3分.9.26届复赛4火箭通过高速喷射燃气产生推力.设温度T1、压强p1的炽热高压气体在燃烧室内源源不断生成,并通过管道由狭窄的喷气口排入气压p2的环境.假设燃气可视为理想气体,其摩尔质量为μ,每摩尔燃气的内能为u=C V TC V是常量,T为燃气的绝对温度.在快速流动过程中,对管道内任意处的两个非常靠近的横截面间的气体,可以认为它与周围没有热交换,但其内部则达到平衡状态,且有均匀的压强p、温度T和密度ρ,它们的数值随着流动而不断变化,并满足绝热方程p=C恒量,式中R为普适气体常量,求喷气口处气体的温度与相对火箭的喷射速率.解析:于火箭燃烧室出口处与喷气口各取截面A1和A2,它们的面积分别为S1和S2,由题意,S1>>S2,以其管道内的气体为研究对象,如图所示.设经过很短时间Δt,这部分气体流至截面B1与B2之间,A1B1间、A2B2间的微小体积分别为ΔV1、ΔV2,两处气体密度为ρ1、ρ2,流速为v1、v2.气流达到稳定时,内部一切物理量分布只依赖于位置,与时间无关.由此可知,尽管B1A2间气体更换,但总的质量与能量不变.先按绝热近似求喷气口的气体温度T2.质量守恒给出:ρ1ΔV1=ρ2ΔV2①即A2B2气体可视为由A1B1气体绝热移动所得.事实上,因气流稳恒,A1B1气体流出喷口时将再现A 2B2气体状态.对质量Δm=ρ1ΔV1=ρ2ΔV2的气体,利用理想气体的状态方程:pV=RT②和绝热过程方程p1=p2③可得:T2=T1④再通过能量守恒求气体的喷射速率v2.由①式及ΔV=SΔvt可得:ρ1S1V1=ρ2S2V2⑤再利用①③式知,v1=v2=v2,因S2<<S1,p2<<p1,v2<<v1⑥整个系统经Δt时间的总能量包括宏观流动机械能与微观热运动内能增量ΔE为A2B2部分与A1B1部分的能量差.由于重力势能变化可忽略,在理想气体近似下比高考虑到⑥式有:ΔE=Δmv+C V T2-T1⑦体系移动过程中,外界做的总功为W=p1ΔV1-p2ΔV2⑧根据能量守恒定理,绝热过程满足ΔE=W⑨得:v2=⑩其中利用了②④式.参考评分:本题20分.②式1分,③式2分,④式3分,⑥式1分,⑦式6分,⑧式4分,⑨式1分,⑩式2分.10.25届复赛4图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M为指针压力表,以V M表示其中可以容纳气体的容积;B为测温泡,处在待测温度的环境中,以V B 表示其体积;E为贮气容器,以V E表示其体积;F为阀门.M、E、B由体积可忽略的毛细血管连接.在M、E、B均处在室温T0=300K时充以压强p0=×105Pa的氢气.假设氢的饱和蒸气仍遵从理想气体状态方程.现考察以下各问题:1关闭阀门F,使E与温度计的其他部分隔断,于是M、B构成一简易的气体温度计,用它可测量25K以上的温度,这时B中的氢气始终处在气态,M处在室温中.试导出B处的温度T和压力表显示的压强p的关系.除题中给出的室温T0时B中氢气的压强P0外,理论上至少还需要测量几个已知温度下的压强才能定量确定T与p之间的关系2开启阀门F,使M、E、B连通,构成一用于测量20~25K温度区间的低温的蒸气压温度计,此时压力表M测出的是液态氢的饱和蒸气压.由于饱和蒸气压与温度有灵敏的依赖关系,知道了氢的饱和蒸气压与温度的关系,通过测量氢的饱和蒸气压,就可相当准确地确定这一温区的温度.在设计温度计时,要保证当B处于温度低于T V=25K 时,B中一定要有液态氢存在,而当温度高于T V=25K时,B中无液态氢.要达到这一目的,V M+V E与V B间应满足怎样的关系已知T V=25K时,液态氢的饱和蒸气压p V=×105Pa.3已知室温下压强p1=×105Pa的氢气体积是同质量的液态氢体积的800倍,试论证蒸气压温度计中的液态气不会溢出测温泡B.解析:1当阀门F关闭时,设封闭在M和B中的氢气的摩尔数为n1,当B处的温度为T时,压力表显示的压强为p,由理想气体状态方程,可知B和M中氢气的摩尔数分别为n1B=①n1M=②式中R为普适气体常量.因n1B+n1M=n1③解①②③式得:=-④或T=⑤④式表明,与成线性关系,式中的系数与仪器结构有关.在理论上至少要测得两个已知温度下的压强,作对的图线,就可求出系数.由于题中已给出室温T0时的压强p0,故至少还要测定另一已知温度下的压强,才能定量确定T与p之间的关系式.2若蒸气压温度计测量上限温度T V时有氢气液化,则当B处的温度T≤T V时,B、M和E中气态氢的总摩尔数应小于充入氢气的摩尔数.由理想气体状态方程可知充入氢气的总摩尔数n=⑥2假定液态氢上方的气态氢仍可视为理想气体,则B中气态氢的摩尔数为n2B=⑦在⑦式中,已忽略了B中液态氢所占的微小体积.由于蒸气压温度计的其它部分仍处在室温中,其中氢气的摩尔数为n2M+n2E=⑧根据要求有:n2B+n2M+n2E≤n2⑨解⑥⑦⑧⑨各式得:V M+V E≥V B⑩带入相关数据得:V M+V E≥18V B11.25届复赛7在地面上方垂直于太阳光的入射方向,放置一半径R=、焦距f=的薄凸透镜,在薄透镜下方的焦面上放置一黑色薄圆盘圆盘中心与透镜焦点重合,于是可以在黑色圆盘上形成太阳的像.已知黑色圆盘的半径是太阳像的半径的两倍.圆盘的导热性极好,圆盘与地面之间的距离较大.设太阳向外辐射的能量遵从斯特藩—玻尔兹曼定律:在单位时间内在其单位表面积上向外辐射的能量为W=σT4,式中σ为斯特藩—玻尔兹曼常量,T为辐射体表面的的绝对温度.对太而言,取其温度t s=×103℃.大气对太阳能的吸收率为α=.又设黑色圆盘对射到其上的太阳能全部吸收,同时圆盘也按斯特藩—玻尔兹曼定律向外辐射能量.如果不考虑空气的对流,也不考虑杂散光的影响,试问薄圆盘到达稳定状态时可能达到的最高温度为多少摄氏度解析:按照斯特藩-波尔兹曼定律,在单位时间内太阳表面单位面积向外发射的能量为W=σT①S其中σ为斯特藩-波尔兹曼常量,T S为太阳表面的绝对温度.若太阳的半径为R S,则单位时间内整个太阳表面向外辐射的能量为P S=4πR W S②单位时间内通过以太阳为中心的任意一个球面的能量都是P S.设太阳到地球的距离为r SE,考虑到地球周围大气的吸收,地面附近半径为R的透镜接收到的太阳辐射的能量为P=πR21-α③凸透镜将把这些能量会聚到置于其后焦面上的薄圆盘上并被薄圆盘全部吸收.另一方面,因为薄圆盘也向外辐射能量.设圆盘的半径为R D,温度为T D,注意到薄圆盘有两个表面,故圆盘在单位时间内辐射的能量为P D=2πRσT④显然,当P D=P⑤即圆盘单位时间内接收到的能量与单位时间内辐射的能量相等时,圆盘达到稳定状态,其温度达到最高.由①②③④⑤各式得:T D=T S⑥依题意,薄圆盘半径为太阳的像的半径R的2倍,即R D=R2.由透镜成像公式知:=⑦于是有:R D=2f⑧把⑧式带入⑥式得:T D=T S⑨带入已知数据,注意到T S=+t S K,T D=×103K⑩即有:t D=T D-=×103℃。
第31届全国中学生物理竞赛复赛试题及答案

第31届全国中学生物理竞赛复赛试题及答案31届全国中学生物理竞赛复赛理论考试试题解答一、(12分)题目一:球形液滴的振动频率假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
力学的基本物理量包括质量m、长度l和时间t,分别对应的单位是千克(kg)、米(m)和秒(s)。
根据单位等式,[f]=[t]^-1,[r]=[l],[ρ]=[m][l]^-3,[σ]=[m][t]^-2.将这些单位代入单位等式,得到[t]^-1=[l]^-3[m]^[ρ][t]^-2[σ],即[t]^-1=[l]^[ρ][m]^[σ][t]^-2.由此可以得到三个未知量的关系式:α-3β=0,β+γ=0,2γ=1.解得α=-1,β=-1,γ=1/2.解法二:假设球形液滴振动频率与其半径r、密度ρ和表面张力系数σ之间的关系式为f=kρσr,其中k是常数。
根据单位分析法,可以得到单位等式[f]=[ρ][σ][r]。
在国际单位制中,振动频率的单位是赫兹(Hz),半径r的单位是米(m),密度ρ的单位是千克每立方米(kg/m^3),表面张力系数σ的单位是牛每米(N/m)=千克每秒平方(m/s^2)。
根据单位等式,[f]=s^-1,[r]=m,[ρ]=kg/m^3,[σ]=kg/s^-2.将这些单位代入单位等式,得到[s]^-1=[m][ρ][σ],即[s]^-1=[m][kg/m^3][kg/s^-2]。
将这个式子代入f=kρσr,得到k=f/ρσr。
1.(V。
T)。
(p。
V。
T)和(pf。
V。
T)分别表示气体在初态、中间态和末态的压强、体积和温度。
留在瓶内的气体先后满足绝热方程和等容过程方程:p1 * V1^γ = p2 * V2^γ (绝热方程)V1 = V2 * (p1/p2) (等容过程方程)联立以上两式可得:p1/T1 = p2/T2 = pf/Tf由此得到以下式子:p1/pf = (p1/pf)^(1/γ)ln(p1/pf) = ln(p1) - ln(pf) = (1/γ) * ln(p1/pf)pf = p1 / (e^(γ * ln(p1/pf)))2.根据力学平衡条件,有:pi = p + ρghipf = p + ρghf其中,p是瓶外大气压强,ρ是U型管中液体的密度,g 是重力加速度大小。
2024年9月第41届全国中学生物理竞赛复赛试题参考解答

第41届全国中学生物理竞赛复赛试题参考解答(2024年9月21日9:00-12:00)一、(45分) (1)(1.1)记质量为M 的振子偏离平衡位置的位移为x (向左为正),单摆的偏转角为θ(向左为正),摆臂上的张力为T ,按牛顿第二定律,摆锤在水平方向上的运动方程为m ẍ+lθcos θ−lθ sin θ =−T sin θ ①在竖直方向上的运动方程为m −l sin θθ−lθ cos θ =m g −T cos θ ② 利用小幅度振动条件,保留到小量θ的领头阶,有sin cos 1 , ③将③式代入①②式,并保留到小量θ的领头阶,得T mg ④ ẍ+lθ+g θ=0⑤【注: 利用悬点不动的非惯性系也可更方便地得到上述结果。
在悬点不动的非惯性系中,摆锤额外受到横向的惯性力−mẍ,有角向运动方程mlθ=−m g sin θ−mẍcosθ ①′ 同时也有径向运动方程2θcosθsin ml mx g T m ②′进一步利用小摆幅条件,保留到小量θ的领头阶,即得⑤④式。
】质量为M 的振子在水平方向上做一维运动, 由牛顿第二定律得Mẍ=−kx +T sin θ+H cos ωt ⑥由③④⑥式得Mẍ+kx −m g θ=H cos ωt ⑦只考虑系统在强迫力下的稳定振动,稳定振动的圆频率为ω,设cos(x x A t ) ⑧ cos()l B t ⑨其中φ 、φ 是稳定振动与所受强迫力之间的位相差。
将⑧⑨式代入方程⑤⑦后,所得出的两个方程对任意时间 t 均成立,故有00x ,⑩进而有22M m k A m B H⑪ 22200A B⑫由⑪⑫式得2202222200()()()HA k M m⑬222222222000()()H B A k M m⑭其中(1.2)由⑬式可知,当没有阻尼器时(这时0m ),有2HA k M ⑮即当风的频率为⑯时,大楼受迫振动幅度最大。
当风的频率取⑮式所示的值、但有阻尼器时,由⑬式得k g H H kl Mg M l A g k gkm m l M⑰为了调节阻尼器的参数m 、l 使得A 最小,可取Mgl k, ⑱或m 尽可能大。
第41届全国中学生物理竞赛复赛试题及答案

第41届全国中学生物理竞赛复赛试题(2024年9月21日上午9:00-12:00)考生须知1、 考生考试前请务必认真阅读本须知。
2、 本试题共7道题,5页,总分为320分。
3、 如遇试题印刷不清楚的情况,请务必及时向监考老师提出。
4、 需要阅卷老师评阅的内容一定要写在答题纸上;写在试题纸和草稿纸上的解答一律不给分。
一、(45分)高层建筑(大楼)在风的作用下会发生晃动。
在特定条件下,大楼的晃动幅度会变得较大,影响到安全。
(1)为了减小晃动幅度,通常会在高层建筑上加装阻尼器,例如悬点固定在大楼上、摆锤质量为m 、摆臂长度为l 的摆,摆臂是刚性的,质量可以忽略;大楼在风作用下的运动可简化为谐振子的强迫振动,谐振子的质量为M ,恢复力等效为劲度系数为k 的弹簧,大楼在运动过程中可视为刚体。
整个摆和谐振子系统如图1a 所示,系统的总质量为m 与M 之和。
风可视为水平方向上的强迫力F (向左为正),它随时间t 的变化为cosωF t H t其中振幅H 和频率ω均为常量。
重力加速度大小为g 。
为简单起见,只考虑摆和谐振子的小幅度振动 (因而摆便成为单摆)。
(1.1)求谐振子因强迫力F 的作用产生的稳定振动的振幅;(1.2)指出在没有阻尼器的情况下,风的频率为多大时,大楼受迫振动的振幅最大?对此频率的风,阻尼器应满足何种条件会最大限度地减小大楼的受迫振动?(2)若风的频率为第(1.2)问中求出的风的频率的√0.99倍,在没有阻尼器的情况下,求此时大楼受迫振动的振幅有多大? 若安装的阻尼器参数l 符合第 (1.2)问中得到的条件,为了使得大楼在此风的作用下的受迫振动的振幅减到无阻尼器时的1%, 阻尼器的质量m 应该为M 的多少倍?(3)实际的阻尼器还装有其他装置以提供阻尼力,通常做法是将摆锤浸泡在固定于建筑物上的油池中 (相对于建筑物的质量,油的质量可以忽略;油池质量可视为已包含在大楼的质量之内)。
已知当摆锤与油的相对速度为 v 时,摆锤受到的阻尼力为f v其中γ为常量。
40届物理竞赛复赛试卷

1、在静电场中,关于电场强度和电势的说法正确的是:A. 电场强度为零的地方,电势也一定为零B. 电场强度的方向处处与等势面垂直C. 由静止释放的正电荷,仅在电场力作用下的运动轨迹一定与电场线重合D. 电场中任一点的电场强度方向总是指向该点电势降落最快的方向(答案:B、D)解析:电场强度与电势无必然联系,电场强度为零的地方电势不一定为零;电场强度的方向处处与等势面垂直,且由高电势指向低电势;正电荷在电场中仅在电场力作用下,其运动轨迹不一定与电场线重合,除非电场线是直线且电荷初速度为零或初速度方向与电场线共线;电场中任一点的电场强度方向是电势降落最快的方向。
2、关于电磁波,下列说法正确的是:A. 电磁波在真空中的传播速度小于在介质中的传播速度B. 变化的电场一定能够产生变化的磁场C. 电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动而产生的D. 电磁波的传播需要介质,无法在真空中传播(答案:C)解析:电磁波在真空中的传播速度最大,等于光速;均匀变化的电场产生恒定的磁场,非均匀变化的电场产生变化的磁场;电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动而产生的;电磁波的传播不需要介质,可以在真空中传播。
3、关于光的折射现象,下列说法正确的是:A. 光从光密介质进入光疏介质时,折射角大于入射角B. 光从光疏介质进入光密介质时,折射角大于入射角C. 光的折射现象中,入射角增大,折射角一定减小D. 光的折射现象中,入射光线、折射光线和法线一定在同一平面内(答案:A、D)解析:光从光密介质进入光疏介质时,折射角大于入射角;光从光疏介质进入光密介质时,折射角小于入射角;光的折射现象中,入射角增大,折射角也增大,但始终小于入射角(在光从光密介质进入光疏介质时);光的折射现象中,入射光线、折射光线和法线一定在同一平面内。
4、关于原子物理,下列说法正确的是:A. 原子核由质子和中子组成,质子和中子都是不可再分的粒子B. 原子核内部存在强相互作用力,使得核子紧密结合在一起C. 原子核发生衰变时,质量数和电荷数一定都守恒D. 原子核的裂变和聚变都是释放核能的过程,且裂变比聚变释放的能量更大(答案:B、C)解析:原子核由质子和中子组成,但质子和中子仍可分解为夸克等更小粒子;原子核内部存在强相互作用力,即核力,使得核子紧密结合在一起;原子核发生衰变时,遵循质量数和电荷数守恒定律;原子核的裂变和聚变都是释放核能的过程,但聚变反应释放的能量通常比裂变反应更大。
全国中学生物理竞赛复赛试题及参考答案

全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v ,(8) 考虑到(4)式有max ==v评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9) 由此得2022(2)28r l r F t m l r-∆=+v . (10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为 1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为 ()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8)所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1) 式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为 21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-. (3)由此得 max ()mg h R RQ kq-=. (4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得 max ()mg h R V q-=(6) 评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1) 在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+-(2) 两参考系中电荷、合力和速度的变换关系为 ,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足 ()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+-(7) 利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得 00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故 0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4) 联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)x忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处. 对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ===. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g . (1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=. (2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c . (3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'=[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得 22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e em cE E -. (8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e 2c 42E e. (9) 代入数据,得¢E g »29.7´106eV . (10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近几年全国物理竞赛复赛力学1.(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00 v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . (30届复赛)2.如图所示,两根刚性轻杆AB 和BC 在B 段牢固粘接在一起,AB 延长线与BC 的夹角α为锐角,杆BC 长为l ,杆AB 长为αcos l 。
在杆的A 、B 和C 三点各固连一质量均为m 的小球,构成一刚性系统。
整个系统放在光滑水平桌面上,桌面上有一固定的光滑竖直挡板,杆AB 延长线与挡板垂直。
现使该系统以大小为0v 、方向沿AB 的速度向挡板平动。
在某时刻,小球C 与挡板碰撞,碰撞结束时球C 在垂直于挡板方向的分速度为零,且球C 与挡板不粘连。
若使球C 碰撞后,球B 先于球A 与挡板相碰,求夹角α应满足的条件。
(29届复赛)3.(20分)如图所示,哈雷彗星绕太阳S沿椭圆轨道逆时针方向运动,其周期T为76.1年。
1986年它过近日点P0时,与太阳S的距离r0=0.590AU,AU是天文单位,它等于地球与太阳的平均距离。
经过一段时间,彗星到达轨道上的P点,SP与SP0的夹角θP=72.0°.已知:1AU=1.50×1011m,引力常量G=6.67×10-11m3•kg-1•s-2,太阳质量m S=1.99×1030kg.试求P到太阳S的距离r P及彗星过P点时速度的大小及方向(用速度方向与SP0的夹角表示)。
(28届复赛)4、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的静摩擦因数为μA,B、D两点与光滑竖直墙面接触,杆A B和CD接触处的静摩擦因数为μC,两杆的质量均为m,长度均为l.(1)已知系统平衡时AB杆与墙面夹角θ,求CD杆与墙面的夹角α应满足的条件(用α及已知量满足的方程式表示)。
(2)若μA=1.00,μC=0.866,θ=60.0°,求系统平衡时α的取值范围(用数值计算求出)。
(28届复赛)5.(20分)一长为2l的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为mα(α为常数)的小物块B,杆可绕通过小物块B所在端的竖直固定的小物块D和一质量为m转轴无摩擦地转动. 一质量为m的小环C套在细杆上(C与杆密接),可沿杆滑动,环C与杆之间的摩擦可忽略. 一轻质弹簧原长为l,劲度系数为k,两端分别与小环C和物块B相连. 一质量为m的小滑块A在桌面上以垂直于杆的速度飞向物块D,并与之发生完全弹性正碰,碰撞时间极短. 碰撞时滑块C恰好静止在距轴为r(r>l)处.1. 若碰前滑块A的速度为0v,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D、C和杆刚好做匀速转动,求碰前滑块A的速度0v应满足的条件. (30届复赛)6.( 22 分)如图,一质量均匀分布的刚性螺旋环质量为m,半径为 R ,螺距H =πR ,可绕竖直的对称轴OO′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为 m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,首先扶住小球使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴 OO′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为 h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小.(27届复赛)3.解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b+=(1)a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4)由图1可知,P 点的坐标图1cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-=(7) 根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+(8)由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9)可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a- (10)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v(11)得P =v(12)代入有关数据得414.3910m s P -⨯⋅v = (13)设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15) 由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)4.二、参考解答:1.建立如图所示坐标系Oxy .两杆的受力情况如图:1f 为地面作用于杆AB 的摩擦力,1N 为地面对杆AB 的支持力,2f 、2N 为杆AB 作用于杆CD 的摩擦力和支持力,3N 、4N 分别为墙对杆AB 和CD 的作用力,mg 为重力.取杆AB 和CD 构成的系统为研究对象,系统平衡时, 由平衡条件有4310N N f +-= (1)120N mg -= (2)以及对A 点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-=(3)式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4)取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-=(5)22sin cos 0N f mg θθ+-= (6)以及对C 点的力矩41cos sin 02N l mgl αα-= (7)解以上各式可得41tan 2N mg α= (8)331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10)12N mg =(11)21sin tan cos 2N mg θαθ⎛⎫=- ⎪⎝⎭(12)21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13)CD 杆平衡的必要条件为22c f N μ≤(14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+(15)AB 杆平衡的必要条件为11A f N μ≤(16) 由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤-(17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得arctan 0.38521.1α︒≤= (18)将题给的数据代入(17)式,经数值计算可得19.5α≥︒(19)因此,α的取值范围为19.521.1α≤≤(20)5. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2lr =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点 0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v , (5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r +∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则 22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l r α+∆+∆=+=+v v .(9)由此得2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为 2022(2)28r l r F t m l r -'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ](2.) 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件)0-=v(13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式. 6.解法一一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R 的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有π1tan 2π2RR θ== (1) 可得sin θ=cos 5θ= (2)设在所考察的时刻,螺旋环绕其转轴的角速度为ω,则环上每一质量为i m ∆的小质元绕转轴转动线速度的大小都相同,用u 表示,u R ω= (3)该小质元对转轴的角动量2i i i L m uR m R ω∆=∆=∆整个螺旋环对转轴的角动量22i i L L m R mR ωω=∆=∆=∑∑ (4)小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成.在螺旋环的角速度为ω时,设小球相对螺旋环的速度为'v ,则小球在水平面内作圆周运动的速度为cos Rθω'=-v v(5)沿竖直方向的速度sin ⊥'=v v θ(6)图1对由小球和螺旋环组成的系绕,外力对转轴的力矩为0,系统对转轴的角动量守恒,故有0m R L=-v(7)由(4)、(5)、(7)三式得'v cos θ-ωωR=R (8)在小球沿螺旋环运动的过程中,系统的机械能守恒,有()222i 1122mgh m m u ⊥=++∆∑v v(9) 由(3)、(5)、(6)、(9)四式得()2222sin gh =R R θ-ωθω2''++v v 2cos(10)解(8)、(10)二式,并利用(2)式得ω=(11)'v =(12) 由(6)、(12)以及(2)式得⊥=v (13) 或有2123gh⊥=v(14) (14)式表明,小球在竖直方向的运动是匀加速直线运动,其加速度13⊥=a g(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则有 212⊥h =a t (16) 由(11)和(16)式得3=ωgtR(17) (17)式表明,螺旋环的运动是匀加速转动,其角加速度3=βg R(18)小球对螺旋环的作用力有:小球对螺旋环的正压力1N ,在图1所示的薄片平面内,方向垂直于薄片的斜边;螺旋环迫使小球在水平面内作圆周运动的向心力2N '的反作用力2N .向心力2N '在水平面内,方向指向转轴C ,如图2所示.1N 、2N 两力中只有1N 对螺旋环的转轴有力矩,由角动量定理有1sin ∆=∆N R tLθ(19)由(4)、(18)式并注意到∆=∆ωβt得13sin mg N θ==(20)而222N N m R'==v(21)由以上有关各式得223=hN mgR(22) 小球对螺旋环的作用力13N == (23)解法二一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R 的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有图2图1π1tan 2π2R R θ== (1) 可得sin 5θ=,cos θ=(2)螺旋环绕其对称轴无摩擦地转动时,环上每点线速度的大小等于直角三角形薄片在光滑水平地面上向左移动的速度.小球沿螺旋环的运动可视为在竖直方向的直线运动和在水平面内的圆周运动的合成.在考察圆周运动的速率时可以把圆周运动看做沿水平方向的直线运动,结果小球的运动等价于小球沿直角三角形斜边的运动.小球自静止开始沿螺旋环运动到在竖直方向离初始位置的距离为h 的位置时,设小球相对薄片斜边的速度为'v ,沿薄片斜边的加速度为'a .薄片相对地面向左移动的速度为u ,向左移动的加速度为0a .u 就是螺旋环上每一质元绕转轴转动的线速度,若此时螺旋环转动的角速度为ω,则有u R ω= (3)而0a 就是螺旋环上每一质元绕转轴转动的切向加速度,若此时螺旋环转动的角加速度为β,则有0=a Rβ(4)小球位于斜面上的受力情况如图2所示:重力mg ,方向竖直向下,斜面的支持力N ,方向与斜面垂直,以薄片为参考系时的惯性力f *,方向水平向右,其大小0*=f ma(5)由牛顿定律有cos sin mg θN f θ*--=0 (6) sin cos *'+=mg f ma θθ (7) 0sin =N ma θ(8)解(5)、(6)、(7)、(8)四式得2sin sin '1+2a =gθθ(9)a 图22cos =1sin +N mg θθ (10) 02sin cos 1+sin =a g θθθ (11) 利用(2)式可得3'a =g(12)N =(13) 013=a g (14) 由(4)式和(14)式,可得螺旋环的角加速度1=3βgR(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则此时螺旋环的角速度=ωβt (16)因小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成,而小球沿竖直方向的加速度sin ⊥⊥''==a a a θ(17)故有212⊥h =a t (18) 由(15)、(16)、(17)、(18)、以及(2)式得=ω(19)小球在水平面内作圆周运动的向心力由螺旋环提供,向心力位于水平面内,方向指向转轴,故向心力与图2中的纸面垂直,亦即与N 垂直.向心力的大小21N mR=v (20)精选文档 式中v 是小球相对地面的速度在水平面内的分量.若a 为小球相对地面的加速度在水平面内的分量,则有 a t =v (21)令a '为a '在水平面内的分量,有00cos a a a a a θ''=-=- (22)由以上有关各式得123=h N mg R(23) 小球作用于螺旋环的力的大小0N = (24)由(13)、(23)和(24)式得0N =(25)(注:可编辑下载,若有不当之处,请指正,谢谢!)。