解三角形导学案

合集下载

解直角三角形导学案

解直角三角形导学案

课题: 24.2 解直角三角形(1)【学习目标】⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形⑵ : 经过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐渐培育学生剖析问题、解决问题的能力.⑶ : 浸透数形联合的数学思想,培育学生优秀的学习习惯.【学习要点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵巧运用【导学过程】一、自学纲要:1.在三角形中共有几个元素?2.直角三角形ABC中,∠ C=90°, a、 b、 c、∠ A、∠ B 这五个元素间有哪些等量关系呢?(1)边角之间关系sin A a b a b ; cos A; tan A; cot Aa c c bsin B b; cos Ba; tan Bb; cot B a c c a b假如用表示直角三角形的一个锐角,那上述式子就能够写成.sin的对边;的邻边;的对边;的邻边斜边cos斜边tan的邻边cot的对边(2) 三边之间关系(3)锐角之间关系∠ A+∠B=90°.a2 +b2 =c 2 ( 勾股定理 )以上三点正是解直角三角形的依照.二、合作沟通:要想令人安全地攀上斜靠在墙面上的梯子的顶端. 梯子与地面所成的角一般要知足, ( 如图 ). 现有一个长 6m的梯子,问 :(1) 使用这个梯子最高能够安全攀上多高的墙( 精准到 0. 1 m)(2) 当梯子底端距离墙面 2.4 m 时,梯子与地面所成的角等于多少 ( 精准到 1o) 这时人能否能够安全使用这个梯子三、教师点拨:例 1 在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=2 ,a= 6 ,解这个三角形.例 2 在 Rt △ABC中,∠ B =35 o,b=20,解这个三角形.四、学生展现:增补题1 .依据直角三角形的__________元素(起码有一个边),求出 ________? 其余全部元素的过程,即解直角三角形.2、在 Rt △ABC 中, a=, b=,解这个三角形.3、 在△ ABC 中,∠ C 为直角, AC=6, BAC 的均分线 AD=4 3 ,解此直角三角形。

解直角三角形及应用导学案

解直角三角形及应用导学案

新人教九年级数学(下)导学案主备人:叶小凤审核人:唐海霞杨栓祥解直角三角形及其应用(1)学案班级姓名得分【学习目标】理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形【学习重点】灵活运用知识点,准确解直角三角形【学习难点】三角函数在解直角三角形中的灵活运用一、自学课本,完成下列知识点1.Rt△ABC中,∠C=90°,∠A=30°,BC=8,则可求出AB= ,AC= 。

∠B= 。

2 结合上面题目的解决,归纳:(1)在三角形中共有几个元素(边、角):(2)Rt△ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?①三边之间关系:②两锐角之间关系:③边角之间关系:3.解直角三角形概念:二、合作探究例1:在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,例2:在Rt△ABC中,∠C=90°,∠B =45o,b=20,解这个直角三角形.三、课堂检测1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.352、Rt △ABC 中,若sinA=54,AB=10,那么BC=_____,tanB=______.3、在△ABC 中,∠C=90°,AC=6,BC=8,那么sinA=________.4、在△ABC 中,∠C=90°,sinA=则cosA 的值是5、在Rt △ABC 中,∠C=90°,a=3,b=3,解这个三角形.6、 在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。

四、达标检测2.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32sin =A ,6=c ,求a 、b ;(3)已知:,9,23tan ==b B 求a 、c ;(4)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .新人教九年级数学(下)导学案 主备人:叶小凤 审核人:唐海霞 杨栓祥解直角三角形及其应用(2)学案班级 姓名 得分学习目标:能将解斜三角形的问题转化为解直角三角形. 学习重难点:灵活构造直角三角形解决问题 导学过程:一、自主学习1.直角三角形的边角关系是 2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.5.已知:如图,△ABC 中,∠A =60°,∠B =45°,AB =8cm .求△ABC 的面积A CB二、课堂练习1.已知:如图,Rt △ABC 中,∠A =30°,∠C =90°,∠BDC =60°,BC =6cm . 求AD 的长.2.已知:如图,△ABC 中,∠A =45°,∠B =120°,AB =10cm .求AC 及BC 的长.三、达标检测1.△ABC 中,∠A =120°,∠B =30°,AC =2cm .求AB 及BC 的长.2.已知:如图,△ABC 中,∠C =60°,∠B =45°,AB =6cm .求BCCA BB AC新人教九年级数学(下)导学案 主备人:叶小凤 审核人:唐海霞 杨栓祥解直角三角形及其应用(3)学案 仰角、俯角班级 姓名 得分学习目标:1.认识仰角、俯角,并能结合实际标准角度。

八年级数学下册 9.4 解直角三角形(2)导学案 青岛版

八年级数学下册 9.4 解直角三角形(2)导学案 青岛版

课题:9.4 解直角三角形(2)课型:新授教学目标:1. 通过解直角三角形提高学生的分析解决问题能力。

2. 通过构建直角三角形并解直角三角形,感受数形结合的作用。

教学重点:构建直角三角形难点:分析解决问题的能力教学方法:自主探究合作探究一. 完成下列各题。

小组内讨论1.R tABC中,∠C=90°, CD⊥AB于D, AD=3, ∠B=60°,求AB,BC 【1】批注【1】:让学生了解已知元素和需求元素所在三角形,数形结合能力 CB D A2 △ABC中,AB=AC, AB:BC=5:8, 求sinB, cosB. 【2】批注【2】:怎样构建直角三角形?应把已知元素和所求元素构建在同一直角三角形中。

AB C二.板书例3. △ABC中,∠A=60°, ∠B=45°,AC=20厘米,求AB 的长。

CA B1.小组交流构建直角三角形的方法(辅助线的做法)【3】批注【3】:小组内交流统一意见后,考虑解法,引导学生能解哪个直角三角形?需要解直角三角形?2.最后统一解题格式。

三.巩固练习【4】批注【4】:提醒学生数形结合,利于解决问题1.等腰三角形的底边长为6,面积为33,求这个等腰三角形的顶角。

2.在△ABC中,已知∠B=30°,SinC=4/5,AC=10,求AB的长。

四.达标测试21.在直角坐标系中,直线y=x上一点A,OA=5,求点A 的坐标。

Yy=xAO X2.等腰三角形,顶角120°,腰长10cm,求等腰三角形的周长。

五.作业:P76 B 组 1.2.六.教学反思:。

解直角三角形导学案

解直角三角形导学案

解直角三角形执笔:|花拉子米|一、学习目标1、了解解直角三角形的定义,能通过已知条件解直角三角形。

2、通过本节课的学习,培养自己知识的运用能力和计算能力。

二、重点难点学习重点:对解直角三角形的理解。

学习难点:对解直角三角形的应用。

三、前置学习1、计算:︒︒+︒+︒-︒46tan 44tan 45tan 60cos 230sin 22、在ABC ∆中,若0)cos 23(|1sin |2=-+-B A ,则∠C=_______度 3、如图,在ABC Rt ∆中,∠C 为直角,其余5个元素之间有以下关系: (1)三边之间关系:222c b a =+ (勾股定理)(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互余)(3)边角之间的关系:c a A =sin 、c b A =cos 、ba A =tan 。

利用以上关系,如果知道其中的2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素。

由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

例1、在ABC Rt ∆中,∠C=90°,∠A=30°,5=a ,解这个直角三角形。

例2、在ABC Rt ∆中,∠C=90°,3=a ,3=b ,求:(1)c 的大小;(2)∠A 、∠B 的大小。

四、展示交流在ABC Rt ∆中,CD 是斜边上的高,若AC=8,cosB=0.6,求ABC ∆的面积。

A B 0 E C D 五、合作探究如图是小朋友玩的“滚铁环”游戏的示意图,⊙O 向前滚动时,铁棒DE 保持与OE 垂直。

⊙O 与地面接触点为A ,若⊙O 的半径为25cm ,53cos =∠AOE , (1)求点E 离地面AC 的距离BE 的长; (2)设人站立点C 与点A 的距离AC=53cm ,DC ⊥AC ,求铁棒DE 的长。

六、达标拓展在ABC Rt ∆中,∠C=90°,根据下列条件解直角三角形:(1)32=b ,4=c ; (2)8=c ,∠A=60°;(3)7=b ,∠A=45°; (4)24=a ,38=b 。

2022年 教学教材《解直角三角形》导学案2

2022年 教学教材《解直角三角形》导学案2

解直角三角形学习目标:能利用直角三角形中的边、角关系解直角三角形学习重点:了解解直角三角形的概念,能运用直角三角形的角与角两锐角互余,边与边勾股定理、边与角关系解直角三角形学习难点:灵活选择适当的边角关系式☆预习导航☆一、链接:如图,Rt△ABC中共有六个元素〔三个角、三条边〕,其中∠C=90°,那么其余五个元素〔三边a、b、c ,两个锐角A、B〕之间有怎样的关系呢?填一填:〔1〕三边之间的关系:;〔2〕两锐角之间的关系:∠A ∠B = _____;〔3〕边角之间的关系:inA = ,coA = , tanA =二、导读:阅读课本114到115页,并思考以下问题:1.解直角三角形的定义。

任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,有一个角是直角,我们把利用的元素求出末知元素的过程〔的两个元素中,至少有一个是边〕,叫做解直角三角形。

2.解直角三角形的所需的工具。

如图,在Rt△ABC中,∠ACB=90°,其余5个元素之间有以下关系:1两锐角互余∠A+∠B=2三边满足勾股定理a2+b2=3边与角关系inA==错误!,coA=inB=错误!,tanA=,tanB=。

☆合作探究☆1 在Rt△ABC中,∠C=90°,∠A=34°,AC=6,解这个直角三角形.〔结果精确到〕2 在Rt△ABC中,∠C=90°,AC=15,BC=8,解这个直角三角形.〔角度精确到1秒〕☆归纳反思☆填写下表:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a ,b , c提醒:在解直角三角形时,结合条件,选择适宜的解法〔尽量不使用除法计算〕,可使运算简便。

☆达标检测☆1、在中,,,,那么〔〕A.B.C.D.2、在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么以下结论成立的是〔〕A、c=a·inAB、b=c·coAC、b=a·tanAD、a=c·coA3、在Rt△ABC中∠C=90°,c=8,∠B=60°,那么∠A=______,a=______,b=______4、在△ABC中,∠C=90°,假设BC=4,in A=错误!,那么AC的长为______________5、△ABC中,∠C=90°,:c=4,∠A=30°,求∠B、a.6、在Rt△ABC中,b=,c=4,∠C=90°,根据以下条件解直角三角形?☆归纳总结反思两句话☆____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ ___。

必修5第一章解三角形复习课导学案(上公开课解说词)

必修5第一章解三角形复习课导学案(上公开课解说词)
2、 中, ,则 的面积为_________
五、课后作业:课标高考题型
1.在△ABC中,D为边BC上一点,BD= CD,∠ADB=120°,AD=2.若△ADC的面积为3- ,则∠BAC=________.
2.在 中,角 所对的边分别 ,且满足 , .
(I)求 的面积;(II)若 ,求 的值.
3.在 中, 为锐角,角 所对的边分别为 ,且
2、已知两边和其中一边的对角,如何求其他边角?
3、已知三边如何求三角?
4、已知两边和他们的夹角,如何求第三边和其他两角?
二、典型例题(15分钟=5+5+5)
例1.在 中,内角A、B、C的对边长分别为 、 、 ,已知 ,且 求b
例2、在 ABC中,已知 , ,B=45°,求b及A;
三、.练习(15分钟=5+5+5)
港南中学数学导学案解说词主备人:梁志红,复核人:覃艳、梁支年
课题
必修5第一章解斜三角形
课型
复习课
学习
目标
记住正弦、余弦定理,面积公式,选择适当的方法解斜三角形。
导学过程
解说词
1、知识梳理(课前自学)
在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长。
1、正弦定理及其变形:
1、在三角形△ABC中,∠A=30o,AB=4,BC= 。解△ABC
2、在△ABC中,cosA= , sinB=
⑴求sinC;
⑵设BC=5,求△ABC的面积。
四、课标高考题型(当堂检测10分钟)
1、△ABC的内角A,B,C的对边分别为a,b,c,已知b=2, , ,则△ABC的面积为().
A. B. C. D.
(I)求 的值;
(II)若 ,求 的值。4、.已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC-ccosA

初三数学导学案 解直角三角形

初三数学导学案 解直角三角形

学 生教 师 吴老师 日 期 2013/12/29 年 级 初三学 科数学时 段10:10-11:40学 情 分 析 1、对本周相关知识点进行梳理,强化训练 2、对之前的作业进行评讲课 题 解直角三角形学习目标与 考点分析 解直角三角形是近年来中考命题的热点之一,中考中通常以中档题的形式出现,解决此类问题,首先要认真读题,弄清题意,特别是关键字、词;其次要正确地画出图形,将已知条件转化为示意图中的边、角或它们之间的关系;最后,运用“转化”(斜三角形转化为直角三角形)的思想方法,通过建立解直角三角形的数学模型使问题得到解决。

学习重点 难 点让学生熟练掌握解题的方法,会运用知识灵活计算,并能正确地进行相关题目的运算教学方法 讲练结合、互动启发教学过程(一)运用三角函数解直角三角形解直角三角形的思路,实际上就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解方程来求解。

例1、 在Rt △ABC 中,∠C=90°, sinA=43, AC=72,求AB=?濠知教育学科导学案A B C D C D B A ED C B A(二)有关测量问题:测量类问题涉及仰角和俯角的知识,属于解直角三角形中已知一边和一锐角的类型,无斜边时,应用正切建立方程求解。

例2、某中学九年级(1)班数学课外活动小组利用周末开展课外实践活动,他们在某公园人工湖旁的小山AB 上测得湖中两个小岛C 、D 的距离。

从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°,已知小山AB 的高为180米,求小岛CD 的距离。

思路点拨:C 、D 间的距离即为BD 和CB 的差,分别解两个直角三角形求得BD 和CB 。

例3、为申办2010年冬奥会,须改变哈尔滨市的交通状况,在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径AB 等长的圆形危险区,现有某工人站在离B 点3米远的D 处,测树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°,问:距离B 点8米远的保护物是否在危险区内?方法小结:弄清题意,明确目标,将实际问题转化为解直角三角形问题,找出可以求解的直角三角形或构造出可以求解的直角三角形作为解题的突破口。

解直角三角形4方位角问题导学案

解直角三角形4方位角问题导学案

解直角三角形4方位角问题导学案一、导学1.课题导入:情景:如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?问题:怎样由方位角确定三角形的内角?2.学习目标:(1)能根据方位角画出相应的图形,会用解直角三角形的知识解决方位问题.(2)知道坡度与坡角的含义,能利用解直角三角形的知识解决与坡度有关的实际问题.3.学习重、难点:重点:会用解直角三角形的知识解决方位角、坡度的相关问题.难点:将实际问题转化为数学问题(即数学建模).二、分层学习第一层次学习1.自学指导(1)自学内容:P76页例5.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)(2)自学时间:10分钟.(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程.(4)自学参考提纲:①根据已知在图中标出方位角:如图所示.②根据方位角得到三角形的内角:在△PAB中,∵海轮沿正南方向航行,∴∠A=,∠B=,PA= .③作高构造直角三角形:如图所示.④写出解答过程:⑤如图,海中有一个小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°的方向上,航行12海里到达D点,这时测得小岛A在北偏东30°的方向上,如果渔船不改变航向继续向东航行,有没有触礁的危险?2.自学:结合自学指导开展自学.3.助学:(1)师助生:①明了学情:观察学生自学提纲的答题情况.②差异指导:根据学情对学习有困难的学生进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:利用解直角三角形的知识解方位角问题的一般思路.第二层次学习1.自学指导(1)自学内容:P77页的内容.(2)自学时间:5分钟.(3)自学方法:先独立归纳利用解直角三角形的知识解决实际问题的一般思路,然后对照课本P77页的归纳,进行反思总结.(4)自学参考提纲:①利用解直角三角形的知识解决实际问题的一般思路:②练习:如图,拦水坝的横断面为梯形ABCD,斜面坡度i=1:1.5,是指坡面的铅直高度AF与水平宽度BF的比,斜面坡度i=1:3,是指DE与CE的比,根据图中数据,求:○a坡角α和β的度数;○b斜坡AB的长(结果保留小数点后一位).2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生解答问题的情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)坡度、坡角的含义及其关系,梯形问题的解题方法.(2)在提纲第②题中,若补充条件“坝顶宽AD=4m”,你能求出坝底BC的长吗?(3)利用解直角三角形的知识解决实际问题的一般思路:三、评价:1.学生学习的自我评价:在这节课的学习中你有哪些收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动性、小组交流协作情况、学习效果、存在问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).。

解直角三角形导学案(第一课时)

解直角三角形导学案(第一课时)

解直角三角形(第一课时)学习内容:P85~P86页学习目标:1、理解解直角三角形的概念2、探索解直角三角形至少需要多少元素3、会用公式解直角三角形学习重难点:由已知元素求未知元素的方法及过程的探究和应用 学习过程一、自学提纲(阅读课文P85页~P86页)1、根据右图1,用标出的字母填写出下列问题:(1)在Rt △ABC 中,除∠C=90°外,其两个锐角及三条边叫做直角三角形的五大元素,它们分别是 、 、 、 、 。

(2)Rt △ABC 的三边关系是:,它两个锐角关系是: , 它的边角关系是: sinA=----------- cosA=-----------2、根据三角函数的值填出相应的角度数 sin( )=21cos( )=23 tan( )=33sin( )=22 cos( )=22tan( )=1 二、合作交流:(阅读课文P85页~P86页)1、在直角三角形中,由 的过程,叫做解直角三角形2、探索解直角三角形至少需要多少元素(条件)? 在直角三角形中,(1)若已知一条边和一个锐角,你能把这个直角三角形未知的元素都求出来吗?那怎么求?(2)若已知两条边呢?你又能求吗?怎么求呢?(3)那已知两个角呢?又能求吗?三、例题点评(一)例1、如图(2)在Rt △ABC 中,∠C=90°,AC=2, BC=6,解这个直角三角形。

点评:已知的元素有: 、 (除∠C=90°外)需求的元素有: 、 、 。

C BA26(二)、试一试1、在Rt △ABC 中,∠C=90°,a =6, b=8,则c= ,sinA= ,tanA=2、在Rt △ABC 中,∠C=90°,c =25, a =7,则b=,sinB= ,cosB=3、在Rt △ABC 中, ∠C=90°,AB=5, BC=3,则AC= ,cosA= ,tanB =4、在Rt △ABC 中, ∠C=90° ,AC=1, BC=2,则AB= ,sinA= , ∠B = ,∠A=5、在Rt △ABC 中, ∠C=90° ,AB=2, BC=3,则AC= ,cosA= , ∠A = ,∠B= ,tan2A= . 6、在Rt △ABC 中, ∠C=90° ,a =2, b=2,则c= ,tanB= ,∠B = ,∠A=7、在Rt △ABC 中, ∠C=90° ,AB=2, BC=3,则AC= ,sinA= , ∠A = ,∠B=8、在Rt △ABC 中,∠C=90°,AB=6cm, AC=3cm ,则BC= sinB= ,∠B= ,∠A= .(三)例2、如图,在Rt △ABC 中,∠C=90°,∠B=60°, BC=3,解这个直角三角形。

1.3《解直角三角形2》导学案

1.3《解直角三角形2》导学案

课题:《1.3.2解直角三角形》 课型:新授课 时间:月 日主备人: 审核人:九年级备课组 编号: 班级姓名_____________一、学习目标1. 经历将有关图形的计算问题化归为解直角三角形问题来解决的探索过程,进一步体会三角函数在解决问题中的作用.2. 会将有关图形的计算问题化归为解直角三角形问题来解决.重点:解直角三角形的应用难点:例4二、预习领航1. 一个物体从坡顶A 点出发,沿坡比为1:7的斜坡直线运动到底端点B ,当AB =30m 时,物体下降了 m..2. 有一拦水坝的截面是等腰梯形,它的上底为6m ,下底为10m ,高为23m ,则此拦水坝斜坡的坡比为 ,坡角为 .3. 如图,苏州某公园入口处原有三级台阶,每级台阶高20cm ,•水平宽度为30cm .现为了方便残疾人士,拟将台阶改为斜坡.设台阶的起点为A ,•斜坡的起始点为C ,现将坡角∠BCA 设计为30°,则AC 的长度为_______.三、新知导学4. 如图,大坝的横断面为梯形ABCD ,迎水坡BC 的坡角B 为30°,背水坡AD 的坡比为1:1.2,坝顶宽DC =2.5m ,坝高4.5m.求:(1)迎水坡BC 的坡比;(2)坝底AB 的长.5. 如图,O 的直径为 10cm ,直径CD ⊥AB 于点E ,OE =4cm.求AB ⌒ 的长.(参考8.037cos o )第7题 D C B小贴士: 过梯形上底的端点作高线,是将有关梯形四、课内练习6.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡比为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为.7.如图,有长为100m的斜坡AB,它的坡角是45°,现把它改为坡角为30°的斜坡AC,求BC的长.8.如图,AD是△ABC的角平分线,且AD=16315,∠C=90°,AC=85,求BC及AB.。

新课标高中数学必修5第一章解三角形导学案WORD版

新课标高中数学必修5第一章解三角形导学案WORD版

§ 正弦定理课型:新讲课 编写人: 审查人:【学习目标和要点、难点】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.【学习内容和学习过程】 一、新课导入 试验:固定 ABC 的边 CB 及 B,使边 AC 绕着极点 C 转动. 思虑:C 的大小与它的对边AB 的长度之间有如何的数目关系明显,边 AB 的长度跟着其对角C 的大小的增大而.可否用一个等式把这类关系精准地表示出来二、新课导学研究 1:在初中,我们已学过如何解直角三角形,下边就第一来商讨直角三角形中,角与边的等式关系 . 如图,在 Rt ABC 中,设 BC=a , AC=b , AB=c ,∠ C=90° 依据锐角三角函数中正弦函数的定义,有 a sin A , bsin B ,又 sin C 1 c ,c c c进而在直角三角形 ABC 中, a b c.sin A sin B sin C研究 2:那么对于随意的三角形,以上关系式能否仍旧成立可分为锐角三角形和钝角三角形两种状况:当 ABC 是锐角三角形时,设边 AB 上的高是 CD ,依据随意角三角函数的定义,有 CD= asin B bsin A ,则 a b c bsin A,同理可得 sin C ,sin B sin B 进而 a b c .sin A sin B sin C近似可推出,当ABC 是钝角三角形时,以上关系式仍旧成立.请你试一试导.新知:正弦定理在一个三角形中,各边和它所对角的的比相等,即a bc.sin Asin Bsin C试一试:( 1)在 ABC 中,必定成立的等式是( ).A . a sin A b sinB B. a cosA b cosB C. asin B bsin A D. acosB b cosA( 2)已知△ ABC 中, a = 4, b = 8,∠ A = 30°,则∠ B 等于.[ 理解定理 ]( 1)正弦定理说明同一三角形中, 边与其对角的正弦成正比,且比率系数为同一正数,即存在正数 k 使 a k sin A ,, c k sinC ;( 2) a b c, c b a c. 等价于sin C ,sin A sin C sin A sin B sin Csin B ( 3)正弦定理的基本作用为:①已知三角形的随意两角及其一边能够求其余边,如 ab sin A ;b .sin B②已知三角形的随意两边与此中一边的对角能够求其余角的正弦值, 如 sin Aasin B ; sinC.b( 4)一般地,已知三角形的某些边和角,求其余的边和角的过程叫作 解三角形 .三、讲堂稳固例1.在ABC 中,已知 A 45 , B 60 , a 42 c m ,解三角形.变式:在 ABC 中,已知 B 45 , C 60 , a 12cm ,解三角形.例 2. 在ABC中, c6, A 45 , a 2,求 b和B, C .变式:在ABC中, b3, B 60 ,c 1,求a和A, C .【学习小结】1. 正弦定理:a b c sin A sin B sin C2.正弦定理的证明方法:①三角函数的定义,还有②等积法,③外接圆法,④向量法 . 3.应用正弦定理解三角形:①已知两角和一边;②已知两边和此中一边的对角.【课后作业】基础部分1.在ABC 中,若sin A b,则 ABC 是() . sin B aA.等腰三角形B.等腰三角形或直角三角形C.直角三角形D.等边三角形2.已知△ ABC中, A∶ B∶ C= 1∶ 1∶ 4,则 a∶ b∶ c 等于() .A. 1∶1∶ 4B.1∶1∶2C.1∶ 1∶ 3D.2∶ 2∶ 3 3.在△ ABC中,若sin A sin B ,则 A 与 B 的大小关系为() .A.A BB. A BC.A≥D.A、B 的大小关系不可以确立B4.已知ABC中,sin A :sin B :sinC1:3:3,则 a : b : c =.5.已知ABC中,A60, a 3 ,则a b c=.sin A sin B sin C1.已知△ ABC中, AB=6,∠ A= 30°,∠ B=120,解此三角形.提升部分2. 已知△ ABC中, sinA∶ sinB∶ sinC=k∶ (k+ 1)∶ 2k (k≠0),务实数k 的取值范围为.§余弦定理课型:新讲课编写人:审查人:【学习目标和要点、难点】1.掌握余弦定理的两种表示形式;2.证明余弦定理的向量方法;3.运用余弦定理解决两类基本的解三角形问题.【学习内容和学习过程】复习 1 :在一个三角形中,各=.和它所对角的的相等,即=复习2:在△ABC中,已知c10 ,A=45,C=30,解此三角形.思虑:已知两边及夹角,如何解此三角形呢二、新课导学问题:在ABC 中, AB 、BC 、 CA 的长分别为c、a、 b .rC∵r b r,b a∴ b ? bA c B同理可得:2222bc cos A ,a b cc2 a 2b22abcos C .新知:余弦定理:三角形中任何一边的等于其余两边的的和减去这两边与它们的夹角的的积的两倍.思虑:这个式子中有几个量从方程的角度看已知此中三个量,能够求出第四个量,可否由三边求出一角从余弦定理,又可获得以下推论:cos A b 2c2 a 2,,.2bc[ 理解定理 ],这时 c2a2 b 2( 1)若∠ C= 90,则cosC由此可知余弦定理是勾股定理的推行,勾股定理是余弦定理的特例.( 2)余弦定理及其推论的基本作用为:①已知三角形的随意两边及它们的夹角就能够求出第三边;②已知三角形的三条边就能够求出其余角.试一试:( 1)△ ABC中, a 3 3 ,c 2 , B 150 ,求 b .( 2)△ ABC中,a2,b 2 , c 3 1,求A.三、讲堂稳固例 1. 在△ ABC 中,已知 a 3 , b 2 ,B45 ,求A, C 和 c .变式:在△ ABC中,若 AB= 5 , AC=5,且 cosC=9,则 BC=________.10例 2. 在△ ABC 中,已知三边长 a 3 , b 4 ,c37,求三角形的最大内角.变式:在ABC 中,若 a 2 b 2 c 2 bc ,求∠ A .【学习小结】1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:① 已知三边,求三角;② 已知两边及它们的夹角,求第三边. 知识拓展在△ ABC 中, 22若 a b22若 a b 若 a 2 b 2c 2,则角 c 2,则角 c 2,则角C 是直角; C 是钝角;C 是锐角.【课后作业】基础部分1. 已知 a =3 , c =2,∠ B = 150°,则边 b 的长为() .34 B. 34C.13A.D. 13222. 已知三角形的三边长分别为3、 5、 7,则最大角为().A . 60o °B . 75o °C . 120o °D . 150o °3. 已知锐角三角形的边长分别为2、 3、x ,则 x 的取值范围是( ) .A . 5 x 13B . 13 < x <5C . 2< x < 5D . 5 < x <5uuuruuur uuur 4.uuur uuur uuur 在△ ABC 中, | AB | =3,| AC | =2, AB 与 AC 的夹角为 60°,则 | AB - AC | = ________.5. 在△ ABC 中,已知三边 a 、 b 、 c 知足 b 2a 2 c 2 ab ,则∠ C 等于.1. 在△ ABC 中,已知 a = 7, b = 8, cosC = 13,求最大角的余弦值.14提升部分uuur uuur2. 在△ ABC中, AB= 5, BC= 7, AC=8,求 AB BC 的值 .§ 正弦定理和余弦定理(练习)课型:新讲课编写人:审查人:【学习目标和要点、难点】1.进一步熟习正、余弦定理内容;2.掌握在已知三角形的两边及此中一边的对角解三角形时,有两解或一解或无解等情况.【学习内容和学习过程】一、新课导入复习 1:在解三角形时已知三边求角,用定理;已知两边和夹角,求第三边,用定理;已知两角和一边,用定理.复习 2:在△ ABC中,已知A=,a=252 , b= 50 2 ,解此三角形.6二、新课导学研究:在△ ABC中,已知以下条件,解三角形.①A=,a =25, b= 50 2 ; 6②A=,a =50 6, b=50 2 ;63③A=,a =50, b= 50 2 . 6思虑:解的个数状况为什么会发生变化新知:用以以下图示剖析解的状况(A 为锐角时).已知边 a,b 和AC C C Cb b b b aa a a aA A A AH B B1 H B2H Ba<CH=bsinA a=CH=bsinA CH=bsinA<a<b a b无解仅有一个解有两个解仅有一个解试一试:1.用图示剖析( A 为直角时)解的状况2.用图示剖析( A 为钝角时)解的状况三、讲堂稳固例 1. 在ABC 中,已知a80 , b 100 , A 45 ,试判断此三角形的解的状况.变式:在ABC中,若a1,c 1, C40 ,则切合题意的 b 的值有_____个.2例2.在ABC 中,A60 , b 1 , c 2 ,求a b c的值.sin A sin B sin C【学习小结】1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4.已知三角形两边和此中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种状况).在ABC中,已知 a,b, A ,议论三角形解的状况:①当A为钝角或直角时,一定a b 才能有且只有一解;不然无解;②当 A 为锐角时,假如 a ≥b,那么只有一解;假如 a b ,那么能够分下边三种状况来议论:( 1)若a bsin A ,则有两解;( 2)若a bsin A ,则只有一解;( 3)若a b sin A ,则无解.【课后作业】基础部分1.已知 a、 b 为△ ABC 的边, A、 B 分别是 a、 b 的对角,且sin A2 ,则 ab的值 =) .sin B3b(1245A. B. C. D.33332.已知在△ ABC中, sinA∶ sinB∶ sinC= 3∶ 5∶ 7,那么这个三角形的最大角是().A. 135°B.90°C. 120° D. 150°3.假如将直角三角形三边增添相同的长度,则新三角形形状为() .A.锐角三角形B.直角三角形C.钝角三角形D.由增添长度决定4.在△ ABC中, sinA:sinB:sinC= 4:5:6,则 cosB=.5.已知△ ABC中,bcosC c cosB,试判断△ ABC的形状.1.在 ABC中, a xcm,b2cm , B 45 ,假如利用正弦定理解三角形有两解,求 x 的取值范围.提升部分a、b、 c,且知足1ab sin C2222. 在ABC中,其三边分别为a b c,求角 C.24§应用举例—①丈量距离课型:新讲课编写人:【学习目标和要点、难点】审查人:能够运用正弦定理、余弦定理等知识和方法解决一些相关丈量距离的实质问题【学习内容和学习过程】一、新课导入复习 1 在△ ABC中, b=10, A= 30°,问 a 取何值时,此三角形有一个解两个解无解二、新课导学例 1. 如图,设A、 B 两点在河的两岸,要丈量两点之间的距离,丈量者在在所在的河岸边选定一点C,测出 AC 的距离是55m,BAC= 51,A 的同侧,ACB= 75 . 求 A、B 两点的距离 (精准到 0.1m).发问 1:ABC中,依据已知的边和对应角,运用哪个定理比较适合发问 2:运用该定理解题还需要那些边和角呢剖析:这是一道对于丈量从一个可抵达的点到一个不行抵达的点之间的距离的问题题目条件告诉了边AB 的对角, AC 为已知边,再依据三角形的内角和定理很简单依据两个已知角算出应用正弦定理算出AB边 .AC 的对角,新知 1:基线在丈量上,依据丈量需要适合确立的叫基线 .例 2. 如图, A、B 两点都在河的对岸(不行抵达),设计一种丈量 A、 B 两点间距离的方法 .剖析:这是例 1 的变式题,研究的是两个的点之间的距离丈量问题.第一需要结构三角形,因此需要确立C、D 两点 .依据正弦定理中已知三角形的随意两个内角与一边既可求出另两边的方法,分别求出 AC和 BC,再利用余弦定理能够计算出AB 的距离 .变式:如上图若在河岸选用相距40 米的 C、 D 两点, BCA=60°, ACD=30 ° CDB=45°,BDA =60°求 AB.练:两灯塔 A、B 与大海察看站 C 的距离都等于 a km,灯塔 A 在察看站 C 的北偏东 30°,灯塔 B 在察看站 C南偏东 60°,则 A、 B 之间的距离为多少【学习小结】1. 解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图(2)建模:依据已知条件与求解目标,把已知量与求解量尽量集中在相关的三角形中,成立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)查验:查验上述所求的解能否切合实质意义,进而得出实质问题的解.2.基线的选用:丈量过程中,要依据需要选用适合的基线长度,使丈量拥有较高的精准度.【课后作业】基础部分1.水平川面上有一个球,现用以下方法丈量球的大小,用锐角 45 的等腰直角三角板的斜边紧靠球面, P 为切点,一条直角边 AC 紧靠地面,并使三角板与地面垂直,假如测得 PA=5cm,则球的半径P等于() .A CA. 5cmB. 52cmC. 5( 2 1)cmD. 6cm2. 台风中心从 A 地以每小时20 千米的速度向东北方向挪动,离台风中心30 千米内的地域为危险区,城市 B 在 A 的正东 40 千米处, B 城市处于危险区内的时间为().A.小时B. 1 小时C.小时D.2 小时3. 在ABC 中,已知(a2b2 )sin( A B) (a2b2 )sin( A B) ,则ABC 的形状().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC中,已知a 4,b 6, C 120o,则sin A的值是.5. 一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔 B 在北偏东60o,行驶4 h 后,船抵达C 处,看到这个灯塔在北偏东 15o,这时船与灯塔的距离为km .1. 隔河能够看到两个目标,但不可以抵达,在岸边选用相距3 km 的C、D 两点,并测得∠ACB= 75°,∠ BCD= 45°,∠ ADC= 30°,∠ ADB= 45°, A、 B、C、D 在同一个平面,求两目标 A、 B 间的距离 .提升部分2. 某船在海面 A 处测得灯塔 C 与 A 相距 10 3 海里,且在北偏东30与 A 相距 15 6 海里,且在北偏西75 方向.船由 A 向正北方向航行到B 在南偏西60方向 . 这时灯塔 C 与 D 相距多少海里方向;测得灯塔D 处,测得灯塔B§应用举例—②丈量高度课型:新讲课编写人:审查人:【学习目标和要点、难点】1.能够运用正弦定理、余弦定理等知识和方法解决一些相关底部不行抵达的物体高度丈量的问题;2.丈量中的相关名称 .【学习内容和学习过程】一、新课导入复习 1:在ABC中,cos Ab5 ,则ABC的形状是如何cos B a3复习 2:在 ABC中, a 、b、c 分别为 A、 B、 C的对边,若a : b: c =1:1: 3,求 A:B:C 的值 .二、新课导学新知:坡度、仰角、俯角、方向角方向角---从指北方向顺时针转到目标方向线的水平转角;坡度 ---沿余坡向上的方向与水平方向的夹角;仰角与俯角 ---视野与水平线的夹角当视野在水平线之上时,之下时,称为俯角.称为仰角;当视野在水平线研究:物高度AB 是底部 B 不行抵达的一个建筑物,AB 的方法 .A 为建筑物的最高点,设计一种丈量建筑剖析:选择基线HG,使 H、 G、 B 三点共线,要求 AB,先求 AE在ACE 中,可测得角,要点求AC在ACD 中,可测得角,线段,又有故可求得AC三、讲堂稳固例 1. 如图,在山顶铁塔上 B 处测得地面上一点角=54 40,在塔底 C 处测得 A 处的俯角=50A 的俯1 .已知铁塔 BC部分的高为27.3 m,求出山高CD(精准到 1 m)例 2. 如图,一辆汽车在一条水平的公路上向正东行驶,到 A 处时测得公路南侧远处一山顶D 在东偏南15 的方向上,行驶5km 后抵达B处,测得此山顶在东偏南25 的方向上,仰角为8 ,求此山的高度CD.问题 1:欲求出 CD,思虑在哪个三角形中研究比较适合呢问题 2:在 BCD中,已知 BD 或 BC都可求出 CD,依据条件,易计算出哪条边的长变式:某人在山顶察看到地面上有相距2500西 57°,俯角是60°,测得目标 B 在南偏东米的A、B 两个目标,测得目标78°,俯角是 45°,试求山高.A 在南偏【学习小结】利用正弦定理和余弦定理来解题时,要学会审题及依据题意画方向图,要懂得从所给的背景资猜中进行加工、抽取主要要素,进行适合的简化.在湖面上高h处,测得云之仰角为,湖中云之影的俯角为,则云高为hg sin() .sin()【课后作业】基础部分1. 在ABC中,以下关系中必定成立的是() .A.a b sin A B.a bsin AC.a b sin A D.a bsin A2. 在ABC 中, AB=3,BC= 13 , AC=4,则边 AC 上的高为() .A .3 2B .3 3C .3D .3 32 2 23. D 、C 、B 在地面同向来线上, DC=100 米,从 D 、C 两地测得 A 的仰角分别为 30o 和 45o ,则 A 点离地面的高 AB 等于( )米.A . 100B . 50 3C .50( 3 1)D .50 (3 1)4. 在地面上 C 点,测得一塔塔顶 A 和塔基 B 的仰角分别是 60 和 30 ,已知塔基 B 超出 地面 20m ,则塔身 AB 的高为 _________ m .5. 在ABC 中, b 2 2 , a 2 ,且三角形有两解, 则 A 的取值范围是 .1. 为测某塔 AB 的高度,在一幢与塔AB 相距 20m 的楼的楼顶处测得塔顶 A 的仰角为30°,测得塔基 B 的俯角为 45°,则塔 AB 的高度为多少 m提升部分2. 在平川上有 A 、 B 两点, A 在山的正东, B 在山的东南,且在 A 的南偏西 15°距离300 米的地方,在 A 侧山顶的仰角是 30°,求山高 .§应用举例—③丈量角度课型:新讲课编写人:审查人:【学习目标和要点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些相关计算角度的实质问题【学习内容和学习过程】一、新课导入.复习1:在△ABC中,已知c 2 ,C,且1absin C 3 ,求a,b .32二、新课导学例 1. 如图,一艘海轮从 A 出发,沿北偏东75 的方向航行n mile 后抵达海岛 B,而后从 B 出发,沿北偏东32的方向航行n mile 后达到海岛 C.假以下次航行直接从 A 出发抵达 C,此船应当沿如何的方向航行,需要航行多少距离(角度精准到,距离精准到mile)剖析:第一由三角形的内角和定理求出角ABC,而后用余弦定理算出AC边,再依据正弦定理算出AC边和 AB 边的夹角CAB.例 2. 某巡逻艇在 A 处发现北偏东 45 相距 9 海里的 C处有一艘走私船,正沿南偏东 75 的方向以 10 海里 / 小时的速度向我海岸行驶,巡逻艇立刻以 14 海里 /小时的速度沿着直线方向追去,问巡逻艇应当沿什么方向去追需要多少时间才追追上该走私船手试一试练 1. 甲、乙两船同时从 B 点出发,甲船以每小时10( 3 + 1)km 的速度向正东航行,乙船以每小时20km 的速度沿南偏东60°的方向航行, 1 小时后甲、乙两船分别抵达A、C 两点,求A、 C 两点的距离,以及在 A 点察看 C 点的方向角 .练 2. 某渔轮在 A 处测得在北偏东45°的 C 处有一鱼群,离渔轮9 海里,并发现鱼群正沿南偏东75°的方向以每小时10 海里的速度游去,渔轮立刻以每小时14 海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群【学习小结】1. 已知量与未知量所有集中在一个三角形中,挨次利用正弦定理或余弦定理解之.;2.已知量与未知量波及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐渐在其余的三角形中求出问题的解.拓展已知 ABC的三边长均为有理数, A= 3,B=2,则 cos5是有理数,仍是无理数由于 C5,由余弦定理知cosC a 2b2c2为有理数,2 ab)cosC 为有理数 .因此 cos5cos(5【课后作业】基础部分1.从 A 处望 B 处的仰角为,从 B 处望 A 处的俯角为,则,的关系为().A.B.=C.+=90o D.+=180o2.已知两线段 a 2 ,b 2 2 ,若以 a 、b为边作三角形,则边 a 所对的角 A的取值范围是() .A. (, )B. (0,]636C. (0,)D. (0,]2243.对于 x 的方程 sin Agx sin C0 有相等实根,且 A、B、C 是 ABC 的三个2sin Bgx内角,则三角形的三边a、 b、c 知足() .A.b ac B.a bcC.c ab D. b2ac4.△ ABC 中,已知 a:b:c=( 3+1):( 3 -1): 10 ,则此三角形中最大角的度数为.5.在三角形中,已知 :A,a, b 给出以下说法 :(1)若 A≥ 90°,且 a≤ b,则此三角形不存在(2)若 A≥ 90°,则此三角形最多有一解(3)若 A< 90°,且 a=bsinA,则此三角形为直角三角形,且(4)当 A< 90°, a<b 时三角形必定存在(5)当 A< 90°,且 bsinA<a<b 时,三角形有两解B=90°此中正确说法的序号是.提升部分1. 我舰在敌岛 A 南偏西50以 10 海里 / 小时的速度航行敌舰相距 12 海里的 B 处,发现敌舰正由岛沿北偏西.问我舰需以多大速度、沿什么方向航行才能用10 的方向2 小时追上§应用举例—④解三角形课型:新讲课编写人:审查人:【学习目标和要点、难点】1.能够运用正弦定理、余弦定理等知识和方法进一步解决相关三角形的问题;2.掌握三角形的面积公式的简单推导和应用;3.能证明三角形中的简单的恒等式.【学习内容和学习过程】复习 1:在ABC 中( 1)若 a1,b3, B120,则 A等于.( 2)若 a 3 3 ,b2, C150 ,则c_____.复习 2:在 ABC 中,a33, b 2 , C150,则高 BD=,三角形面积=.二、新课导学研究:在ABC中,边 BC上的高分别记为h a,那么它如何用已知边和角表示h a =bsinC=csinB依据从前学过的三角形面积公式S= 1ah,2S=1代入能够推导出下边的三角形面积公式,absinC,2或 S=,同理 S=.新知:三角形的面积等于三角形的随意两边以及它们夹角的正弦之积的一半.三、讲堂稳固例 1. 在ABC 中,依据以下条件,求三角形的面积( 1)已知 a=, c=, B= ;( 2)已知 B= , C= , b=;( 3)已知三边的长分别为a=,b=,S(精准到 2 ):c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的地区改造成室内公园,经过测量获得这个三角形地区的三条边长分别为 68m, 88m, 127m,这个地区的面积是多少(精准到2)例 2. 在ABC 中,求证:(1) a 2b2sin2 A sin2 B ;c2sin2 C(2) a 2 + b 2 + c2 =2( bccosA+cacosB+abcosC).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 着手试一试练1.在ABC 中,已知a,33cm,B45o,则ABC 的面积是.28cm c练 2. 在ABC 中,求证:c(a cos B b cos A) a 2b2.【学习小结】1. 三角形面积公式:S= 1absinC= = .22. 证明三角形中的简单的恒等式方法: 应用正弦定理或余弦定理, “边”化“角”或“角”化“边”.识拓展三角形面积 Sp( p a)( p b)( p c) ,这里 p1( a b c) ,这就是着名的海伦公式.2【课后作业】 基础部分1. 在 ABC 中, a2,b 3, C 60 ,则 S ABC ( ).A. 23B.3 C. 3D. 322 2. 三角形两边之差为2,夹角的正弦值为 3 ,面积为 9,那么这个三角形的两边长分) .5 2别是(A.3和5B.4和6C.6和 8D.5和 73. 在 ABC 中,若 2cosB sin AsinC ,则 ABC 必定是( )三角形. A. 等腰 B. 直角 C. 等边 D. 等腰直角4. ABC 三边长分别为3,4,6 ,它的较大锐角的均分线分三角形的面积比 是 .5. 已知三角形的三边的长分别为 a 54cm , b 61cm , c 71cm ,则ABC 的面积是 .6. 已知在ABC 中, B=30,b=6, c=6 3 ,求 a 及 ABC 的面积 S .提升部分2. 在△ ABC 中,若 sin A sin B sin C (cos A cos B) ,试判断△ ABC 的形状 .第一章解三角形(复习)课型:新讲课编写人:审查人:【学习目标和要点、难点】能够运用正弦定理、余弦定理等知识和方法解决一些相关丈量距离的实质问题【学习内容和学习过程】一、新课导入复习 1:正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形;②知两边及此中一边所对的角解三角形(要议论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习 2:应用举例①距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为 2 公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变 . 则斜坡长变成 ___.二、新课导学例 1. 在ABC中 tan( A B) 1 ,且最长边为1,tan A tan B ,tan B 1,求角 C的大小及△ABC最短边的长.2例 2. 如图,当甲船位于 A 处时获悉,在其正东方向相距20 海里的 B 处有一艘渔船遇险等候营救.甲船立刻前去营救,同时把信息见告在甲船的南偏西30 o,相距 10 海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前去 B 处营救(角度精准到 1 o)北A2010C例3.在ABC 中,设tan A2c b, 求 A 的值.tan B bB手试一试练 1. 如图,某海轮以 60 n mile/h的速度航行,在A点测得海面上油井P在南偏东 60°,向北航行 40 min 后抵达 B 点,测得油井 P 在南偏东 30°,海轮改为北偏东 60°的航向再行驶 80 min 抵达 C 点,求 P、 C 间的距离.北C60°B30°A60°P练 2. 在△ ABC 中, b= 10,A=30°,问 a 取何值时,此三角形有一个解两个解无解【学习小结】1.应用正、余弦定理解三角形;2.利用正、余弦定理解决实质问题(丈量距离、高度、角度等);3.在现实生活中灵巧运用正、余弦定理解决问题. (边角转变).设在ABC 中,已知三边 a ,b, c ,那么用已知边表示外接圆半径R 的公式是abcRp( p a)( p b )( p c)【课后作业】 基础部分1. 已知△ ABC 中, AB =6,∠ A = 30°,∠ B = 120 ,则△ ABC 的面积为().A . 9B . 18C .9D .18 32.在△ ABC 中,若 c 2a 2b 2ab ,则∠ C=( ) .A . 60°B . 90°C .150°D . 120°3. 在 ABC 中, a 80 , b100 ,A=30°,则 B 的解的个数是( ) .A .0 个B .1 个C .2 个D .不确立的4. 在△ ABC 中, a 32 , b2 3 , cosC1,则 S △ABC _______35. 在 ABC 中, a 、 b 、 c 分别为 A 、 B 、C 的对边,若 a 2b 2c 22bcsin A ,则 A=___ ____.1. 已知 A 、B 、C 为 ABC 的三内角,且其对边分别为a 、b 、c ,若cos B cos C sin B sin C 1 .2( 1)求 A ;( 2)若 a 2 3, b c 4 ,求 ABC 的面积.提升部分2. 在 △ ABC 中, a, b,c 分别为角 2228bc A 、B 、C 的对边, ac b , a =3, △ ABC 的面积为 6,5( 1)求角 A 的正弦值; (2)求边 b 、c.。

北师大版必修5高中数学第2章解三角形小结导学案

北师大版必修5高中数学第2章解三角形小结导学案

高中数学 第2章 解三角形小结导学案北师大版必修5【学习目标】1、通过对任意三角函数边与角度的探索,掌握正弦定理、余弦定理并能解决一些简单的三角形度量问题。

2、能运用正弦定理、余弦定理解决一些计算和测量有关的实际问题 【学习重点】正弦定理、余弦定理【学法指导】阅读课本15-17页内容,结合导学案,要求在30分钟内独学至课内探究。

2、请写出余弦定理及其变形3、请写出三角形面积公式(一) 学习探究(1)(A)在ABC ∆中,45B =,60C =,1c =,求最短边的边长 。

(2)(A)求边长为5、7、8的三角形的最大角与最小角之和。

变式、(1)在ABC ∆中,已知2=b ,︒=30B ,︒=135C ,求a 的长个 性 笔 记(2)(B)在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( )A .23-B .32- C .32 D .23三角形面积例2、(B)在∆A B C 中,s i n c o s A A +=22,A C =2,A B =3,求A tan 的值和∆A B C 的面积。

正、余弦定理判断三角形形状3在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形变式、(1)(A)在ABC ∆中,若C B A 222sin sin sin +=,判断ABC ∆的形状变式、(2)(C)在△ABC 中,若,cos cos cos C c B b A a =+判断△ABC 的形状正、余弦定理实际应用1、(B)如图一个三角形的绿地ABC ,AB 边长7米,由C 点看AB 的张角为45,在AC 边上一点D 处看AB 得张角为60,且2AD DC =,试求这块绿地得面积。

变式、(C)货轮在海上A 点处以30 n mile/h 的速度沿方向角(指北方向顺时针转到方向线的水平角)为1500的方向航行,半小时后到达B 点,在B 点处观察灯塔C 的方向角是900, 且灯塔C 到货轮航行方向主最短距离为310 n mile ,求点A 与灯塔C 的距离。

九年级数学《解直角三角形》导学案

九年级数学《解直角三角形》导学案

九年级数学“28.2解直角三角形”(1)导学案【学习目标】知识与技能:.理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.过程与方法:通过解直角三角形,逐步培养学生分析问题、解决问题的能力.【学习重点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵活运用.一、自主探究:(前置性学习)要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°.现有一个长6m的梯子.问:(1) 使用这个梯子最高可以安全攀上多高的平房?(精确到0.1m)(这个问题归结为: 在Rt△ABC中,已知∠A= 75°,斜边AB=6,求BC的长)(2) 当梯子底端距离墙面2.4m时,梯子与地面所成的角α等于多少(精确到1°)?这时人能否安全使用这个梯子?(这个问题归结为: 在Rt△ABC中,已知AC=2.4m,斜边AB=6, 求锐角α的度数?)(一)、探究活动11.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1) 边角之间关系(2) 三边之间关系(3) 锐角之间关系以上三点正是解直角三角形的依据,由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形.在直角三角形的六个元素中,除直角外,如果知道两个元素(其中至少有一个是边),就可以求出其余三个元素.探究活动2:在Rt△ABC中,(1)根据∠A= 75°,斜边AB=6,你能求出这个三角形的其他元素吗?(2)根据AC=2.4m,斜边AB=6,你能求出这个三角形的其他元素吗?(3)根据∠A=60°,∠B=30°,你能求出这个三角形的其他元素吗?(二)、新知盘点:(三)、个人质疑:二、合作探究:(一)、交流展示:(二)、学以致用:例 1. 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,,解这个三角形.例2. 在Rt △ABC 中,∠C 为直角∠B =35°,b=20,解这个三角形.拓展延伸:如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?。

《解直角三角形的应用》导学案

《解直角三角形的应用》导学案

4.4解直角三角形的应用课前知识管理(从教材出发,向宝藏纵深)1、正确理解解直角三角形的概念在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.要理清这个概念的涵义:(1)隐含条件是直角,这是前提条件,也是已知条件.(2)已知条件:必有两个,且必有一边才能解直角三角形.因为边角的组合有边边、边角、角角,但角角不能确定三角形大小,更无法求其边长了,即不能解三角形.2、掌握解直角三角形的依据在Rt△ABC中,∠C= 90°,a、b、c分别是∠A、∠B、∠C的对边.(1)三边之间的关系(即勾股定理):a2+b2=c2;(2)两锐角之间的关系:∠A+∠B = 90°;(3)边角之间的关系:sin A=ac=cos B,cos A=bc=sin B,tan A=ab.(4)面积关系:S△ABC=12ab=12ch(h是斜边上的高)=12ab sin C=12a csin B=12bc sin A(同学们自己可以证明)3、解直角三角形的解法分类及方法:(1)已知一条直角边和一个锐角解直角三角形;(2)已知两边解直角三角形.4、掌握与解直角三角形相关的几个概念:(1)仰角、俯角:测量时,在视线与水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角(如图).(2)方向角:如图所示,在平面上过观测点O ,画一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与铅垂线(南北方向线)的夹角,叫做点O 的方向角(或称为象限角),例如,图中点A 的方向角为北偏东30°,点B 的方向角为南偏西45°(或称为西南方向).注意:①方向角通常是以南北方向线为主,分南偏和北偏(东、西);②观测点不同,所得的方向角不同(如图所示,从点O 出发观测点A 的方向角为北偏东30°,而从点A 观测点O 的方向角为南偏西30°),但各个观测点的南北方向线是互相平行的.(3)坡度问题的相关概念:如图,我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母i 表示,即lh i =.坡度一般写成1︰m 的形式,如1︰3;坡面与水平面之间的夹角记作α(叫做坡角),那么αtan ==l h i .名师导学互动(切磋琢磨,方法是制胜的法宝)典例精析类型一:航海问题例1、如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?【解题思路】本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.【解】在Rt △ABD 中,716284AD =⨯=(海里),∠BAD=90°-65°45′=24°15′. ∵cos24°15′=AD AB , ∴2830.71cos 24150.9118AD AB ==≈'︒(海里).AC=AB+BC=30.71+12=42.71(海里).在Rt △ACE 中,sin24°15′=CE AC,∴CE=A C·sin24°15′=42.71×0.4107=17.54(海里).∵17.54<18.6,∴有触礁危险.【方法归纳】本题有两个难点,一是要能将实际问题抽象为数学问题,二是构造合适的直角形。

解直角三角形复习课导学案3(配课件)

解直角三角形复习课导学案3(配课件)

解直角三角形复习课导学案
一、学习目标:
1、 熟练掌握解直角三角形的方法。

2、 形成解直角三角形两种基本图形的解题思路。

二、学习内容:
㈠、复习直角三角形的边角关系。

1、 锐角之间的关系:
2、 三边之间的关系:
3、 角与边之间的关系:
㈡、填空题
1、如图在Rt △ABC 中,∠C=90º, a=3,b=4,,则sinB=
2、如图在Rt △ABC 中,∠C=90º,sinB=53 AC=6,求AB=
3、如图在Rt △ABC 中,∠C=90º,sinB=53 BC=8,求AB=
㈢、解答题
1、如图在△ABC 中,AD ⊥BC,BC=6 , ∠B=30º, ∠C=45º,求△ABC 的面积。

2、如图在△ABC 中,AD ⊥BC, AC=
10 , ∠B=30º, tanC=31 ,求BC 的长度
3、 附加题
如图在 △ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC=14,AD=12,sinB= 5
4 ,
求(1)线段DC 的长。

(2) tan ∠EDC 的值
4、如图在△ABC 中,CB=2, ∠B=45º, ∠C=120º,求BC 边上的高。

5、附加题
如图在△ABC 中,AC ⊥BC, ∠ABC=30º, 点D 是BC 延长线上一点,且BD=BA ,则tan ∠DAC 的值为多少?
㈣当堂检测:
1、如图在△ABC 中,∠C=90º AC=8, AB 垂直平分线MN 交AC 于 D ,连接BD ,若cos ∠BDC=53 ,则求BC 的长?。

人教A版数学必修一《解三角形》全章导学案(A3)

人教A版数学必修一《解三角形》全章导学案(A3)

鸡西市第十九中学学案2015年( )月( )日 班级 姓名1.1.1 正弦定理(一)学习 目标 1.掌握正弦定理的内容.2.了解正弦定理的证明方法. 3.能初步运用正弦定理解三角形.重点 难点1.学习本节内容时,要善于运用平面几何知识以及平面向量知识证明正弦定理.2.应熟练掌握利用正弦定理进行三角形中的边角关系的相互转化.1.在△ABC 中,A +B +C = ,A 2+B 2+C2= .2.在Rt △ABC 中,C =π2,则a c = ,bc= .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 . 【正弦定理的提出和证明】问题 在直角三角形和等边三角形中,容易验证a sin A =b sin B =csin C成立,这一结论对更一般锐角三角形和钝角三角形还成立吗?探究1 在锐角△ABC 中,根据右图证明:a sin A =b sin B =csin C.探究2 在钝角△ABC 中(不妨设A 为钝角),根据右图证明:a sin A =b sin B =csin C.小结 综上可知,对于任意三角形,均有a sin A =b sin B =csin C,此即正弦定理.【正弦定理的几何解释】问题 如图所示,在Rt △ABC 中,斜边c 等于Rt △ABC 外接圆的直径2R ,故有a sin A =b sin B =c sin C=2R ,这一关系对任意三角形也成立吗?探究1 如图所示,锐角三角形ABC 和它的外接圆O ,外接圆半径为R ,等式a sin A =b sin B =c sin C=2R 成立吗?探究2 如图所示,钝角三角形ABC ,A 为钝角,圆O 是它的外接圆,半径为R ,等式 a sin A =b sin B =c sin C=2R 还成立吗?小结 综上所述,对于任意△ABC ,a sin A =b sin B =csin C=2R 恒成立.【正弦定理】在一个三角形中,各边和它所对角的正弦的比相等即 , 这个比值是________________________.例1 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若 A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于 ( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2我们发现:sin A ∶sin B ∶sin C=鸡西市第十九中学学案问题 我们已经知道S △ABC =12ah a =12bh b =12ch c (其中h a ,h b ,h c 分别为a ,b ,c 边上的高).学习了正弦定理后,你还能得到哪些计算三角形面积的公式?探究1 当△ABC 为锐角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .探究2 当△ABC 为钝角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .例2 在△ABC 中,若∠A =120°,AB =5,BC =7,求△ABC 的面积.小结 题目条件或结论中若涉及三角形的面积,要根据题意灵活选用三角形的面积公式.训练2 在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b = .例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.小结 条件是边角混合关系式,应用正弦定理化边为角,再由角的关系判断三角形的形状.训练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.【当堂训练】1.已知△ABC 的面积为3且b =2,c =2,则∠A 等于 ( ) A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,AC =6,BC =2,B =60°,则C = .3.在△ABC 中,b =1,c =3,C =2π3,则a = .判断三角形的形状,最终目的是判断三角形是否是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.鸡西市第十九中学学案问题 我们已经知道S △ABC =12ah a =12bh b =12ch c (其中h a ,h b ,h c 分别为a ,b ,c 边上的高).学习了正弦定理后,你还能得到哪些计算三角形面积的公式?探究1 当△ABC 为锐角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .探究2 当△ABC 为钝角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .例2 在△ABC 中,若∠A =120°,AB =5,BC =7,求△ABC 的面积.小结 题目条件或结论中若涉及三角形的面积,要根据题意灵活选用三角形的面积公式. 训练2 在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b = .例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.小结 条件是边角混合关系式,应用正弦定理化边为角,再由角的关系判断三角形的形状.训练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.【当堂训练】1.已知△ABC 的面积为3且b =2,c =2,则∠A 等于 ( ) A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,AC =6,BC =2,B =60°,则C = .3.在△ABC 中,b =1,c =3,C =2π3,则a = .判断三角形的形状,最终目的是判断三角形是否是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.《正弦定理(一)》专题2015年( )月( )日 班级 姓名忘时,忘物,忘我。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形导学案
正、余弦定理的综合应用
一、知识点梳理
1.正弦定理:
正弦定理的变形: 2.余弦定理:
余弦定理的变形:
3.三角形面积公式:
4.三角形中的常见结论:
; _________ , _________ _______(1)===c b a ,边化角:; _________ sin , ________ sinB , ________sin )2(===C A 角化边:;
_________:_______:_______:: )3(=c b a 比例关系:._________________________;
______________________;
____________________222===c b a ._____________________cosC _;____________________cosB _;____________________cos ===A .
; ;90222222222b a c c a b c b a C B A +=+=+=化为时,上面的关系式分别分别为、、当 )(21)1(边上的高表示a h ah S a a =.
_____________________________________)2(===S π
=++C B A )1()(2sin sin sin 外接圆的半径为其中ABC R R C
c B b A a ∆===
(2)在三角形中大边对大角,大角对大边。

(3)任意两边之和大于第三边,任意两边之差小于第三边。

(4)有关三角形内角的三角函数式:
二、考点突破
考点1 利用正、余弦定理解三角形
考点2 利用正、余弦定理判断三角形的形状
考点3 与三角形面积有关的问题
;tan )tan(;
cos )cos(
;sin )sin(C B A C B A C B A -=+-=+=+.
______),sin (sin )(sin ,,,,,1.=+⋅-=-∆C C B c b A a b c b a C B A ABC 则角)且满足(的对边分别为的内角变式训练.,,,7233)2(;)1(.
3cos 3sin ,,,,,3.c a c a b ABC B c A b B a c b a C B A ABC 求,的面积为若求角已知的对边分别为的内角变式训练>=∆=+∆.
,cos cos cos ,,,,,2.的形状试判断若的对边分别为的内角变式训练ABC C
c B b A a c b a C B A ABC ∆==∆。

相关文档
最新文档