去括号和添括号的法则

合集下载

添括号去括号法则

添括号去括号法则

添括号去括号法则
添括号去括号法则是指在数学运算中,使用括号来改变运算顺序或明确运算优先级的方法。

在进行数学运算时,我们通常会遵循“先乘除后加减”的原则,但有时候我们需要改变这个顺序来达到我们想要的结果。

这时,我们可以使用括号来改变运算的优先级。

例如,在下面这个式子中:
3 +
4 x 2
按照“先乘除后加减”的原则,应该先计算4 x 2,再加上3,结果为11。

但如果我们想让先加3,再乘4 x 2,结果为14,就可以使用括号来改变运算顺序:
(3 + 4) x 2
这样,先计算括号内的3 + 4,结果为7,再乘2,结果为14。

另外,在一些复杂的式子中,使用括号可以让运算更加清晰明了,减少错误的发生。

但是,当括号内的式子与外面的式子都是加减法时,可以省略括号,直接运用“先乘除后加减”的原则进行运算。

总之,添括号去括号法则是数学运算中非常基础的规则,掌握好这个规则可以让我们更加方便地进行数学运算。

- 1 -。

四年级数学下册第三单元去添括号方法

四年级数学下册第三单元去添括号方法

四年级数学下册“去括号”“添括号”的方法括号前“去”括号括号前面是加号,去掉括号,括号里与括号外的式子符合不变号字母表示:a+(b+c)=a+b+c括号前面是减号,去掉括号,括号里的式子要变号,括号内加号变减号,减号变加号,括号外的符号不变。

字母表示:a-(b+c)=a-b-c括号前面是乘号,去掉括号,括号里的式子不变号,括号外的式子符号不变。

字母表示:a×(b×c)=a×b×Ca×(b÷c)=a×b÷c括号前面是除号,去掉括号,括号里的式子要变号,括号内乘号变除号,除号变乘号,括号外的符号不变。

字母表示:a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c。

“添”括号括号前面是加号,添上括号,括号里的式子不变号,括号外的符号不变。

字母表示:a+b+c=a+(b+c)括号前面是减号,添上括号,括号里的式子要变号,括号内加号变减号,减号变加号,括号外的符号不变。

字母表示:a-b-c= a-(b+c)括号前面是乘号,添上括号,括号里的式子不变号,括号外的符号不变。

字母表示:a×b×C=a×(b×c)a×b÷c=a×(b÷c)括号前面是除号,添上括号,括号里的式子要变号,括号内乘号变除号,除号变乘号,括号外的式子照写(不变)。

字母表示:a÷b÷c=a÷(b×c)a÷b×c=a÷(b÷c)。

括号法则

括号法则

括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。

括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。

a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。

a-b=a+(-b)连续减去两个数,等于减去这两个数的和。

a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。

乘除法去添括号的运算法则

乘除法去添括号的运算法则

乘除法去添括号的运算法则
去括号法则,是数学科的一条法则。

1、括号前面是加号时,去掉括号,括号内的算式不变;2、括号前面是减号时,去掉括号,括号内加号变减号,减号变加号;3、括号前面是加号时,去掉括号,括号内的算式不变;4、括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

1、要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。

2、若括号前就是数字因数时,应当利用乘法分配律先将数与括号内的各项分别相加再回去括号,以免出现错误。

3、遇到多层括号一般由里到外,逐一一层层地去掉括号,也可由外到里,数"-"的个数。

4、若括号前面就是除号,无法轻易除去除号。

突破去括号与添括号难点

突破去括号与添括号难点

添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式 (把后四项括在括号内) 原式 (把前三项后两项括在括号内) 原式
添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式=(-a-b)+(c-d-e) =-(a+b)+(c-d-e) (把后四项括在括号内) 原式=-a+(-b+c-d-e) =-a-(b-c+d+e) (把前三项后两项括在括号内) 原式=(-a-b+c)+(-d-e) =-(a+b-c)-(d+e)
2 2 ( 30 y 15 y 5 ) ( 30 y 12 ) ( 3 30 y ) 解:原式 30 y 2 15 y 5 30 y 12 3 30 y 2
15 y 4
当y=-3时,上式值为
-15X(-3)+4 =45+4=49
2 2
先添括号,再合并 同类项,可以降低 错误率
注意事项
添括号是为了达到某个目的预备手段,若 被括号第一项为“+”,则括号前选择“+” 号,被括各项不变号;若被括号第一项为 “-”号,则括号前选择“-”号,被括各项都 变号
练习化简求值:
2xx=1,y=-1.
2
练习化简求值:
2x y 4x y 3xy 5xy
同步练习 2 1)
2) 3)
a 2 ab b b
2
2
x
2
7a b 4a b 5ab 2 2a b 3ab
2 2 2

y 3 2x 3 y
2 2


去括号和添括号的法则G

去括号和添括号的法则G
②100-(10+20+30)=100-10-20-30=40
③100-(30-10)=100-30+10=80
例2计算下面各题:
①100+10+20+30=100+(10+20+30)=100+
60=160
②100-10-20-30=100-(10+20+30)=100-60=40
③100-30+10=100-(30-10)=100-20=80

如果括号前面是“+”号,则不论去掉括号或添上括号,括号里
面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号
或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
注意:
带符号“搬家”
例3计算325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:
每个数前面的运算符号是这个数的符号.如+46,
-125,+

去括号和添加括号法则练习

去括号和添加括号法则练习

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

3.4.3 去括号与添括号

3.4.3 去括号与添括号

3.化简: (1)x-3(1-2x+x2)+2(-2+3x-x2) (2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]} 解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7 (2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
[典例] 已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B。
错解:A-B=4x2-4xy+y2-x2+xy-5y2=3x2-3xy-4y2 正解:A-B=(4x2-4xy+y2)-(x2+xy-5y2) =4x2-4xy+y2-x2-xy+5y2 =3x2-5xy+6y2
评析:本题产生错误的原因是把A、B代入所求式子时,丢掉 了括号,导致后两项的符号错误。因为A、B表示两个多项式, 它是一个整体,代入式子时必须用括号表示,尤其是括号前 面是“-”时,如果丢掉了括号就会发生符号错误,今后遇到 这类问题,一定要记住“添括号”。
[典例] 计算2a2b-3ab2+2(a2b-ab2)
错解:原式=2a2b-3ab2+2a2b-ab2 =2a2b+2a2b-3ab2-ab2=4a2b-4ab2 正解:原式=2a2b-3ab2+2a2b-2ab2 =2a2b+2a2b-3ab2-2ab2=4a2b-5ab2 评析:去括号时,要按照乘法分配律把括号前面的 数和符号一同与括号内的每一项相乘,而不是只乘 第一项。

去括号和添括号的法则

去括号和添括号的法则

去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。

去括号法则适用于求和、求差和乘法运算。

下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。

例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。

2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。

例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。

3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。

例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。

这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。

二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。

添加括号可以改变表达式的结构和优先级。

下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。

例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。

2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。

例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。

添括号法则在对表达式进行化简、分解或重组时非常有用。

它可以帮助我们更好地理解和计算复杂的代数运算。

三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。

使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。

示例2:重组表达式考虑以下代数表达式:a*b+c*d。

去(添)括号法则以及混合运算的运算顺序

去(添)括号法则以及混合运算的运算顺序

a b c a b c 例如: 38 62 48 38 62 48
2. 加减法同级运算中括号前是减号 括号前是减号,去完括号后,原来括号中的运算符号改变。
字母表示: a b c a b c 例如:159 59 26 159 59 26
例如:185 136 36 185 136 36 )
a b c a b c
例如: 231 75 25 231 75 25
2. 乘除法同级运算中添括号
如果所添括号前面紧挨符号为“×”,则添括号之后括号内部符号不变。
a b c a (b c)
9.9 9 1.5 1.2 0.8 3.2 0.8 0.15
8-(4-3.5)÷0.25
7.8 32 1 0.625
0.84÷[(2.3+0.5)×0.6]
[8.95-(0.65+0.8)]÷2.5
第4页共4页
a (b c) a b c 例如: 40 25 4 40 25 4
4. 乘除法同级运算中括号前是除号 括号前是除号,去完括号后,原来括号中的运算符号改变。(与减法类似)
字母表示: a (b c) a b c 例如: 4200 42 25 4200 42 25
5、如果符合运算定律,可以利用运算定律进行简算。
专项练习 :
178 156 56
236 37 63
187 39 61
527 114 14
175 57 43
396 197 97
26 4 25
36 260 13
240 100 25
2600 4 25

简便运算去括号的方法的总结

简便运算去括号的方法的总结

简便运算去括号的方法的总结
括号前面是加号的不变号如:46+(20+16)=46+20+16
括号前面是减号的要变号如:46-(20+16)=46-20-16
1、四年级去括号口诀:
去括号,添括号,关键要看连接号。

括号前面是正号,去、添括号不变号。

括号前面是负号,去、添括号都变号。

2、四年级去括号法则:
括号前面是加号时,去掉括号,括号内的算式不变。

括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律。

注:要注意括号前面的符号,它是去括号后括号内各项是否变号的依据。

去括号时应将括号前的符号连同括号一起去掉。

要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。

若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误。

遇到多层括号一般由里到外,逐一一层层地去掉括号,也可由外到里。

数“-”的个数。

一定要注意,若括号前面是除号,不能直接去除除号。

去(添)括号法则以及混合运算的运算顺序

去(添)括号法则以及混合运算的运算顺序

3000 8 125
1.36 0.25 0.4
第3页共4页
翰林学堂 78 36 78 64
56 103 56 3
30 4 70 4
120 8 20 8
562 397 281 397
1.4 5.5 2 3.24
104 4 2.4 0.3 1.5 0.75 0.25
9.9 9 1.5 1.2 0.8 3.2 0.8 0.15
8-(4-3.5)÷0.25
7.8 32 1 0.625
0.84÷[(2.3+0.5)×0.6]
[8.95-(0.65+0.8)]÷2.5
第4页共4页
a b c a b c 例如: 378 78 39 378 78 39
3. 乘除法同级运算中括号前是乘号 括号前是乘号,去完括号后,原来括号中的运算符号不改变。(与加法类似)
字母表示: a (b c) a b c 例如: 4 25 38 4 25 38
a (b c) a b c 例如: 40 25 4 40 25 4
4. 乘除法同级运算中括号前是除号 括号前是除号,去完括号后,原来括号中的运算符号改变。(与减法类似)
字母表示: a (b c) a b c 例如: 4200 42 25 4200 42 25
a b c a b c 例如: 38 62 48 38 62 48
2. 加减法同级运算中括号前是减号 括号前是减号,去完括号后,原来括号中的运算符号改变。
字母表示: a b c a b c 例如:159 59 26 159 59 26

如何快速理解添括号与去括号

如何快速理解添括号与去括号

如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。

如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。

去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。

带正号的括号我们比喻成一个好国家,比如中国。

带负号的括号我们比喻成一个坏国家,比如日本。

在一个国家里有好人(正数)和坏人(负数)。

在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。

在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。

现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负正号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。

现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。

去括号的技巧

去括号的技巧

去括号的技巧
一.去括号顺口溜是什么
去括号顺口溜:去括号或添括号,关键要看连接号。

括号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

去括号、添括号都存在一个“变号”与“不变号”的问题。

正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错)。

若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来。

二.数学去括号法则
去括号:即是按一定运算法则和顺序对算式进行脱括号的计算。

数学去括号法则的依据实际是乘法分配律注:
1、括号前是"+"号,把括号和它前面的"+"号去掉后,原括号里各项的符号都不改变。

2、括号前是"-"号,把括号和它前面的"-"号去掉后,原括号里各项的符号都要改变。

(改成与原来相反的符号,例:-(x-y)=-x+y。

字母公式:1.a+b+c=a+(b+c);2.a-b-c=a-(b+c)。

三.去括号注意事项
1、要注意括号前面的符号,它是在去括号时括号内各项是否变号的依据。

2、去括号时要将括号前的符号连同括号一起去掉。

3、要注意,括号前面是减号时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。

4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误。

5、遇到多层括号一般由里到外,逐层去括号,也可由外到里。

6、乘除法去括号法则的依据实际是乘法分配律中的一种。

去括号和添加括号法则及练习(精排版)

去括号和添加括号法则及练习(精排版)

去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。

去(添)括号法则及经典练习题

去(添)括号法则及经典练习题

去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;(2)括号前是“-”号,把括号和它前面的“-”号去括,括号里各项都改变符号为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,全变号(3)若括号前是数字因数时,应利用乘法分配律先将该数与括号内的各项分别相乘再去括号,以免发生符号错误;(4)多层括号的去法;对于含有多层括号的问题,应先观察式子的特点,再决定去掉多层括号的顺序,以使运算简便,一般由内到外,先去小括号,再去中括号,最后去大括号,有时也可从外到内,先去大括号,再去中括号,最后去小括号,去大括号时,要将中括号视为一个整体,去中括号时,要将小括号视为一个整体。

添括号法则。

(1)所添括号前面的符号是添括号后括到括号里各项是否变号的依据;(2)尤其要注意括号前面是“-”号时,括到括号时的各项都改变符号。

(3)添括号是否正确可用去括号来检验。

去括号与添括号的顺序刚好相反。

典型例题例1 化简下列各式(1)8a+2b+(5a-b)(2) (5a-3b)-3(a2-2b)根据所学的内容化简学会理解去括号法则例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米、时(1)2小时后两船的距离多远?(2) 2小时后甲船比乙船多航行多少千米?例3 去括号:(1)a+(-b+c-d); (2)a-(-b+c-d)说明:在做此题过程中,让学生出声念去括号法则,再次强调“是+号,不变号;是一号,全变号”例4 去括号: (1)-(p+q)+(m-n); (2)(r+s)-(p-q)分析:此两题中都分别要去两个括号,要注意每个()前的符号另外第(2)小题(r+s)前实际上是省略了“+”号例5 判断:下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) =a2-2a-b+c;(2)-(x-y)+(xy-1) =-x-y+xy-1.分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变.例6 根据去括号法则,在___上填上“+”号或“-”号:(1)a___(-b+c)=a-b+c;(2)a___(b-c-d)=a-b+c+d;(3)____(a-b)___(c+d)=c+d-a+b分析:此题是先知去括号的结果,再确定括号前的符号,旨在通过变式训练,训练学生的逆向思维例7 去括号-[a-(b-c)]分析:去多重括号,有两种方法,一是由内向外,一是由外向内 例8先去括号,再合并同类项:(1)x+[x+(-2x-4y)];(2) 21(a+4b)-31(3a-6b) ;(3)4a-(a-3b) ;(4)a+(5a-3b)-(a-2b) ; (5)3(2xy-y)-2xy分析:第(1)小题的方法例5已讲,只是再多一步合并同类项,第(2)小题中( )前出现了非±1的系数,方法是将系数及系数前符号 看成一个整体,利用分配律一次去掉括号变式训练1.根据去括号法则,在 上填上“+”号或“-”号:(1) a (-b+c)=a-b+c ; (2) a (b-c-d)=a-b+c+d ; (3) (a-b) (c+d)=c+d-a+b ; 2.已知x+y=2,则x+y+3= , 5-x-y= . 3.下列去括号有没有错误?若有错,请改正:(1)a 2-(2a-b+c) (2)-(x-y)+(xy-1) =a 2-2a-b+c ; =-x-y+xy-1. 3.去括号:(1)a+3(2b+c-d) = (2)3x-2(3y+2z) = (3)3a+4b-(2b+4a) = (4)(2x-3y)-3(4x-2y) = 4.计算(1)a +(b -c)= (2)a -(-b +c)=(3)(a +b)+(c +d)= (4)-(a +b)-(-c -d)=(5)(a -b)-(-c +d)= (6)-(a -b)+(-c -d)=5.去括号:(1)a+(-b+c-d)= (2)a-(-b+c-d)= (3)-(p+q)+(m-n)= (4)(r+s)-(p-q)= 6.化简:(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z ; (6)-5x 2+(5x-8x 2)-(-12x 2+4x)+2;(7)2-(1+x)+(1+x+x 2-x 2); (8)3a 2+a 2-(2a 2-2a)+(3a-a 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

去括号和添括号的法则文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
一. 在加减混合运算中
如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
②100-(10+20+30)=100-10-20-30=40
③100-(30-10)=100-30+10=80
例2 计算下面各题:
① 100+10+20+30=100+(10+20+30)=100+60=160
② 100-10-20-30=100-(10+20+30)=100-60=40
③ 100-30+10=100-(30-10)=100-20=80
注意:带符号“搬家”
例3 计算 325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。

二. 在乘除混合运算中
“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。

即a×(b÷c)=a×b÷c 从左往右看是去括号,
a÷(b×c)=a÷b÷c 从右往左看是添括号。

a÷(b÷c)=a÷b×c
例4
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
=(2997÷81)×(729÷81)=37×9=333
注意:.在乘除混合运算中,乘数和除数都可以带符号“搬家”。

例5 864×27÷54=864÷54×27=16×27=432
练习
29×125×8
5600÷25÷4
250÷8×4
58+(124-24×3)
2100÷25÷4
58+(124-24×3)
8157-(103+157+597)
30600÷25÷4=
6015-(518+699)-2783=
6076-875-(805+3320)=
5898-(2065-102)=
113600÷100÷4=
453×8×125=
4928-(871+1928)=
1526+(938-526)=
803×12×25=
812-700÷(9+31×11)(136+64)×(65-345÷23)
85+14×(14+208÷26)
(284+16)×(512-8208÷18)120-36×4÷18+35
(58+37)÷(64-9×5)。

相关文档
最新文档