EMI的设计简介
emi设计规则
emi设计规则emi(企业风险管理指数)是一种对企业风险做出评估的指标,它可用于评估企业的经营风险及其后果,从而为经营管理提供支持。
emi设计规则(EDR)是一个框架,可以帮助企业识别、评估、管理不同类型的风险,包括法律、财务、IT、人力资源、技术、组织、运营、和安全风险,并提供可行的行动方案。
emi设计规则的基本概念是以建立一个完整的风险管理体系为基础,为组织提供健全的风险管理流程。
从企业的角度来看,它的目的是通过评估、跟踪和管理不同类型的风险,以最小的成本实现最大的收益,有效地提升企业的整体绩效。
emi设计规则由四个层次组成,包括风险评估、风险管理、风险衡量和风险监控。
第一,风险评估是企业判断风险的第一步,可以通过分析企业的历史数据和当前的行业环境,确定可能发生的风险,并建立可行的应对措施。
具体来说,企业可以定义出多种可能的风险情景,并结合对非标准风险的评估,形成风险评估报告,确定最可能发生、最坏情况和最佳情况下的风险状态,为风险管理提供有效的基础。
第二,风险管理是根据风险评估结果所做出的行动。
通过这一步,企业可以采取控制、减少、接受或转移等具体措施,达到风险最小化的目的。
控制是要采取有效的措施来预防风险的发生,减少是要减少风险的发生或影响,而接受意味着企业将承担风险的风险,转移则意味着用保险、交易或其他方法将风险转移给其他机构。
第三,风险衡量是指企业从不同角度衡量风险的程度,以及风险管理的效果如何。
具体来说,企业可以利用经济成本-效益分析、定量化风险评估方法、数据挖掘等方法来衡量风险,并分析风险控制措施的效果。
第四,风险监控是指企业要及时监控风险情况,以便及时发现风险,并采取有效的应对措施。
企业可以根据风险监控报告,及时调整风险管理战略,以降低风险发生的可能性、减少风险的影响力。
总的来说,emi设计规则的基本原理是以建立一个健全的风险管理体系为目标,以帮助企业实现最高效率经营管理为目标。
它为企业提供了一种组织架构,可以有效地识别、评估、管理和监控风险,从而最大限度地提高组织的绩效。
EMI 滤 波 器 原 理 与 设 计 方 法 详 解
EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。
3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。
开关电源所产生的干扰以共模干扰为主。
产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。
注意:1. 避免电流过大而造成饱和。
2.Choke 温度系数要小,对高频阻抗要大。
3.感应电感要大,分布电容要小。
4.直流电阻要小。
B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。
开关电源的EMI设计
图1:脉冲信号开关电源的EMI 设计摘要:本文从电路原理上分析了开关电源EMI 信号的特点及频率范围,并针对其传导发射和辐射发射提出一些抑制措施。
术语:开关电源,电磁干扰(EMI ),脉冲宽度调制(PWM )一. 前言由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源有显著减少,而且对整机多项指标有良好影响,因此得到了广泛的应用。
近年来许多领域,如邮电通信、军用设备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。
现在开关电源一般都采用了脉冲宽度调制(PWM )技术,其特点是:频率高、效益高、功率密度高、可靠性高。
然而,由于开关电源工作在通断状态,会有很多快速瞬变过程,它本身就是一种EMI 源,它产生的EMI 信号有很宽的频率范围,又有一定的幅度。
若把这种电源直接用于数字设备,则设备产生的EMI 信号会变得更加强烈和复杂。
以下便从开关电源的工作原理出发,探讨其传导干扰抑制的EMI 滤波器的设计以及辐射发射的抑制。
本文主要参考的实例是微机的开关电源,其输出功率较小,对于大电流大功率的通讯设备电源,本文也有一定的参考价值,但具体实施时一定要考虑到通讯设备电源大电流大功率的特点,在元件的选择上要注意其额定电流及高频特性。
二. 开关电源产生EMI 信号的特点数字设备中的逻辑关系是用脉冲信号来表示。
为便于分析,把这种脉冲信号适当简化,可以图1所示的等腰梯形脉冲串表示。
根据傅里叶级数展开的方法,可以下式计算出脉冲串信号所有各谐波的电平:n=1、2、3…A n 脉冲中第n 次谐波的电平V 0 脉冲的电平T 脉冲串的周期T w 脉冲宽度T r 脉冲的上升时间和下降时间开关电源具有各式各样的电路形式,但它们的核心部分都是一个高电压、大电流的受控脉冲信号源,这一点是共同的,为便于分析,也可把该脉冲信号源的波形简化为图1中的等腰梯形脉冲串,并用上式来算出它的各次谐波电平。
假定某PWM 开关电源脉冲信号的主要参数为: V 0=500V ,T =2×10-5S ,T w =10-5S ,T r =0.4×10-T T n TT n Sin T T n T T n Sin T T V A ww r r w n ππππ∙∙=026S,则其谐波电平如下图:电平(dBuV)16012080400.05 0.5 5 50 500 频率(MHz)图2:开关电源的谐波电平从EMI的观点来分析,图2中开关电源内脉冲信号产生的谐波电平,对于其它电子设备来说即是EMI信号。
电源电路emi设计
电源电路emi设计一、概述电源电路的EMI(电磁干扰)设计是确保电子设备稳定运行的关键环节。
以下介绍电源电路EMI设计的各个方面,包括输入滤波器设计、输出滤波器设计、接地设计、屏蔽设计、布局设计、电缆设计、去耦电容设计、电源模块选择、传导干扰抑制和辐射干扰抑制。
二、输入滤波器设计输入滤波器的主要目的是减小电源线上的传导干扰。
设计时应考虑使用低通滤波器,以减小高频率的噪声。
同时,要选择适当的元件参数,以在不影响正常工作电流的情况下,有效滤除噪声。
三、输出滤波器设计输出滤波器的目的是减小设备对外的电磁辐射。
应使用适当阶数和元件参数的滤波器,并根据设备的工作频率和可能的辐射频率来确定滤波器的特性。
四、接地设计良好的接地是EMI设计的关键。
应选择适当的接地方式,如单点接地、多点接地或混合接地,以减小接地阻抗,降低因地线导致的电压降,从而减小共模电流。
五、屏蔽设计屏蔽是减少电磁辐射的有效方法。
可以使用金属屏蔽材料对电源线和电源组件进行屏蔽,以减少外部电磁场对设备的影响和设备对外部的电磁辐射。
六、布局设计电源电路的布局设计对于EMI控制至关重要。
应合理安排电源电路中各元件的位置,尽量减小元件间的电磁耦合,降低噪声的传播。
七、电缆设计电缆是电磁干扰的主要传播途径之一。
应选择低阻抗、低感抗的电缆,并进行合理的电缆布局和捆扎,以减小电缆对电磁干扰的传播。
八、去耦电容设计去耦电容可以减小电源中的噪声,提高电路的稳定性。
在电路板上的关键元件附近应合理放置去耦电容,并选择适当的电容值和耐压值。
九、电源模块选择在电源模块的选择上,应优先考虑具有良好EMI性能的模块。
这可以大大简化EMI设计的难度,提高系统的稳定性。
十、传导干扰抑制传导干扰可以通过在设备的输入端加装滤波器来抑制。
根据干扰的频率和强度,可以选择使用各种不同类型的滤波器,如π型滤波器、级联滤波器等。
此外,合理选择和使用电容器、电感器等元件,也可以有效地抑制传导干扰。
液晶电视机EMI的设计
& Application �设$计 应 用
消费类电子
电子产品世界
液晶电视机EMI的设计
Design of an application in LCD TV EMI
郭志俊 (创维集团研究院,广东深圳518108)
摘 要:本文介绍一种应用在液晶电视机中的预防EMI的设计方法,通过实际测试数据表明,该方法实用性 强、易于实现,文中分析了该设计方法的具体实现方法,以及在实际电路中的具体应用。 关键词:经济;高效;EMI
是否满 67.83 MHz 125.545 MHz 182.775 MHz 足国标 1号线 36 dBuV 43.069 dBuV 38.499 dBuV 否
2号线 40.778 dBuV 46.072 dBuV 35 dBuV
否
3号线 36 dBuV 34 dBuV 36.5 dBuV 是
5.1 眼图指标测试 眼图是由解调后经过低通滤波器输出的基带信号,
图11 Vin=220 V时,Iin、I2、Vin-Vout波形图 从图 11 可以看出,Iin、I2 随 Vin 的增大而减小, 因 Iin 还控制着输出电流和电池充电的平衡,所以 Delta 逆变器的输出电流 I2 的受控量为:Vin - Vout、Iout 和 电池电压 Vdc。
2 结论
在 UPS 工作中,Delta 逆变器都必须提供与 Iin 相 对应的基波电流 I2,否则在主逆变器的作用下,Delta
2 辐射产生的机理
EMI 是指电子产品工作会对周边的其他电子产品造 成干扰。在电子线路设计中,高频信号线、集成电路的 引脚、以及各类接插件等都有可能成为具有天线特性的 辐射干扰源,该干扰源通过空间把其信号耦合到另一个 电路网络中,从而影响处在相同电路网络中的其他电子 产品的正常工作。
EMI滤波器电路原理及设计
EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。
这样就对EMC提出了更高的要求指标。
分类:开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。
通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。
EMI滤波器介绍开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。
火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。
在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
1.开关电源的EMI干扰源开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。
(1)功率开关管功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。
(2)高频变压器高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。
(3)整流二极管整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。
EMI(1级2级)滤波器设计方法
电压法:双LISN法,差共摸分离器 80dB
差模噪声
共模噪声
7
确定所需的插入损耗
原始差模噪声
105 100
ቤተ መጻሕፍቲ ባይዱ
DM limitpk
80
60
40 20 20 5 110 150 10 3 1106 1107 1108 100 10 6 80 60 80
滤波器所需的差模插入损耗
f1 f2
4) 一阶差模EMI滤波器的转折频率 fcdm为:
Vdmreq 60
-60dB/Dec 150kHz fcdm
所需要的IL(或) 所需要的IL
200
f cdm 10
fTdm 4.74kHz
100
0
5) 由fcdm选取Cx1, Cx2及 Ldm :
100 1 ´10
3
100 200
电应力
效率/功率密度
温升规范
EMI规范
3
二、EMI滤波器理想参数设计
4
滤波器插入损耗IL的定义
在滤波器的设计中,通常用插入损耗来反映使用该滤波 器和未使用前信号功率的损失和衰减程度。插入损耗越大, 表示衰减越多,滤波器的效果越好。
50
+
50 v
50
+
50 滤波器 v
v1
-
v2
-
插入损耗:
0
100 200
100
1 ´10
3
1 ´10
4
1 ´10
5
1 ´10
6
1 ´10
7
1 ´10
8
ff
VdmIL 90.149dB @ f 150kHz
EMI电源滤波器的设计
EMI电源滤波器的设计EMI电源滤波器通常由三部分组成:差模滤波部分、共模滤波部分和终端滤波部分。
差模滤波器主要用于滤除差模模式的干扰信号,共模滤波器主要用于滤除共模模式的干扰信号,而终端滤波器用于进一步滤除残余的高频干扰信号。
在设计EMI电源滤波器时,首先需要确定所需的滤波频率范围以及所能容忍的最大干扰水平。
然后,选择合适的滤波器拓扑结构和元件。
常用的拓扑结构包括RC滤波器、LC滤波器、Pi型滤波器、T型滤波器等。
具体的设计步骤如下:1.确定滤波频率范围:根据应用需求和电磁兼容性(EMC)标准要求,确定滤波器应该滤除的频率范围。
2.选择滤波器拓扑结构:根据滤波频率范围选择合适的滤波器拓扑结构。
RC滤波器适用于低频滤波,LC滤波器适用于高频滤波,Pi型滤波器和T型滤波器适用于中频滤波。
3.计算元件数值:根据滤波器的拓扑结构和所需的滤波频率范围,计算出所需的电阻、电容和电感元件的数值。
这些元件的数值可以通过经验公式或者电路仿真工具进行计算。
4.选取合适的元件:根据计算的元件数值,选取合适的电阻、电容和电感元件。
在选取电感元件时,需要考虑元件的电流和电压容量,以保证滤波器的可靠性和稳定性。
5.组装滤波器电路:根据设计的滤波器电路图,组装电阻、电容和电感元件。
在组装过程中,需要确保元件的良好焊接和连接,以避免电流或电压泄漏。
6.测试和优化:组装完成后,对滤波器进行测试和优化。
通过使用示波器或者频谱分析仪等测试设备,可以检测滤波器的滤波效果和性能,并进行必要的优化调整。
总结起来,EMI电源滤波器的设计需要经过确定滤波频率范围、选择滤波器拓扑结构、计算元件数值、选取合适的元件、组装滤波器电路和测试优化等步骤。
通过合理的设计和优化,可以有效降低电源中的电磁干扰,提高电子设备的可靠性和稳定性。
EMI设计简介
EMI知识简介
高通滤波(high pass filtering)
低通滤波(low pass filtering) (2)四种滤波方式 带通滤波(band pass filtering)
带止滤波(band rejection filtering) AC滤波 (3)两种滤波场合 DC滤波
EMI知识简介
Table 2 FCC Class B Radiated Emission Limits
Frequency (MHz) (m)
30-88 88-216 216-1000
Measuring Distance (uV/m)
3 3 3
Field Strength
100 150 200
EMI知识简介
四.传导性EMI和辐射性EMI 如前所述,电磁干扰(EMI)有两种传播途径:传导(Conduction)和辐射
三.EMI之产生,解决方案及国际标准. 1.EMI产生 (1)自然界所产生的电磁干扰: a.电?磁场(low-frequency electric and magnetic field) b.雷击(lightning) c.高频电磁波(high-frequency electromagnetic field)
CS 对传导的免疫 Conducted susceptibility
RS 对辐射的免疫 Radiated susceptibility
EMI知识简介
无论是传导性EMI (Conducted EMI)还是辐射性EMI(Radiated EMI)均有差 模
(differential mode noise)和共模(common mode noise)之分.
EMI知识简介
EMI
应注意
(完整)EMI滤波器的设计原理及参数计算方法
EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz.根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1。
2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地.电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
EMI
3. SE 算式最后一项是校正因子B,其计算公式为: B=20lg[-exp(-2t/σ)]
此式仅适用于近磁场环境并且吸收损耗小于10dB 的情况。由于屏 蔽物吸收效率不高,其内部的再反射会使穿过屏蔽层另一面的能量增加, 所以校正因子是个负数,表示屏蔽效率的下降情况。
也就是说,我们想抑制住EMI,必须提高屏蔽效率,那么,屏蔽材料的选 择也变得很重要了.只有如金属和铁之类导磁率高的材料才能在极低频 率下达到较高屏蔽效率。这些材料的导磁率会随着频率增加而降低,另 外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽 罩作成规定形状同样会降低导磁率。
EMI 的控制措施 屏蔽:电场屏蔽、磁场屏蔽、电磁场屏蔽 滤波 接地
1. 屏蔽
屏蔽能够有效的抑制通过空间传播的电磁干扰。采用 屏蔽的目的有两个,一个是限制内部的辐射电磁能量外泄 出控制区域,另一个就是防止外来的辐射电磁能量入内部 控制区。按照屏蔽的机理,我们可以将屏蔽分为电场屏蔽、 磁场屏蔽、和电磁场屏蔽。
屏蔽罩的设计要点
• 波长决定孔隙的大小: 波长决定孔隙的大小:
设计屏蔽罩的困难在于制造过程中不可避免会产生孔隙,而且设备运行过程中还会 需要用到这些孔隙。制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需 要在屏蔽罩上打孔,从而大大降低了屏蔽性能。尽管沟槽和缝隙不可避免,但在屏蔽设 计中对与电路工作频率波长有关的沟槽长度作仔细考虑是很有好处的。 任一频率电磁波的波长为: 波长(λ)=光速(C)/频率(Hz) 当缝隙长度为波长(截止频率)的一半时,RF 波开始以20dB/10 倍频(1/10 截止频率)或 6dB/2 倍频(1/2 截止频率)的速率衰减。通常RF 发射频率越高衰减越严重,因为它的波长 越短。当涉及到最高频率时,必须要考虑可能会出现的任何谐波,一旦知道了屏蔽罩内 RF 辐射的频率及强度,就可计算出屏蔽罩的最允许缝隙和沟槽。例如如果需要对 1GHz(波长为300mm)的辐射衰减,则150mm 的缝隙将会开始产生衰减,因此当存在小于 150mm 的缝隙时,1GHz 辐射就会被衰减。所以对1GHz 频率来讲,若需要衰减20dB, 则缝隙应小于15 mm(150mm 的1/10),需要衰减26dB 时,缝隙应小于7.5 mm(15mm 的 1/2 以上),需要衰减32dB 时,缝隙应小于3.75 mm(7.5mm 的1/2 以上)。
EMI滤波器的设计原理及参数计算方法
EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。
根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1.2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
开关电源emi滤波器原理与设计
1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚
结构方面的EMC和EMI设计知识
• • • • • • •
结构方面的EMC/EMI设计
• • • •
•
•
A 电源滤波技术分析 B 信号滤波技术分析 解决电磁兼容的一个关键问题就是来自工作电源方面的干扰信号,为此,在 电源方面的处理需予以特别重视。 首先在电源输入端口设置反向截止大容量的存储电路和双极性瞬态电压抑制 器(即TVS),其作用时增加产品承受来自外电瞬态高压尖峰脉冲的冲击, 从而提高抗电源冲击和抗尖峰脉冲干扰的能力。 同时在电源输入端口设置直流滤波器,滤波器主要由无源集中参数元件(电 感、电容及电阻)构成。在设计中,考虑其不仅在所需阻带范围内有着良好 的抑制性,而且在其通带和过度频带不应产生明显的阻尼震荡。其中电感和 电容主要作用于抑制电源线上传输的电磁干扰脉冲,以尽可能地抑制和减少 电磁干扰脉冲向控制器内部侵入。 对电源滤波器的一个设计要点时要求其当大电流时,其电感不能发生饱和, 为此电源滤波器中二组电感线圈必须同时绕在一个磁芯上,这二个电感在电 流的方向上互补,这种方式对于差模电流和电流所产生的磁通时互相抵消的 ,因此不会引起磁芯的饱和。而对共模电流则可以体现为相当大的电感值, 从而获得最大的滤波效果。
电路板emi设计
电路板emi设计一、什么是电路板EMI设计?电路板EMI(Electromagnetic Interference)设计是指在电路板设计过程中,考虑到电磁干扰的问题,采取相应的措施来减少或避免电磁干扰对其他设备或系统的影响。
二、为什么需要进行电路板EMI设计?1. 法规要求:各国针对电子设备的电磁兼容性都有相关法规和标准,如欧盟CE标准、美国FCC标准等,要求产品在使用过程中不会对其他设备造成干扰。
2. 保证产品质量:如果产品存在较强的EMI问题,可能会导致产品性能下降、寿命缩短等质量问题。
3. 提高市场竞争力:通过进行EMI设计,可以提高产品的稳定性和可靠性,增强市场竞争力。
三、如何进行电路板EMI设计?1. 布局设计:尽可能地将信号线和地线分离,并采用合适的层次布局和分区布局。
同时,在布局时还需考虑到信号传输路径的长度、方向等因素。
2. 组件选择:选择符合EMC要求的元器件,并尽可能地选用抗干扰能力强的元器件。
同时,还需注意元器件的布局和连接方式。
3. 地线设计:地线是电路板EMI设计中最重要的因素之一。
需要确保地线尽可能宽且连续,并且各个部分之间要进行良好的连接。
4. 滤波器设计:在电路板上添加合适的滤波器可以有效地减少EMI问题,如降噪电容、滤波电感等。
5. 接口设计:对于涉及到接口的部分,需要采用合适的防干扰措施,如添加磁珠、使用屏蔽罩等。
6. 仿真测试:在进行实际生产前,需要进行仿真测试,以验证电路板EMI设计的效果是否符合预期。
四、常见的EMI问题及解决方案1. 信号串扰:信号线和地线之间距离过近或者布局不当可能会导致信号串扰。
解决方案包括增加信号线和地线之间距离、采用合适的层次2. 辐射干扰:较高频率的信号可能会通过空气传播而产生辐射干扰。
解决方案包括添加屏蔽罩、采用合适的滤波器等。
3. 接口干扰:接口部分容易受到外部干扰。
解决方案包括添加磁珠、使用屏蔽罩等。
4. 地线问题:地线不良可能会导致信号串扰、辐射干扰等问题。
EMI滤波器的设计原理
EMI滤波器的设计原理1 电磁干扰滤波器的构造原理及应用1.1 构造原理1.2 基本电路及其典型应用电磁干扰滤波器的基本电路如图1所示。
电磁干扰的屏蔽方法EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。
电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。
”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。
例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。
EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
EMI有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源 .... .、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。
EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。
对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。
无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。
金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为SE dB=A+R+B其中A:吸收损耗(dB) R:反射损耗(dB) B:校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况)一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE 要等于100dB。
classd的emi设计
在D类音频放大器中管理EMI 为相对介电常数AN-1737© 2007 National Semiconductor Corporation 300415 2A N -1737图4. D类音频放大器的脉冲宽度调制30041506图3. 在PCB 中的全向天线一个未加终接的表面迹线或者一个未加终接的埋线会成为一个全向的鞭状天线。
如果版图布局较差,在不同射频电势处的迹线段会形成全向偶极天线。
而且,若PCB 层本身被耦合到电场中,PCB 的传导层会作为偶极天线的另一端。
D 类音频放大器由于D 类音频放大器的高效率,已成为消费电子市场中流行的技术之一。
它采用输入的模拟信号对高频方波进行调制。
方波本身可以为固定频率、可变频率,或仅是频率不固定的随机脉冲。
用两个极点的巴特沃斯低通滤波器,可滤除高频分量并恢复原始的音频信号。
在“无滤波器”结构中,扬声器本身的电感可作为滤波器的一部分。
一种通用的D 类组态为脉冲宽度调制(PWM )结构,其采用固定频率波形,改变占空比以在低通滤波器之后产生移动的信号平均量,如图4所示。
开关结构的优点很明显, 即高频、低功耗和小型的散热设计。
但增加效率必然会提高成本。
为了实现高效率驱动,需要用一个陡峭的快速切换的方波信号。
这同样会导致数字系统中出现多余的伪信号,因为频谱能量大量集中在方波的边沿。
同样,会存在一些过冲,造成波形在短时间内超出最大和最小电压。
过冲在输出频谱中产生额外的高频分量,从而恶化了EMI 和音频性能。
30041501AN-1737• 固定频率调制• 扩展频谱调制3 4A N -1737图7. LM48511是一种扩展频谱调制D 类放大器30041507LM48511是一款扩频调制D 类音频放大器。
它还包括一个内建升压稳压器,可将电源电压驱动到高达7V ,增加了放大器的输出功率,与未升压的放大器相比具有更好的声压水平。
即使用电池等会衰变的电源供电,升压稳压器也能使放大器维持恒定的输出电平。
emi设计规则
emi设计规则EMI设计规则是一套运用于电子元件和电路设计中的电磁兼容性(EMC)设计规则。
它是由电子元件制造商和电路板制造商联合发布的国际标准,旨在提高设备的整体结构和元件的适应性,并使设备具有可靠的电磁兼容性性能。
EMI设计规则的出现,改善了传统的设计规则文件的结构和内容,使电路板设计者更加容易理解这些设计规则,让电路板设计过程变得更加有序和可控。
EMI设计规则主要涉及以下几个内容:(一)抗电磁干扰能力EMI设计规则要求设备的整体结构和电子元件的适应性必须达到一定的要求,以确保设备能够顺利运行,具有一定的抗电磁干扰能力。
(二)抗电磁辐射能力EMI设计规则还需要考虑设备的整体结构和电子元件的适应性,以确保设备具有良好的抗电磁辐射能力。
(三)EMI数字设计EMI设计规则要求将数字信号等传递线与模拟信号相分离,并采用有效的绝缘技术,以避免模拟信号和数字信号的相互影响。
(四)电容器的设计EMI设计规则还要求电路板设计者采用陶瓷电容器,以有效减少变压器和感应器等元件的反馈,同时使它们具有良好的抗电磁干扰能力。
(五)布局EMI设计规则还要求电路板设计者采用有效的布局,并使用合理的材料以满足EMI数字设计要求,这样可以有效减少设备的信号损耗和电磁辐射,提高设备的电磁兼容性能。
EMI设计规则的出现,极大地改善了电路板设计的效率,简化了设计者的工作,并使电路板设计变得更加有序和可控,从而促进了电子元件和电路板设计产业的发展。
此外,EMI设计规则还可以提高设备的电磁兼容性,确保设备能够顺利运行,以满足用户的需求。
EMI设计规则的实施和改进是一个持续的过程。
设计者必须适时掌握新的技术进步和行业标准,以满足EMI设计规则所提出的要求,从而更好地保证设备的可靠性和安全性。
ESD、EMI、EMC_设计
-U3
碰在一起的两个带电 的物体,形象地说,就
-
E
好比空中两朵带电的 云被风吹到一起。
+ +
+U1
+U2
+
11
+U3
高,但其电位梯度还 是不变。
静电的产生 — 带电体分离
+ + + -U1 +U2 +U3
带电物体被一分为 二,形象地说,就 好比空中一朵带电 的云被风吹散。
电场中带电物体 被一分为二,两个 物体分得的电荷大 小不一样,分得电 荷多的电位升高。 经过分分合合, 最后部分带电物体 的电位非常高,这 就是雷电的成因。
打雷时,带电体 之间的电位差高达数 亿伏,地表面的电位
+ -
+
差也有3万伏/米。 强大的ESD放电会 在供电线路中产生高 压脉冲,很容易对电 子设备造成损坏。 贵重电子设备一定 要在电源输入电路中
+
安装ESD防护电路。
13
静电的产生 — 摩擦带电
绝缘体A
衣服互相摩擦时很容易 产生高压静电;地毯与 皮鞋产生摩擦时也会产 生高压静电;电风扇吹 出的气体与周边物体摩 擦时,也会产生高压静 电。这些情况对于IC而 接点电位差 言是一种极大的威胁, 在操作过程中,不要随 便用手或物体触及IC。
+
+
10
静电的产生 — 电离带电体的组合
电场中两个带负 电(或正电)的 物体互相碰在一 起的时候。其电 荷也要进行重新 分布。 两个带电物体互 相碰在一起,相 当于两个电容串 联充电。
两个带负电(或正电) 的物体碰在一起,电 荷被进行重新分布之 后,带电端的电位, E 在数值上都比原来 E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI知识简介
EMI
应注意
不產生電磁雜訊妨 礙其他電子設備
EMS
应能够
不受其他電子設備 所產生的電磁影響
就是EMC的觀念 图2.EMC的观念
二.EMI/EMS之分类:
EMI知识简介
EMC
EMI
EMS
CE
RE
CS
传导性干扰 Conducted emission
辐射性干扰 对传导的免疫 Radiated Conducted emission susceptibility
Measuring Distance (uV/m)
30-88
3
88-216
3
216-1000
3
Field Strength
100 150 200
EMI知识简介
四.传导性EMI和辐射性EMI 如前所述,电磁干扰(EMI)有两种传播途径:传导(Conduction)和辐射 (Radiation),即电磁干扰分为传导性电磁干扰(Conducted EMI)和辐射性电 磁干扰(Radiated EMI)两种. 电磁干扰在电子仪器设备中产生噪音,相应地,噪音亦分为传导性噪音效 (Conducted noise)和辐射性噪音(Radiated noise) a.当电磁干扰波的频率小于30MHz时,电磁干扰主要是以传导方式在电子 设备中产生传导性噪音,可通过测试电源线感应的电压来衡量干扰程度. b.当电磁干扰波的频率高于30MHz时,电磁干扰主要以辐射方式在电子设 备中产生辐射噪,以直接测量传播到空间的干扰波来评价干扰程度. 无论传导噪音还是辐射噪音,都分为共模(或共态)噪音(common mode noise)和差模(或常模?常态)(differention mode noise或normal mode noise)两种. 通常共模噪音比差模噪音更难控制.
EMI知识简介
EMIEMS图1 EMI和EM Nhomakorabea示示意图
EMI知识简介
3.EMC定义: EMC是Electro-Magnetic Compatibility 的缩写,译为电磁兼容,是指某一装 置或系统和其它装置和系统同时运作时,互相间不会国为EMI问题而使功能受到影 响,即可称”兼容”. 三者关系:异常电源对电力电子设备会发生干扰,同时电力电子设备亦会产生干 扰波影响其它用电设备,故对所有的干扰源必须具备如图2所示的兼容观念.
EMI知识简介
2.EMI的表现形态: (1)由电源电路进入的噪声干扰
(2)由讯号线的噪声干扰 (3)由静电感应引起的噪声干扰 (4)电磁感应引起的噪声干扰 (5)由电磁波引起的噪声干扰 (6)由电路间共同阻抗引起的噪声干扰 (7)由反射引起的噪声干扰 (8)由接地或屏蔽不当引起的噪声干扰 (9)由配线不良引起的噪声干扰 (10)由接地不良引起的噪声干扰
EMI知识简介
(2)人为设备所产生干扰 a.射频发射机(radio transmitter) b.数字讯号处理与传输(digital signal processing and transmission) c.电热应用(electro-heat application) d.电力设备及输电(power conditioning and transmission) Ⅰ.低频导电性(low frequency conducted)干扰 (谐波?电压变动?电压瞬降?不平衡?载波讯号?其它低频) Ⅱ.高频辐射性(high frequency radiated)干扰 Ⅲ.高频导电性(high frequency conducted)干扰 (低电压系统的尖波?高电压变电所的突波电压 Ⅳ.高频辐射性(high frequency radiated)干扰 e.开关时的瞬时(switching transient) f.静电放电(electrostatic discharge,ESD) g.核爆电磁脉波(nuclear electromagnetic pulse,NEMP)
RS
对辐射的免疫 Radiated susceptibility
EMI知识简介
无论是传导性EMI (Conducted EMI)还是辐射性EMI(Radiated EMI)均有差 模 (differential mode noise)和共模(common mode noise)之分.
三.EMI之产生,解决方案及国际标准. 1.EMI产生 (1)自然界所产生的电磁干扰: a.电?磁场(low-frequency electric and magnetic field) b.雷击(lightning) c.高频电磁波(high-frequency electromagnetic field)
EMI知识简介
4.有关EMI的国际标准
(1) FCC: U.S. Federal Communication Commission
美国联邦通信委员会 Docket 20780 (2) VDE
Conduction Emission Limits
(3) MIL
(4) IEC
EMI知识简介
Table 1 FCC Class A Radiated Emission Limits
EMI设计简介
EMI知识简介
一.EMI.EMC.EMS的定义及相互关系 1.EMI定义: EMI是Electro-Magnetic Intererence的缩写,译为电磁干扰,是指某一装置 或系统在执行其应具有的功能的过程中,如出现有不利于对其他电子设备或系统 运作功能的讯号,而此讯号是不需要的,且是没意义的,则称此讯号为”EMI”,此讯 号可能来自外界,亦可能来自设备或系统本身.参见图1. 2.EMS定义: EMS是Electro-Magnetic Susceptibility的缩写,译为电磁免疫,是指某一装 置或系统在执行应具有功用的过程中不受周围电,磁环境影响的能力.参见图1
EMI知识简介
3.噪声干扰的对策: (1)接地(Grounding) (2)屏蔽(Shielding) (3)滤波(Filtering) (4)平衡(Balancing) (5)隔离(Isolation) (6)分离与取向(Separation and Orientation) (7)电路阻抗控制(Circuit impedance level control) (8)配线设计(Cable design) (9)速度与频宽控制(Speed and band width control)
Frequency (MHz) (m)
Measuring Distance (uV/m)
30-88
30
88-216
30
216-1000
30
Field Strength
30 50 70
Table 2 FCC Class B Radiated Emission Limits
Frequency (MHz) (m)