8.1空间几何体的结构及其画法
§8.1 空间几何体的结构及其三视图和直观图
探究提高
解决该类题目需准确理解几何体的定义,要真正把握几何 体的结构特征,并且学会通过反例对概念进行辨析,即要说明 一个命题是错误的,设法举出一个反例即可. 主页
变式训练 1
下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱; ②若过两个相对侧棱的截面都垂直于底面,则该四棱 柱为直四棱柱; ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为 直四棱柱. 其中,真命题的编号是②④ ________.(写出所有真命题 的编号)
主页
变式训练 3
一个平面图形的水平放置的斜二测直观图是一个 等腰梯形,它的底角为45°,两腰和上底边长均为1,则这 2 2 个平面图形的面积是 ______.
y
D
C
D
1
C
2
o
A
E
B x
A
2 1
B
S 1 [1 2 1] 2 2 2. 2
主页
题 型四
几何体的截面问题
对于①,平行六面体的两个相对侧面也可能与 底面垂直且互相平行,故①假; 对于②,两截面的交线平行于侧棱,且垂直于底 面,故②真;
主页
变式训练 1 下面是关于四棱柱的四个命题: ③若四个侧面两两全等,则该四棱柱为直四棱柱; ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱. ②④ .(写出所有真命题的编号) 其中,真命题的编号是________
对于③,作正四棱柱的两个平行菱形截面,可得满足条件 的斜四棱柱(如图(1)),故③假; 对于④,四棱柱一个对角面的两条对角线,恰为四棱柱 的对角线,故对角面为矩形,于是侧棱垂直于底面的一对角 线,同样侧棱也垂直于底面的另一对角线,故侧棱垂直于底 面,故④真(如图(2)).
课件6:8.1 第1课时 棱柱、棱锥、棱台
解析:A 选项不符合棱柱的特点;B 选项中,如图①所示,构造四 棱柱 ABCD-A1B1C1D1,令四边形 ABCD 是梯形,可知平面 ABB1A1 ∥平面 DCC1D1,但这两个面不能作为棱柱的底面;C 选项中,如 图②所示,底面 ABCD 可以是平行四边形;D 选项是棱柱的特点.
①
②
答案:D
方法规律
用一个 平行 于棱锥 棱台 底底部面面分的叫与平做截面棱面去台之截间棱的锥,上可台面记AB的作CD棱:-台棱
A'B'C'D'
续表
相关概念 上底面:截面. 下底面:原棱锥的底 面. 侧面:其余各面. 侧棱:相邻侧面的公 共边. 顶点:侧面与上(下) 底面的公共顶点
[基础测试] 2.判断.(正确的画“√”,错误的画“×”) (1)棱柱的侧面都是平行四边形. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体叫 棱锥. ( ) (3)用一个平面去截棱锥,底面和截面之间的部分叫做 棱台.( )
棱柱结构特征问题的解题策略
(1)有关棱柱概念辨析问题应紧扣棱柱的定义:
①两个面互相平行;
②其余各面都是四边形;
③相邻两个四边形的公共边互相平行.
求解时,首先看是否有两个面平行,再看是否满足其他特征.
(2)多注意观察一些实物模型和图片,便于举反例.
【跟踪训练】 1.下列说法错误的是 ( ) A.多面体至少有四个面 B.棱柱的两个底面是全等的多边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析:三棱柱的底面是三角形,其侧面一定是平行四边形,故 D 错误. 答案:D
【跟踪训练】 3.下列四个平面图形中,每个小四边形都是正方形,其中可以沿 相邻正方形的公共边折叠围成一个正方体的是( )
8-1 空间几何体的结构特征及三视图和直观图
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
【解析】
命题①符合平行六面体的定义,故命题①是
正确的,底面是矩形的平行六面体的侧棱可能与底面不垂 直,故命题②是错误的,因直四棱柱的底面不一定是平行四 边形,故命题③是错误的,命题④由棱台的定义知是正确 的.
【答案】 ①④
课前自主回顾
课堂互动探究
课前自主回顾 课堂互动探究 课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
解析:A错误.如图所示,由两个结构相同的三棱锥叠 放在一起构成的几何体,各面都是三角形,但它不一定是棱 锥.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
B错误.如下图,若△ABC不是直角三角形或是直角三角 形,但旋转轴不是直角边,所得的几何体都不是圆锥.
时,其侧视图为D. (2)A图是两个圆柱的组合体的俯视图;B图是一个四棱柱 与一个圆柱的组合体的俯视图;C图是一个底面为等腰直角三 角形的三棱柱与一个四棱柱的组合体的俯视图,采用排除 法,故选D.
【答案】 (1)D (2)D
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 · 课标版 · A
数学(文)
C错误.若六棱锥的所有棱长都相等,则底面多边形是正 六边形.由几何图形知,若以正六边形为底面,侧棱长必然 要大于底面边长. D正确.
答案:D
课前自主回顾
课堂互动探究
课时作业
人教a版高考数学(理)一轮课件:8.1空间几何体的结构、三视图和直观图
3.简单组合体 简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一 种是由简单几何体截去或挖去一部分而成,有多面体与多面体、 多面体与旋 转体、旋转体与旋转体的组合体.
4. 三视图 几何体的三视图包括正视图、侧视图、俯视图 , 分别是从几何体的 正前方、正左方、正上方观察几何体画出的轮廓线.
考纲解读
空间几何体的结构 和三视图部分 重点考 查柱、锥、台、球 的定义和以三 视图为 载体考查柱、锥、 台、球的表面 积和体 积, 难度 不大. 空间几 何体的 性质是 基础, 以它们为载体考查 线线、线面、 面面间 的 关 系 是 重点 . 三 视图 的 还 原在 各 地 高 考 试 题 中 频繁 出 现 , 已 经 成 为高 考 的 热 点 问 题, 题型 多以 选择 题和 填空 题为 主 , 有时也会作为解答题的背景出现.
三视图的长度特征: “ 长对正, 宽相等, 高平齐” , 即正视图和侧 视图一样高, 正视图和俯视图一样长, 侧视图和俯视图一样宽. 若相邻两物 体的表面相交, 表面的交线是它们的分界线, 在三视图中, 要注意实、 虚线的 画法 .
5. 空间几何体的直观图 空间几何体的直观图常用斜二测画法来画, 其规则是: (1) 原图形中 x轴、 y轴、 z轴两两垂直, 直观图中, x' 轴、 y' 轴的夹角为 45° , z' 轴与 x' 轴和 y' 轴所在平面垂直. (2) 原图形中平行于坐标轴的线段, 在直观图中仍分别平行于坐标轴. 平 行于 x轴和 z轴的线段在直观图中保持原长度不变, 平行于 y轴的线段长度 在直观图中变为原来的一半. 6. 中心投影与平行投影 (1) 平行投影的投影线互相平行, 而中心投影的投影线相交于一点. (2) 从投影的角度看, 三视图和用斜二测画法画出的直观图都是在平行 投影下画出来的图形.
8.1 基本几何图形 第1课时 棱柱、棱锥、棱台(课件)2022-2023学年高一下学期数学(人教A
重点:掌握棱柱、棱锥、棱台的结构特征; 难点:棱柱、棱锥和棱台的侧面展开图问题.
学科素养
1.数学抽象:多面体与旋转体等概念的理解; 2.逻辑推理:棱柱、棱锥、棱台的结构特点; 3.直观想象:判断空间几何体; 4.数学建模:通过平面展开图将空间问题转化为平面问题解决,体现了转 化的思想方法.
相比较可得蚂蚁爬行的最短路线长为.
练习: 1.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的 公共边折叠围成一个正方体的是( )
2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面” 表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图 中“0”上方的“2”在正方体的上面,则这个正方体的下面是( )
(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形. 底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥 ……其中三棱锥又叫四面体。
棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。 (3)棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分 叫做棱台。 原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、 顶点。
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、 五棱台……
用各顶点字母表示棱柱,如棱台ABCDEF-A’B’C’D’E’F’。
思考:
1.面数最少的多面体是什么? 提示:围成一个多面体至少要四个面,所以面数最少 的多面体是四面体,如三棱锥就是四面体. 2.棱柱的侧面一定是平行四边形吗? 提示:根据棱柱的概念可知,棱柱的侧面一定是平行 四边形.
题型一 棱柱、棱锥、棱台的结构特点 例1 (1)下列命题中正确的是________.(填序号) ①有两个面平行,其余各面都是四边形的几何体叫棱柱; ②棱柱的一对互相平行的平面均可看作底面; ③三棱锥的任何一个面都可看作底面; ④棱台各侧棱的延长线交于一点. (2)关于如图所示几何体的正确说法的序号为________.
立体几何-8.1__空间几何体的结构及其三视图和直观图(教案)
214 §8.1 空间几何体的结构及其三视图和直观图基础自测1.下列不正确的命题的序号是 . ①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥 ④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥答案 ①②③2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 . 答案 60°3.如果一个几何体的三视图如图所示(单位长度:cm ),则此几何体的表面积是 cm 2.答案 (20+42) 4.(2008·宁夏文,14)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为 .答案 34 5.已知正三角形ABC 的边长为a,那么△ABC 的直观图△A ′B ′C ′的面积为 .答案 166a 2 例题精讲例1 下列结论不正确的是 (填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 ①②③解析 ①错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥.②错误.如下图,若△ABC 不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.215③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.例2 已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原三角形ABC 的面积.解 建立如图所示的xOy 坐标系,△ABC 的顶点C 在y 轴上,AB 边在x 轴上,OC 为△ABC 的高,把y 轴绕原点顺时针旋转45°得y ′轴,则点C 变为点C ′,且OC=2OC ′,A 、B 点即为A ′、 B ′点,AB=A ′B ,已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得''sin C OA OC ∠=ο45sin ''C A ,所以OC ′=a οο45sin 120sin =a 26, 所以原三角形ABC 的高OC=6a ,所以S △ABC =21×a ×6a=a 262. 例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解 由三视图易知,该正三棱柱的形状如图所示:且AA ′=BB ′=CC ′=4cm,正三角形ABC 和正三角形A ′B ′C ′的高为23cm.∴正三角形ABC 的边长为|AB|=ο60sin 32=4.∴该三棱柱的表面积为S=3×4×4+2×21×42sin60°=48+83(cm 2). 体积为V=S 底·|AA ′|=21×42sin60°×4=163(cm 3). 故这个三棱柱的表面积为(48+83)cm 2,体积为163cm 3.例4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示, 求图中三角形(正四面体的截面)的面积.解 如图所示,△ABE 为题中的三角形,由已知得AB=2,BE=2×23=3, BF=32BE=332,AF=22BF AB -=344-=38,∴△ABE 的面积为216 S=21×BE ×AF=21×3×38=2.∴所求的三角形的面积为2. 巩固练习1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是 (填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上答案 ①③④2.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于 . 答案 22a 23.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等 腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S.解 (1)由该几何体的俯视图、正视图、左视图可知,该几何体是四棱锥,且四棱锥的底面ABCD 是边长为6和8的矩形,高VO=4,O 点是AC 与BD 的交点. ∴该几何体的体积V=31×8×6×4=64. (2)如图所示,侧面VAB 中,VE ⊥AB ,则VE=22OE VO +=2234+=5∴S △VAB =21×AB ×VE=21×8×5=20 侧面VBC 中,VF ⊥BC ,则VF=22OF VO +=2244+=42.∴S △VBC =21×BC ×VF=21×6×42=122∴该几何体的侧面积 S=2(S △VAB +S △VBC )=40+242.4.(2007·全国Ⅱ文,15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上.如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.答案 2+42 回顾总结知识方法思想课后作业一、填空题1.利用斜二测画法可以得到:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上正确结论的序号是 .217答案 ①②2.如图所示,甲、乙、丙是三个几何体图形的三视图,甲、乙、丙对应的标号是 . ①长方体;②圆锥;③三棱锥;④圆柱. 答案④③②3.下列几何体各自的三视图中,有且仅有两个视图相同的是 .答案 ②④4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下:根据三视图回答此立体模型的体积为 .答案 55.棱长为1的正方体ABCD —A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为 .答案 26.(2008·湖北理)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为 . 答案 328π 7.用小立方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体至少要 个小立方块.最多只能用 个小立方块.答案 9 148.如图所示,E 、F 分别是正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)218答案 ②③二、解答题9.正四棱台AC 1的高是17 cm ,两底面的边长分别是4 cm 和16 cm ,求这个棱台的侧棱长和斜高. 解 如图所示,设棱台的两底面的中心分别是O 1、O ,B 1C 1和BC 的中点分别是E 1和E ,连接O 1O 、E 1E 、O 1B 1、OB 、O 1E 1、OE ,则四边形OBB 1O 1和OEE 1O 1都是直角梯形.∵A 1B 1=4 cm ,AB=16 cm , ∴O 1E 1=2 cm ,OE=8 cm ,O 1B 1=22 cm ,OB=82 cm ,∴B 1B 2=O 1O 2+(OB-O 1B 1)2=361 cm 2,E 1E 2=O 1O 2+(OE-O 1E 1)2=325 cm 2,∴B 1B=19 cm ,E 1E=513cm.答 这个棱台的侧棱长为19 cm ,斜高为513cm.10.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解 圆台的轴截面如图所示,设圆台上下底面半径分别为x cm,3x cm.延长AA 1交OO 1的延长线于S , 在Rt △SOA 中,∠ASO=45°, 则∠SAO=45°,∴SO=AO=3x ,∴OO 1=2x ,又S 轴截面=21(6x+2x )·2x=392,∴x=7. 故圆台的高OO 1=14 (cm),母线长l=2O 1O=142 (cm),两底面半径分别为7 cm,21 cm.11.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?解 如图所示,正棱锥S-ABCD 中高OS=3,侧棱SA=SB=SC=SD=7,在Rt △SOA 中, OA=22OS SA =2,∴AC=4.∴AB=BC=CD=DA=22.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,则SO ⊥OE.在Rt △SOE 中,∵OE=21BC=2,SO=3,∴SE=5,即侧面上的斜高为5.12. 如图所示的几何体中,四边形AA 1B 1B 是边长为3的正方形,CC 1=2,CC 1∥AA 1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.解 这个几何体不是棱柱;在四边形ABB 1A 1中,在AA 1上取点E ,使AE=2;在BB 1上取F 使BF=2;连接C 1E ,EF ,C 1F ,则过C 1EF 的截面将几何体分成两部分,其中一部分是棱柱ABC —EFC 1,其棱长为2;截去的部分是一个四棱锥C1—EA1B1F.219。
8.1.1《基本立体图形》课件(共37张PPT)
问题7:观察棱台,构成它的面有什么特点? 与棱锥有何关系?
1.定义:用一个平行于棱锥底面的平面去截棱锥,底 面与截面之间的部分是棱台.
2. 分类:由三棱锥,四棱锥,五棱锥,……截得的棱 台,分别叫做三棱台,四棱台,五棱台,……
3.表示: 棱台ABCD-A1B1C1D1
DD’ AD A’
A
➢围成多面体的各个多边形 叫多面体的面;
➢相邻两个面的公共边 叫多面体的棱;
➢棱和棱的公共点 叫多面体的顶点;
问题4:一般地,怎样定义旋转体?
轴
由一个平面图形绕它所在平面内的 一条定直线旋转所形成的封闭几何体 叫做旋转体
问题5:观察下列棱柱,它们共同的特点是什么? 你能给出棱柱的定义吗?
D1
C1
两个互相平行的平面叫做棱柱的底面,其
余各叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
2、棱柱的结构特征
如何描述下图的几何结构特征?
棱柱
有两个面互相平行,其余各面 都是四边形,并且每相邻两个面的 公共边都平行,由这些面所围成的 几何体叫棱柱.
E′ F′ A′
D′ C′
棱柱的底面可以是三角形、四边形、五边形……我们 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……
课堂练习:
1. 下面的几何体中,哪些是棱柱?
P 106第8题
2.如图,长方体
ABCD ABCD
中被截去一部分,其中 EH//BC//FG 截去的几何体是什么? 剩下的几何体是什么?
HC
A
E
G
B
F
A
D
HC
C C’
上底面
B
侧棱
§8.1 空间几何体的结构及其三视图和直观图
(1)在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,
把它们画成对应的x'轴和y'轴,两轴相交于点O',且使∠x'O'y'=45°(或 135°),用它们确定的平面表示水平面.
栏目索引
(2)已知图形中平行于x轴、y轴的线段,在直观图中,分别画成平行于x' 轴、y'轴的线段. (3)已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴 的线段,在直观图中长度变为原来的④ 一半 . 5.水平放置的平面图形的直观图的面积S直与原平面图形的面积S原的关 系为S直= S原.
ห้องสมุดไป่ตู้
栏目索引
解题导引
解析 过点A,E,C1的截面为AEC1F,如图, 则剩余几何体的左视图为选项C中的图形.故选C.
2 4
栏目索引
方法技巧
方法 掌握三视图的基本特征
正确认识三视图和直观图是本节的重点和难点.掌握三视图的基本特征 和“长对正、高平齐、宽相等”的原则,注意虚实线的区别,充分发挥 空间想象能力是解题的关键. 例 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1 中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该 正方体的上半部分,则剩余几何体的左视图为 ( C )
栏目索引
考点二
三视图和直观图
1.三视图是从一个几何体的正前方、正左方、③ 正上方 三个 不同的方向看这个几何体,描绘出的图形,分别称为正视图、侧视图、 俯视图. 2.三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图放 在正视图的右方. 3.三视图的三个原则:长对正、高平齐、宽相等. 4.水平放置的平面图形的直观图的斜二测画法
课件3:8.1 第1课时 棱柱、棱锥、棱台
(下)底面的公共顶
点
状元随笔 对于多面体概念的理解,注意以下两个方面 (1)多面体是由平面多边形围成的,围成一个多面体至少要 四个面.一个多面体由几个面围成,就称为几面体. (2)多面体是一个“封闭”的几何体,包括其内部的部分.
[教材解难]
判断多面体是不是棱台容易出现两个错误:(1)只看到有两 个面互相平行,而不注意各条侧棱延长线是否相交于一点; (2)只看到各条侧棱的延长线相交于一点,忽视了两个底面 是否平行.如图,它们都不是棱台.
【基础自测】
1.下面图形中,为棱锥的是( )
A.①③
B.①③④
C.①②④
D.①②
解析:根据棱锥的定义和结构特征可以判断,①②是棱锥,
③不是棱锥,④是棱锥.故选 C.
答案:C
2.下列图形中,是棱台的是( )
解析:由棱台的定义知,A、D 的侧棱延长线不交于一 点,所以不是棱台;B 中两个面不平行,不是棱台,只 有 C 符合棱台的定义,故选 C. 答案:C
本课结束
更多精彩内容请登录:
跟踪训练 2 设集合 M={正四棱柱},N={长方体},P={直四
棱柱},Q={正方体},则这些集合间的关系是( )
A.Q N M P
B.Q M N P
C.Q N M P
D.Q M N P
解析:易知四种棱柱中正方体最特殊,直四棱柱最一般,而正
四棱柱是底面为正方形的长方体.
答案:D
题型三 简单几何体的判定[经典例题] 例 3 如图所示,长方体 ABCD-A1B1C1D1.
由一个平面图形绕它所在平面内 的 一 条 _定__直__线___ 旋 转 所 形 成 的
体
__封_闭 ___几__何__体__
8.1_空间几何体的结构及其三视图和直观图
S
D
O C
各侧棱相等,各侧面 是全等 的等腰三角形,各等腰 三角形底 边上的高相等(它叫做正棱锥的 斜高)。
A
B
正棱台
用正棱锥截得的棱台叫作正棱台。
正棱台的侧面是全等的等腰梯形,
它的高叫作正棱台的斜高。
斜高
正四棱台
正棱锥
2.旋转体的结构特征
(1)圆柱可以由矩形绕其一边所在直线旋转得到.
(2)圆锥可以由直角三角形绕其 一条直角边所在 直线 旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等 腰梯形绕上下底中点的连线旋转得到,也可由 平行于圆锥底面 的平面截圆锥得到. (4)球可以由半圆或圆绕其 直径 旋转得到.
画三视图的基本要求:
正 视 图 侧 视 图 正 视 图 反 映 了 物 体 的 高 度 和 长 度 侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
c(高)
c(高)
a(长)
高 平 长对正 齐
b(宽)
b(宽)
俯 视 图
a(长)
宽相等
俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
5.中心投影与平行投影 (1)平行投影的投影线 互相平行 ,而中心投影的 投影线 相交于一点 . (2)从投影的角度看,三视图和用斜二测画法画 出的直观图都是在 平行 投影下画出来的图形.
[尝试解答] 如图①②③的正(主)视图和俯视图都与原题相 同,故选A.
答案 A
思想方法 感悟提高
方法与技巧
1.棱柱主要是理解、掌握基本概念和性质,并能 灵活应用. 2.正棱锥问题常归结到它的高、侧棱、斜高、底
面正多边形、内切圆半径、外接圆半径、底面
边长的一半构成的直角三角形中解决. 3.圆柱、圆锥、圆台、球应抓住它们是旋转体这 一特点,弄清旋转轴、旋转面、轴截面.
课件2:8.1 第1课时 棱柱、棱锥、棱台
3.下面属于多面体的是
(填序号).
①建筑用的方砖;②埃及的金字塔;③茶杯;④球.
①② [①②属于多面体,③④属于旋转体.]
【合作探究】
类型一 棱柱的结构特征 【例 1】 (1)下列命题中,正确的是( ) A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱 B.棱柱中互相平行的两个面叫做棱柱的底面 C.棱柱的侧面是平行四边形,但底面不是平行四边形 D.棱柱的侧棱都相等,侧面是平行四边形
【规律方法】 有关棱柱结构特征问题的解题策略: (1)有关棱柱概念辨析问题应紧扣棱柱定义: ①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行.求解时,首先看是 否有两个面平行,再看是否满足其他特征. (2)多注意观察一些实物模型和图片便于反例排除.
【跟踪训练】 1.下列关于棱柱的说法错.误.的是( ) A.所有棱柱的两个底面都平行 B.所有的棱柱一定有两个面互相平行,其余每相邻面的公共边互相平行 C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱 D.棱柱至少有五个面
【基础自测】
1.在三棱锥 A-BCD 中,可以当作棱锥底面的三角形的个数为( )
A.1 个
B.2 个
C.3 个
D.4 个
D [每个三角形都可以作为底面.]
2.下面说法中,正确的是( ) A.上下两个底面平行且是相似的四边形的几何体是四棱台 B.棱台的所有侧面都是梯形 C.棱台的侧棱长必相等 D.棱台的上下底面可能不是相似图形 B [由棱台的结构特点可知,A、C、D 不正确.故 B 正确.]
(4)棱台的结构特征
定义
用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的 部分叫做棱台
上底面:原棱锥的截面;
高中数学人教A版必修第二册8.1第1课时棱柱、棱锥、棱台的结构特征课件
探究二
思维辨析
随堂演练
解:将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,
如图,线段AA1的长为所求△AEF周长的最小值.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.又 VA=VA1=4,∴AA1=4 2,∴△AEF周长的最小值为4 2.
反思感悟 本题是多面体表面上两点间的最短距离问题,常常要
答案:①③④⑤
防范措施 在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.
课堂篇探究学习
探究一
探究二
思维辨析
随堂演练
变式训练如图,甲、乙、丙是不是棱柱、棱锥、棱台?为什么?
解:题图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但 是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形 ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这 个几何体不是一个棱柱.题图乙中的六个三角形没有一个公共点, 故不是棱锥,只是一个多面体;题图丙也不是棱台,因为侧棱的延长 线不能相交于同一点.
①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角 形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰 梯形的六面体是棱台;④四棱锥有4个顶点.
A.0个 B.1个 C.3个D.4个 分析所给命题→联想空间图形→紧扣棱柱、棱锥、棱台的结构 特征→作出判断 答案:A
探究一
探究二
思维辨析
随堂演练
探究一
探究二
思维辨析
随堂演练
课堂篇探究学习
解:作出三棱锥的侧面展开图,如图.A,B两点之间的最短绳长就是 线段AB的长度.OA=4,OB=3,∠AOB=90°,所以AB=5,即此绳在A,B 之间最短的绳长为5.
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
空间几何体的结构特征及三视图和直观图 经典课件(最新)
图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )
新人教A版高中数学必修2课件:8.1 第一课时 棱柱、棱锥、棱台的结构特征
分类 由几棱锥截得,如三棱台、四棱台……
[微思考] (1)棱柱的侧面一定是平行四边形吗? 提示:根据棱柱的概念可知,棱柱的侧面一定是平行四边形. (2)棱台的上、下底面互相平行,各侧棱延长线一定相交于一点吗? 提示:根据棱台的定义可知其侧棱延长线一定交于一点.
(二)基本知能小试 1.判断正误:
(1)棱柱的底面互相平行. (2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥. (3)长方体是四棱柱,直四棱柱是长方体. 2.下面多面体中,是棱柱的有
第八章|立体几何初步
8.1 基本立体图形
第一课时 棱柱、棱锥、棱台的结构特征
明确目标
发展素养
1.利用实物模型、计算机软件等 1.通过对棱柱、棱锥、棱台的结构特征的
观察空间图形,认识棱柱、 理解,培养直观想象、数学抽象素养.
棱锥、棱台的结构特征. 2.通过认识棱柱、棱锥、棱台的关系,及
2.能运用这些结构特征描述现实 利用它们的结构特征描述简单物体的结构,
[解] (1)平面展开图如图所示:
(2)沿长方体的一条棱剪开,使 A 和 C1 展在同一平面上, 求线段 AC1 的长即可,有如图所示的三种剪法:
①若将 C1D1 剪开,使面 AB1 与面 A1C1 共面,可求得 AC1 = 42+5+32= 80=4 5.
②若将 AD 剪开,使面 AC 与面 BC1 共面,可求得 AC1= 32+5+42= 90=3 10.
(2)A 中的几何体不是由棱锥截来的,且上、下底面不是相似的图形,所以 A 不 是棱台;B 不是棱台;C 中的几何体是棱锥;D 中的几何体前、后两个面平行,其他 面是平行四边形,且每相邻两个平行四边形的公共边平行,所以 D 是棱柱.判断正 确的是 C、D.
课件5:8.1 第1课时 棱柱、棱锥、棱台
[误区警示]在解答关于空间几何体概念的判断题时, 要注意紧扣定义,这就需要我们熟悉各种空间几何体 概念的内涵和外延,切忌只凭图形主观臆断,如本例 若意识不到棱台各侧棱延长后交于一点则会致错.
【对点练习4】 有两个面互相平行,其余各个面都是 平行四边形,这些面围成的几何体是否一定是棱柱? 解:满足题目条件的几何体不一定是棱柱,如图所示的 几何体满足题中条件,但都不是棱柱.
题型三 空间想象能力与几何体的侧面展开 典例 3 如图是三个几何体的侧面展开图,请问各是什么 几何体?
解:①五棱柱;②五棱锥;③三棱台.如图所示.
[归纳提升] 多面体展开图问题的解题策略 (1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何 特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过 程中,常常给多面体的顶点标上字母,先把多面体的底面画出 来,然后依次画出各侧面,便可得到其表面展开图. (2)由展开图复原几何体:若是给出多面体的表面展开图,来判 断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何 体表面展开图可能是不一样的,也就是说,一个多面体可有多 个表面展开图.
图形
表示 用表示底面各顶点的__字__母___表示棱台,如上图 法 中的棱台可记为棱台___A_B_C_D__-__A_′_B_′C__′D__′ ____ 按底面多边形的__边__数___分为三棱台、四棱台、
分类 五棱台……
[归纳总结] 棱台的性质: (1)侧棱延长后交于一点;侧面是梯形. (2)两个底面与平行于底面的截面是相似多边形, 如图①所示. (3)过不相邻的两条侧棱的截面是梯形,如图②所示.
图形
表示法 分类
用表示底面各顶点的__字__母___表示棱柱,如上图中 的棱柱可记为棱柱 ABCDE-A′B′C′D′E′ 按底面多边形的__边__数___分为三棱柱、四棱柱、五 棱柱……
8.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征课件(人教版)
O
B
圆锥SO
基本立体图形
圆台的相关概念
用平行于圆锥底面的平面去截圆锥,底面与截面之
间部分叫做圆台.
S
★ 圆台的轴:
轴
圆锥的轴 (SO);
★ 圆台的底面:
底
圆锥的底面和截面;(圆面O与圆面O′) 面
A′
O′
B′
★ 圆台的侧面:
A
圆锥的侧面在底面和截面之间的部分; 母线
★ 圆台的母线:
圆锥的母线在底面和截面之间的部分;(AA′、BB′)
图形360°得到几何体②;
基本立体图形
思考: (1)与圆柱底面平行的平面截圆柱所得截面的形状为_________;
圆柱的轴截面(过圆柱的轴的截面) 的形状为_________;
基本立体图形
思考: (2)圆锥的轴截面的形状为_________;
过圆锥的顶点的截面的形状为_________;
基本立体图形
基本立体图形
【练习】描述下列组合体的结构特征
【解析】图①所示的几何体是由两个圆台拼接而成的组合体; 图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体; 图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.
基本立体图形
【例2】如图,将直角梯形ABCD绕边AB所在的直线旋转一周,由此形成 的几何体是由哪些简单几何体组成的? 【解析】画出形成的几何体如图所示.
8.1 基本立体图形
基本立体图形
复习回顾
1.空间几何体
空间几何体:如果只考虑物体的形状和大小,而不考虑其它因素, 那么这些由物体抽象出来的空间图形就叫做空间几何体。 多面体:由若干平面多边形围成的几何体叫做多面体,围成多面体 的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体 的棱;棱与棱的公共点叫做多面体的顶点.
基本立体图形(1)棱柱、棱锥、棱台课件
课堂导学
1.下列叙述正确的是(
D ).
A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱
B.有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
D.棱台各侧棱的延长线交于一点
解析 A 项,没有满足棱柱各侧棱平行的条件,故 A 项错
误;B 项,一个长方体上面叠加一个各侧面与长方体各侧面都
三棱台:由三棱锥截得的棱台
四棱台:由四棱锥截得的棱台
二、特殊的棱台:
由正棱锥截得的棱台,上下底面都是正多边形,
侧面都是全等的等腰梯形的棱台叫做正棱台。
五棱台:由五棱锥截得的棱台
Part 02
典型例题分析
融会贯通
例1.将下列各类几何体之间的关系用Venn图表示出来:
多面体,长方体,棱柱棱锥,棱台,直棱柱,四面体,平行六面体
由这些面所围成的多面体叫做棱锥。
★ 这个多边形面叫棱锥的底面
★ 有公共顶点的各个三角形面叫做棱锥的侧面,
★ 相邻侧面的公共边叫做棱锥的侧棱;
★ 各侧面的公共顶点叫做棱锥的顶点。
棱锥 −
2.棱锥
有一个面是多边形,其余各面都是三角形的几何体就是棱锥吗?
注意:一定要三角形交于同一个顶点,
比如右图的两张图片就不符和要求 。
棱锥的结构特征
仅有一个底面是多边形
侧面都是三角形
各侧面有且只有一个公共顶点
2.棱锥
棱锥的分类
一、按棱锥底面边数分类: 三棱锥,四棱锥,五棱锥......;
三棱椎:底面是三角形.
三棱锥又叫四面体.
四棱锥:底面是四边形.
二、特殊的棱锥:
底面是正多边形,并且顶点与底面中心的连
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优秀课件
6
变式训练
1.如图是由哪个平面图形旋转得到的
(A )
优秀课件
7
2.下列命题中,成立的是
(B )
A.各个面都是三角形的多面体一定是棱锥
B.四面体一定是三棱锥
C.棱锥的侧面是全等的等腰三角形,该棱锥一
定是正棱锥
D.底面多边形既有外接圆又有内切圆,且侧棱
相等的棱锥一定是正棱锥
优秀课件
8
二、空间几何体的三视图和直观图 1.空间几何体的三视图是_正_视__图____、侧__视__图__、 _俯_视__图__. 2.三视图的正视图、俯视图、侧视图分别是从 _正__前_方__、_正_上__方___ 、 _正__左_方___观察同一个几何体,画 出的空间几何体的图形.
3. 会画出某些建筑物的三视图与直观图。
优秀课件
2
一、空间几何体的结构特征
1.棱柱有两个面__互__相__平_行__,其余各面都是四 边形,并且每相邻两个四边形的公共边都 __互__相_平__行__ ,由这些面所围成的几何体叫做棱 柱. 2.棱锥:有一个面是__多_边__形__,其余各面都是 有一个公共顶点的__三_角__形__ ,由这些面所围成 的几何体叫做棱锥. 3.棱台:用一个_平__行_于___棱锥底面的平面去截 棱锥,底面与截面之间的部分,叫做棱台.
优秀课件
21
(学案 164.3 (2010·北京)一个长方体去掉
一个小长方体,所得几何体的主视图与
左视图分别如图所示,则该几何体的俯
视图为
( C)
优秀课件
22
1.(2012 湖南)某几何体的正视图和侧视图 均如图所示,则该几何体的俯视图不可能是( D)
图 1
A
B
C
D
A
B
C
D
优秀课件
23
2.(2009·天津)如图是一个几何体的三 视图.若它的体积是3 3 ,则a= 3 .
3.三视图的排列规则是_俯__视__图__放在正视图的下方, 长度与正视图一样, _____侧_视_放图在正视图的右面, 高度与正视图一样,宽度与俯视图的宽度一样.
优秀课件
9
从左面看
正视图
三视图
从上面看
正面
正视图
侧视图 高
长
宽
宽 俯视图
从正面看
优秀课件
10
正视图
三视图
正面
正视图
侧视图 高
长
宽
宽 俯视图
2.三视图如下图的几何体是
(B )
A.三棱锥
B.四棱锥
C.四棱台
D.三棱台ຫໍສະໝຸດ 解析 由三视图知该几何体为一四棱锥,其中
有一侧棱垂直于底面,底面为一直角梯形.故选B.
优秀课件
14
4.空间几何体的直观图
画空间几何体的直观图常用 斜二测 画法,
画图时应在已知图形中建立直角坐标系xoy,画直观图 时, 它们分别对应x′轴和y′轴,两轴交于点O′,且使 ∠x′O′y′ = 45°(或135°.)
优秀课件
11
典型例题 题型二 空间几何体的三视图
例题 学案P162例1 【方法点睛】 1.注意摆放的位置保证 高平齐,长对正,宽相等。
2.实虚线结合
优秀课件
12
变式训练
1、三棱柱 ABC A1B1C1 ,如图所示,以
BCC1B1 的前面为正前方画出的三视 图正确的是( A )
正视
优秀课件
13
(C )
优秀课件
19
3.已知△ABC的直观图是边长为a的等边
△A1B1C1 (如图),那么原三角形的面积为 C
()
3 a2 2
3 a2 4
A.
B.
6 a2
6a2
C. 2
优D.秀课件
20
拓展提高 (走进高考) (学案164页1)在一个几何体的三视图中,正视图和俯 视图如图所示,则相应的侧视图可以为( D )
已知图形中平行于x轴、y轴或z轴的线段,在直观图中 分别画成_平__行_于x′轴、y′轴或z′轴的线段。
平行于x轴和z轴的线段,在直观图中长度_不__变__;平行 于y轴的线段,长度变为原来_一__半__.
优秀课件
15
题型三 几何体的直观图 例题 学案P162例2
优秀课件
16
【方法点睛】用斜二测画法画几何体直观图要注 意原图形与直观图
优秀课件
3
4.圆柱:以_矩__形__的一边所在的直线为旋转轴, 其余三边旋转形成的_曲__面__所围成的几何体叫做圆 柱. 5.圆锥:以_直__角__三__角_形___的__一_条__直__角__边__所在的直 线为旋转轴,其余两边旋转形成的曲面所围成的 几何体叫做圆锥. 6.圆台:用一个_平__行_于___圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做圆台. 7.球:以_半__圆__的_直__径__所在直线为旋转轴, _半__圆__面__旋转一周形成的几何体叫做球.
(1)平行性不变 ( 2)与x、z轴平行的线段的长度不变,
与y轴平行的线段的长度变为原来的一半.
优秀课件
17
变式训练
1.如图△A′B′C′是△ABC的直观图,那么
△ABC是
(B )
A.等腰三角形 C.等腰直角三角形
B.直角三角形 D.钝角三角形
优秀课件
18
2..如图所示为一平面图形的直观图,
则这个平面图形可能是
优秀课件
4
典型例题 题型一 空间几何体的结构特征
【例1】下列命题中,正确的是( D ) (A)有两个侧面是矩形的棱柱是直棱柱 (B)侧面都是等腰三角形的棱锥是正棱锥 (C)侧面都是矩形的四棱柱是长方体 (D)底面为正多边形,且有相邻两个侧面 与底面垂直的棱柱是正棱柱
优秀课件
5
【方法点睛】解决此类问题的技巧 (1)紧扣结构特征是判断的关键. (2)通过反例对结构特征进行辨析,即要说明 一个命题是错误的,只要举出一个反例即可.
第八章 立体几何
§8.1 空间几何体的结构 及其画法
优秀课件
1
1.认识柱、锥、台、球及其简单组合体的结构 特征,并能运用这些特征描述现实生活中简单物 体的结构.
2.能画出简单空间图形(长方体、球、圆柱、圆 锥、棱柱等的简易组合)的三视图,能识别上述 三视图所表示的立体模型,会用斜二测画法画出 它们的直观图.了解空间图形的不同表示形式.
解析 由三视图可知,此几何体为直三棱柱,
其底面为一边长为2,高为a的等腰三角形.由棱
柱的体积公式得 1 2 a 3 3 3,所以a 3.
2 优秀课件
24
优秀课件
25