上海交通大学_材料科学基础第八章_三元相图

合集下载

材料科学基础三元相图

材料科学基础三元相图
液相与np接触,L+α→M, 至P点LP+αa→Md1+γc1,α消失 多余液相发生L→M+γ结束
材料科学基础三元相图
七、 三元包晶相图
1. 空间模型(可以与有固溶度三元共晶比较) 三个液相面 三个单相固相面 一个三元包晶
反应水平面 一组二元共晶
开始、结束面 两组二元包晶
反应开始、结束面 六个单相固度面
x,y,z分别为α,β,γ成分点,则 α%=oa/ax×100%,β=ob/by×100%, γ%=oc/cz×100%
材料科学基础三元相图
三、匀晶三元相图
1. 立体模型 液相区,固相区,液、固两相区
材料科学基础三元相图
匀晶三元相图---合金凝固过程及组织
a.平衡凝固 b.蝶形法则:如图 匀晶合金凝固中相成分变化 ,凝固中固、液相成分沿固相
共线法则:三元合金中两相平衡时合金 成分点与两平衡相成分点在浓度三角形 的同一直线上
杠杆定律表达式
α%=EO/DE×100%, β=OD/DE×100%
注意:当一个合金O在液相的凝固
过程中,析出α相成分不变时,液 相成分一定沿α相成分点与O点
连线延长线变化。
材料科学基础三元相图
2.三相平衡重心法则(重量三角形重心)
24
3
材料科学基础三元相图
3. 固态有限溶解三元共晶合金的等温截面
材料科学基础三元相图
4. 固态有限溶解三元共晶合金的变温截面
xy变温截面
x1:L→α+β,L→α+β+γ x2:L→α,L→α+β+γ x3:L→α,L→α+γ,L→α+β+γ x4:L→α,L→α+γ, α → β

材料科学基础第八章 三元相图

材料科学基础第八章 三元相图
材料科学基础 第八章 三元相图
1
本章章节结构 8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图 8.3 固态有限互溶的三元共晶相图
2
内容预报
• 三元相图基础 • 三元相图有很多面
水平、垂直截面图 • 由平面回溯立体
3
8.1 三元相图基础
8.1.1 成分表示方法 1.成分三角形 2.成分三角形中的特殊线 3.杠杆定律及重心定律
49
典型合金的平衡结晶过程-3
3. 位于三相平衡共晶转变终了面及双析溶解度曲面 投影内的合金(图8.19中Ⅴ区)。 结晶过程:L→L+α初→α初+(α+β)共→α初+ (α+β)共+γⅡ
50
典型合金的平衡结晶过程-4
4. 位于三相平衡共晶转变终了面但不在双析溶解度 曲面投影内的合金Ⅳ(图8.19中)。 结晶过程:L→L+α初→α初+(α+β)共 可用同 样的方法分析其它合金的结晶过程,图8.19中所 标注的六个区域。
• 在垂直截面图中发生两相共晶转变的三相区为尖 点向上的曲边三角形。
43
投影图
44
45
相区接触法则
• 空间相图、水平截面、垂直截面相图。 • 相邻相区的相数差1; • 立体相图中在面两侧判断,截面图中在线两侧判
断; • 除截到的零变量点外,所有的点均有四条相界线
相交。
46
8.1 三元相图基础 8.2 固态互不溶解的三元共晶相图
B% 50
10
20
30
40 C%
50
40 30 20
AxC4x-B
60
70 80
10
90
A
90 80 70

材料科学基础-第8章-三元相图

材料科学基础-第8章-三元相图
B
L
α C A B L1 S1 L+α L+α n L o L2
7
m
α S2
C
A
第五章 材料的变形与再结晶 L
4、变温截面(垂直截面)图 变温截面(垂直截面) (1)通过成分三角形顶点的截面
α
★ 位于该截面上的所有合金含另外两 顶点组元量之比w 相同。 顶点组元量之比wA/wC相同。 ★ 此图可反映合金在不同温度时所存 在相的种类; 在相的种类;
α
β
γ
L+α L+α+β、α+β+γ 一个四相平衡区:L+α 一个四相平衡区:L+α+β+γ
19
20
2、投影图
E1 A B
o
E E3 E2
C
合金o冷却过程中的相变: 合金o冷却过程中的相变:
L+α L+(α )+α→L+(α )+(α )+α L→ L+α→ L+(α+β)+α→L+(α+β+γ)+(α+β)+α→ )+(α )+α (α+β+γ)+(α+β)+α
A C L L+α α
α B
9
第五章 材料的变形与再结晶
5、投影图
L
α A B
C
10
第五章 材料的变形与再结晶
第二节 固态互不溶解的三元共晶相图
1、相图分析 每个侧面为组元固态下互不溶的二 元共晶相图。 三个共晶点。 元共晶相图。E1、E2、E3三个共晶点。 三个液相面: ★ 三个液相面: tAE1EE3tA、 tBE1EE2tB、 tCE2EE3tC。 三元四相共晶点E ★ 三元四相共晶点E:L→A+B+C ★ 重要的线: 重要的线: 三元三相共晶线E 三元三相共晶线E1E:L→A+B 三元三相共晶线E 三元三相共晶线E2E:L→B+C 三元三相共晶线E 三元三相共晶线E3E:L→A+C

材料科学基础三元相图共67页

材料科学基础三元相图共67页
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
Байду номын сангаас
材料科学基础三元相图
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

材料科学基础三元相图

材料科学基础三元相图

A
E3
TC
B1
B
LA+ C
C L B +C
64
LA+ C
LA+ B
A
L A+B
e
B
C
L B +C
65
TA A3 A2 A1 TB E1 E3 TC E C3 C2 E2 B3 B2 B1
A
B
A+B +C
C1
LA+B +C
C
66
A+B +C
A LA+ B +C A+B +C
B
LA+B +C
三元相图
(三维立体图) 立体相区 面 线
29
三元匀晶相图分析 点:a, b, c-三个纯组元的熔点; 面:液相面、固相面; 区:L, α, L+α。
30
2 三元固溶体合金的结晶规律 液相成分沿液相面、固相成分沿固相面,呈蝶形规律变化。 共轭线:平衡相成分点的连线。
31
32
结晶过程
L
t1 B t2 C
4
2 成分表示法-成分三角形(等边、等腰、直角三角形)
—— 浓度三角形
B
等边三角型 + 顺时针坐标
B%
C%
A
← A%
C
5
浓度确定
1)确定O点的成分
1)过O作A角对边的平行线 2)求平行线与A坐标的截距 得组元A的含量 3)同理求组元B、C的含量 O A C
6
B
B%
C%
← A%
课堂练习
1. 确定合金I、II、 的成分
58
LA+ C

无机材料科学基础 第八章 三元相图

无机材料科学基础    第八章 三元相图

3)由单变量线的位置和温度走向判断四相平衡转变类型
本章小结
1、等边成分三角形表示成分的特点;
2、直线法则、杠杆法则、重心定律的含义及应用;
3、连接线的含义与性质; 4、根据液、固相线投影判断合金凝固温度范围的方法; 5、水平截面图的特征; 6、根据固态完全不溶的三元共晶投影图,分析合金凝固过程和计算组织
三元相图中的杠杆定律及重心定律
4)重心定律的应用

OR QR OM PM OT ST
注意:O为质量重心而不是几何重心
三、三元相图的空间模型
三元匀晶相图
1、相图分析
ABC—成分三角形 三根垂线—温度轴 a、b、c—三个组元A、B、C的熔点 三个侧面—三组元间形成的二元匀晶相图
四、三元相图的截面图和投影图
将三维立体图形分解成二维平面图形—水平截面和垂直截面
1、水平截面(等温截面)
相图分析: 三个不同的相区—ABed为液相区, cgf为α 相区,defg为两相平衡区
三元相图的截面图和投影图
由水平截面图确定平衡相的成分和相对量 (T1>T2>T3)
图 (a):合金O在T1温度液、固两平衡相的成分为 L 和 S
两曲线的交点即为合金凝固开始和结束温度,曲线给出了冷却过程经历的各
种相平衡,即清楚表达了凝固冷却过程,和冷却曲线有完好的对应关系。 ②固溶体凝固时,液相和固相的成分变化是空间曲线,并不都在截面上,所
以这是液相线和固相线的走向不代表它们的成分变化,尽管形状类似二元相
图,但这里不能应用杠杆定律来分析平衡相的成分和数量关系。
2、等边成分三角形中的特殊线
1)平行于三角形某一条边的直线
凡成分位于该线上的合金,其所含与此线对应顶角代表的组元的质量

814材料科学基础-第八章 三元相图知识点+例题讲解

814材料科学基础-第八章 三元相图知识点+例题讲解

北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛春阳第八章三元相图8.1三元相图基础三元相图的基本特点:完整的三元相图是三维立体模型;三元系中可发生四相平衡转变,四相平衡区是恒温水平面;三相平衡转变是变温过程,在相图上三相平衡区占有一定空间,不再是二元相图中的水平线。

8.1.1 成分表示法表示三元系成分的点位于两个坐标轴所限定的三角形内,这个三角形称为成分三角形或浓度三角形。

常用的成分三角形是等边三角形,有时也用直角三角形或等腰三角形。

1. 等边成分三角形B——浓度三角形等边三角型B%C%+顺时针坐标CA← A%1)确定O点的成分Ba)过O作A角对边的平行线b)求平行线与A坐标的截距得组元A的含量B%C%c)同理求组元B、C的含量OA← A%C2)等边成分三角形中的特殊线 7ABC90 80 70 60 50 40 30 20 101020 30 4050 60 708090 10 2030 40 50 60 70 8090← A%B% C%II 点:20%A- 50%B- 30%CIII 点:20%A- 20%B- 60%CIV 点:40%A- 0%B- 60%C IIIIIIVa)与某一边平行的直线凡成分点位于与等边三角形某一边相平行的直线上的各三元相,所含的与此线对应顶角代表的组元的质量分数相等。

凡成分点位于通过三角形某一顶角的直线上的所有三元系,所含此线两旁另两顶点所代表的两组元的质量分数比值相等。

b ) 过某一顶点作直线常数=====22221111''%%Bc Ca Bc Ba Bc Ba Bc Ca C A练习1. 确定合金I、II、III、IV的成分I 点:A%=60%B%=30%C%=10%II点:A%=20% B%=50% C%=30%III 点:A%=20% B%=20% C%=60%IV 点:A%=40% B%=0% C%=60%2. 标出75%A+10%B+15%C的合金3. 标出50%A+20%B+30%C的合金4. 绘出A =40%的合金5. 绘出C =30%的合金6. 绘出C / B =1/3的合金 %75%2531==B C 7. 绘出A / C =1/4的合金2.其它成分三角形1)等腰成分三角形当三元系中某一组元含量较少,而另两个组元含量较多时,合金成分点将靠近等边三角形的某一边。

上海交大材料科学基础课件教学大纲

上海交大材料科学基础课件教学大纲

第一章原子结构和键合(4学时)了解物质由原子组成,而组成材料的各元素的原子结构和原子间的键合是决定材料性能的重要因素。

§1 原子结构(一)、原子结构; (二)、原子间的键合; (三)、高分子链。

§2 原子间的键合(一)、金属键 (二)、离子键 (三)、共价键(四)、范德华力 (五)、氢键第二章固体结构(8学时)固态原子按其原子(或分子)聚集的状态,可划分为晶体与非晶体两大类。

晶体中的原子在空间呈有规则的周期性重复排列;而非晶体中的原子则是无规则排列的。

材料的性能与材料各元素的原子结构和键合密切相关,也与固态材料中原子或分子在空间的分布排列和运动规律以及原子集合体的形貌特征密切相关。

§1 晶体学基础(一)、晶体的空间点阵1.空间点阵概念2.晶胞3.晶系与布拉菲点阵4.晶体结构与空间点阵的关系(二)、晶向指数和晶面指数1.阵点坐标2.晶向指数3.晶面指数4.六方晶系指数5.晶带6.晶面间距§2 金属的晶体结构(一)、面心立方晶体结构的晶体学特征(fcc)(二)、体心立方晶体结构的晶体学特征(bcc)(三)、密排六方晶体结构的晶体学特征(hcp)§3 金属的相结构(一)、固溶体1.置换固溶体2.间隙固溶体3.有序固溶体4.固溶体的性质(二)、中间相1.正常价化合物2.电子化合物3.原子尺寸因素化合物(ⅰ)间隙相和间隙化合物§4 离子晶体结构(一)、NaCl型结构 (二)、萤石型结构 (三)、CsCl型结构 (四)、a-Al2O3型结构§5 共价晶体结构(一)、金刚石结构 (二)、SiO2结构 (三)、VA、VIA族亚金属结构§6 聚合物晶态结构(一)、晶胞结构 (二)、晶态结构模型 (三)、聚合物结晶形态§7 非晶态结构第三章晶体缺陷(12学时)实际晶体常存在各种偏离理想结构的区域晶体缺陷。

根据晶体缺陷分布的几何特征可分为点缺陷、线缺陷和面缺陷三类。

胡赓祥《材料科学基础》第3版章节题库(三元相图)【圣才出品】

胡赓祥《材料科学基础》第3版章节题库(三元相图)【圣才出品】

胡赓祥《材料科学基础》第3版章节题库第8章三元相图一、选择题在三元相图中,常用的成分三角形是()。

A.等边三角形B.直角三角形C.等腰三角形【答案】A【解析】根据相律,在恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,即三元相图。

在三元相图中,通常用等边三角形来表示各组分的浓度。

二、简答题1.图8-1为固态有限互溶三元共晶相图的投影图,请回答下列问题:(1)指出三个液相面的投影区;(2)指出e3E线和E点表示的意义;(3)分析合金N的平衡结晶过程。

图8-1答:(1)三个液相面的投影区分别为:Ae1Ee3A、Be2Ee1B、Ce3Ee2C。

(2)e3E线:α与γ的共晶线;E点:三元(四相)共晶点。

(3)N点合金的平衡结晶过程:L→L→γ→L→β+γ→L→α+β+γ2.图8-2是A-B-C三元系统相图,根据相图回答下列问题:(1)在图上划分副三角形、用箭头表示各条界线上温度下降方向及界线的性质;(2)判断化合物D、M的性质;(3)写出各三元无变量点的性质及其对应的平衡关系式。

图8-2答:(1)如图8-3所示。

图8-3(2)D的性质:一致熔融二元化合物,高温稳定、低温分解;M的性质:不一致熔融三元化合物。

(3)E1,单转熔点,L+A↔C+M;E2,低共熔点,L↔C+B+M;E3,单转熔点,L +A↔B+M;E4,过渡点,D L↔A+B。

3.三组元A,B和C的熔点分别是1000℃,900℃和750℃,三组元在液相和固相都完全互溶,并从三个二元系相图上获得下列数据。

图8-4表8-1(1)在投影图上作出950℃和850℃的液相线投影。

(2)在投影图上作出950℃和850℃的固相线投影。

(3)画出从A组元角连接到BC中点的垂直截面图。

答:(1)根据已知条件分别作AB,AC和BC二元相图,并假设液相线和固相线是光滑的,然后在三个二元相图上作950℃的割线,可在AB二元相图上得到与液相线相交点的B,A的质量分数约为70%,30%,在AC二元相图上与液相线相交点的C,A的质量分数约为35%,65%,而在BC相图上则不与液相线相交。

三元相图_材料科学基础

三元相图_材料科学基础
即:WA/WC= Cg/Ag
3.成分的其它表示法
●等腰成分三角形
当三元系中某一组元B含量 较少,而另外两组元(A、C)含 量较多,合金成分点将靠近成 分三角形的某一边(如AC) 。为 了将这部分相图更清楚的表示 出来,可将AB和BC按一定比例 放大使浓度三角形为等腰三角 形。适于研究微量第三组元的 影响。 如:O点合金
1.等边成分三角形
●三角形顶点代表纯组元A、B、C, ●三角形的边代表二元系合金
即:A-B系、B-C系、C-A系。
且 AB=BC=CA=100%,
● 三角形内任一点都代表一个三 元合金。
其成分确定方法如下:由成分三 角 形 所 给 定 点 S, 分 别 向 A、B、C 顶 点 所 对 应 的 边 BC、CA、AB 作 平 行 线 ( sa、sb、sc),相 交 于 三 边 的 c、a、b 点 , 则 A、B、C 组元 的 浓度为:
WA=sc=Ca WB=sa=Ab WC=sb=Bc 注: sa + sb + sc = 100%
注意:刻度与读数顺序 的一致性(同为顺时针
或逆时针)
1.等边成分三角形
为方便,在成分三角形内 画出平行于成分坐标的网格。 可方便求出合金的成分。
同样:已知三组元的含量, 可求合金点位置。
先找三组元成分对应点, 分别作其对边的平行线,其 交点即为所求的合金点。 边长代表几个组元?
5.6 三元相图
5.6 三元相图
三元合金系(ternary system)中
含有三个组元,因此三元相图是表示在恒 压下以温度变量为纵坐标,两个成分变量 为横坐标的三维空间图形。由一系列空间 曲面及平面将三元相图分隔成许多相区。
5.6.1 三元相图的基础知识
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
M
A
B
© meg/aol ‘02
5)直线定律——在一确定的温度下,当某三元合金处于两相平衡时, 合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直 线上。该规则成为直线定律。
B
g’
f’
e’
s
(α)
q (β)
P
A
e fg
C
© meg/aol ‘02
证明如下:设合金P在某一温度下处于α 相(s点)和β 相(q点)两相 平衡, α 相和β 相中的B组元含量分别为Ae’和Ag’。两相中C、B两组 元的质量之和应等于合金P中C、B两组元的质量之和。令合金P的质量为 WP, α 相的质量为Wα , β 相的质量为Wβ ,则WP=Wα + Wβ ,由于合金 中的C、B组元的含量分别为Af和Af’,由C、B质量守恒分别的下两式:
)
fg f ' g ' ef e ' f '
所以,sPg三点必在一条直线上。
© meg/aol ‘02
直线定律
• 两条推论 • (1)给定合金在一定温度下处于两相平衡时,若其
中一个相的成分给定,另一个相的成分点必然位于已 知成分点连线的延长线上。 • (2)若两个平衡相的成分点已知,合金的成分点必 然位于两个已知成分点的连线上。
© meg/aol ‘02
O合金成分: A%/B%=Ca/AM (定义)
=ob/op =BG/GA.
B
Q G M
o
b N
A
p
C a
© meg/aol ‘02
© meg/aol ‘02
3)推论:位于三角形高BH上任一点的合金,其两边组元的含量相等。 4)背向规则——从任一三元合金M中不断取出某一组元B,那么合金 浓度三角形位置将沿BM的延长线背离B的方向变化,这样满足B量不断 变化减少,而A、C含量的比例不变。
© meg/aol ‘02
3. 合金的平衡凝固过程
如图8.6所示的相图中,成分为O点的合金,在液相面以上处于液 态,当温度下降至与液相面相交于1时,开始结晶出 α,并随着温度 降低, α相增多,L相减少,当温度降至与固相面相交于2时,则液相 L全部结晶,合金呈单相α固溶体,如图8.6(b)所示。
根据以上分析,可以进一步讨论合金O的凝固过程。在凝固过程 中,如下图所示,当固相和液相的成分分别沿着ss1s2•••O和Ol1l2 •••l曲线发生变化,注意: 1)连接线一定通过合金成分点; 2)随着温度的降低,连结线以原合金成分轴线为中心旋转并平行下 移,旋转的方向是液相成分点逐渐向低熔点组元A方向偏转(这可从 二元相图可知),形成了蝴蝶形的轨迹; 3),只有在知道凝固过程中某一相的成分变化情况之后(由相律可 知),才能得出另一相的成分变化规律。
© meg/aol ‘02
8.11 三元相图成分表示方法
1. 等边成分三角形
图8.1为等边三角形表示法,三角 形的三个顶点A,B,C分别表示3 个组元,三角形的边AB,BC,CA 分别表示3个二元系的成分坐标, 则三角形内的任一点都代表三元系 的某一成分。
© meg/aol ‘02
例如,三角形ABC内S点所代表的成分可通过下述方法求出: 设等边三角形各边长为100%,AB,BC,CA顺序分别代表B,C,A三 组元的含量。由 S点出发,分别向A,B,C顶角对应边BC,CA,AB 引平行线,相交于三边的c,a,b点。根据 等边三角形的性质,可得 Sa十Sb十Sc=AB=BC=CA=100%, 其中,Sc=Ca=ω A/(%),Sa=Ab=ω B /(%), Sb=Bc= ω C /(%)。 于是,Ca,Ab,Bc线段分别代 表S相中 三组元A,B,C的各自质量分数。 反之,如已知3个组元质量分数时, 也可求出S点 在成分三角形中的位置。 确定合金某组元(如B)成分的方法: 通过合金成分点作B组元对边的平行线 与另两边中任一边相交于(如 b点),则Ab长度就是B组元局部图形表示法
如果只需要研究三元系中一定成 分范围内的材料,就可以在浓度 三 角形中取出有用的局部(见图 8.5)加以放大,这样会表现得更 加清晰。
© meg/aol ‘02
8.2 三元匀晶相图
1. 相图的空间模型 如右图所示,三条二元匀晶相
图的液相线和固相线分别连结成三 元合金相的液相曲面和固相曲面。 液相面以上区域为液相区,固相面 以下区域为固相区,而两面之间为 液、固两相共存的两相区。
第8章 三元相图
8.1 三元相图基础
三元相图的基本特点为: (1) 完整的三元相图是三维的立体模型。 (2) 二元系中可以发生3相平衡转变。由相律可以确定二元系中的最大平衡相数 为3,而 三元系中的最大平衡相数为4。三元相图中的四相平衡区是恒温水平 面。 (3) 根据相律得知, 三元系三相平衡时存在一个自由度,所以三相平衡转变是 变温过程,反映在相图上,三相平衡 区必将占有一定空间,不再是二元相图 中的水乎线。
© meg/aol ‘02
连接线是共扼线,是一对处于平衡状态的液相和固相成分的连线
,它是用实验方法测定的,必要时也可近似地画出。具有以下基本 性质:
1)在两相区内各条直线不能相交,否则不符合相律;
2)连结线不通过顶点,连结线的液相端向低熔点组元方向偏一
角度。
C
证明如下:假定
TC高于TB,TB高于TA
© meg/aol ‘02
2. 等温截面图 为便于研究,通常采用三元合金相图的等温截面图和变温截 面图来分析合金的相变过程、各温度下的相变关系以及各相 的相对含量等。下图则给出了三元匀晶相图的等温截面图。
© meg/aol ‘02
等温截面图又称水平截面图,它是以某一恒定温度所作的水平面 与三元相图立体模型相截的图形在成分三角形上的投影。
WP Af W Ae W Ag (W W ) Af W Ae W Ag WP Af ' W Ae' W Ag ' (W W ) Af ' W Ae' W Ag '

W W
( (
Af Af
'

Ae ) W ( Ag Af ) Ae' ) W ( Ag ' Af '
2. 浓度三角形具有如下一些特性
B
M G
A
N C
© meg/aol ‘02
(1)等含量规则——平行于三角形任一边的直线上所有合金中有一组 元含量相同,该直线为直线所对顶角上的元素,如下图中的MN线上, B%之值恒定。(根据成分的确定方法)
(2)等比例规则——通过三角形顶点的任何一直线上的所有合金,其 直线两边的组元含量之比为定值,如图中CG线上的任何合金,A%与B %的比值为定值,即A%/B%=BG/GA。 证明:在CG上任何一合金o,如下图所示, 过o点作MN//AC,bp//AB, aQ//BC。
© meg/aol ‘02
© meg/aol ‘02
5. 三元相图的投影图
为了使复杂二元相图的投影图更 加简单、明了,也可以根据需要 只把一部分相界面的等温线投影 下来。经常用到的是液相面投影 图或固相面投影 图。图8.9为三 元匀晶相图的等温线投影图,其 中实线为液相面投影,而虚线为 固相面投影 。
© meg/aol ‘02
b. 直角成分坐标
当三元系成分以某一组元为主、其 他两个组元含量很少时,合金成分 点将靠近等边三角形某一项角。若 采用直角坐标表示成分,则可使该 部分相图清楚地表示出 来。设直 角坐标原点代表高含量的组元,则 两个互相垂直的坐标则代表其他两 个组元的成 分。
© meg/aol ‘02
各相中某一组元的含量之和应该等于合金中这种组元的含量,即
© meg/aol ‘02
© meg/aol ‘02
3. 成分的其它表示方法
a. 等腰成分三角形
当三元系中某一组元含量较 少,而 另两个组元含量较多时,合金成分 点将靠近等边三角形的某一边。为 了使该部分相图清晰地表示出来, 可 将成分三角形两腰放大,成为等 腰三角形。如图8.3所 示。
© meg/aol ‘02
8.2 固态不溶解的三元共晶相图
1. 相图的空间模型
© meg/aol ‘02
图8.12所示为三组元在液态完全互镕、固态互不溶解的三元共晶空间 模型。它是由 A—B,B—C,N三个简单的二元系共晶相图所组成。
由图中可见,等温线将等温截面分割成液相区、固相区和液、固 两相区。
根据相律,三元合金处于两相平衡是具有两个自由度,即 f=C-P+1=3-2+1=2, 如果温度恒定,则f=C-P =3-2=1,故当温度恒定时,还存在 一个自由度,即当一个平衡相的成分确定后,另一相的成分必然存在 一定的对应关系。因此,在一定温度下,欲确定两个平衡相的成分, 必须先用实验方法确定其中一相的成分,然后应用直线法则来确定另 一相的成分。连接两平衡相对应成分的这条水平线称为连接线或共扼 线。
xB xA

xBL xAL

Ag Bg
© meg/aol ‘02
3)位于等温截面两相区中同一连接线上的不同成分合金,其两平衡相 的成分不变,但相对含量各不相同。 另外,等温截面有两个作用:
a)表示在某温度下三元系中各种合金所存在的相态; b)表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。
Wo
kr
同时可以导出α 相和β 相在合金中的百分含量:
W % ot 100%
Wo
it
W % os 100%
Wo
js
上式表明,o点正好位于三角形ijk的质量重心,所以把它叫做三元系的重心法则。
© meg/aol ‘02
8)直接用代数法计算三个平衡相的相对含量.
合金O中A、B、C三组元的百分含量分别是: xA 、 xB 、 xC
相关文档
最新文档