平抛、类平抛运动常见题型及应用 Microsoft Word 文档 (4)
完整word版平抛运动中的题型归类
平抛运动中的题型归类一.常见平抛运动模型的运动时间的计算方法处平抛:在水平地面上空1.hh212,即由t知由高度=thgth=决定.g29 图t:2.在半圆内的平抛运动(如图9),由半径和几何关系制约时间12h=gt222=vhR+Rt-0联立两方程可求t.3.斜面上的平抛问题(如图10):(1)顺着斜面平抛方法:分解位移x=vt 图10 0θtan 2vy102=可求得t=gt tanθ=ygx211) (如图(2)对着斜面平抛方法:分解速度v11 图=v v=gt y0x vvθtan gt0y=可求得tθtan==vvg0012)如图4.对着竖直墙壁平抛( 不同时,虽然落点不同,但水平位移相同.水平初速度v0d12 图t=v0例1如图6,从半径为R=1 m的半圆AB上的A点水平抛出一个可视为质点的小球,2,则小球的初速度v可能10 m/s0.4 s小球落到半圆上,已知当地的重力加速度g=经t=0为()A.1 m/s B.2 m/s C.3 m/sD.4 m/s12=0.8 m gt,位置可能有两处,如图所示.由于小球经0.4 s落到半圆上,下落的高度h=解析2第一种可能:小球落在半圆左侧,v22=0.4 m,v-h=Rt=R-1 m/s 00第二种可能:小球落在半圆右侧,v22,v=4 m/s,选项A、D正确.Rt=R+答案-h AD00例2如图8所示,一名跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力(sin 37°=0.6,cos 37°=0.8;2 10 m/s.求:)取g(1)A点与O点的距离L;O点时的速度大小;(2)运动员离开点飞出开始到离斜坡距离最远所用的时间.O(3)运动员从运动员在竖直方向做自由落体运动,有解析(1)2gt1275 m.gt=,L sin 37°=L=2sin 37°2(2)设运动员离开O点时的速度为v,运动员在水平方向的分运动为匀速直线运动,有L cos 37°=vt,00L cos 37°即v==20 m/s.0t(3)解法一运动员的平抛运动可分解为沿斜面方向的匀加速运动(初速度为v cos 37°、加速度为g sin 37°)和垂直0斜面方向的类竖直上抛运动(初速度为v sin 37°、加速度为0g cos 37°).当垂直斜面方向的速度减为零时,运动员离斜坡距离最远,有v sin 37°=g cos 37°·t,解得t=1.5 s0gt解法二当运动员的速度方向平行于斜坡或与水平方向成37°角时,运动员与斜坡距离最远,有=tan 37°,tv0=1.5 s. 答案(1)75 m(2)20 m/s(3)1.5 s训练1如图13所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v水平向左抛出一个小球0A,小球恰好能垂直落在斜坡上,运动时间为t,小球B从同一点Q处自由下落,下落至P点的时间为t,不计空21气阻力,则t∶t=() 21A.1∶2 B.1∶2图13D. 1 ∶3 C.1∶ 3D答案水平抛出的A向B)ll所示,相距的两小球A、B位于同一高度h(、h均为定值.将6).训练2(2012·江苏·如图19与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小、B 同时,B自由下落.A19图球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD 解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自2h,t=若第一次落地前相碰,二者与地面碰撞前运动时间由落体运动,A、B竖直方向的运动相同,t相同,且11gll只要满足A运动时间t=<t,即v>,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,1vt1且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.水平抛出一个小球,它落在Eab四个点,=bc=cd,从a训练点以初动能3.如图22所示,斜面上a、b、c、d0) 2a点以初动能E水平抛出,不计空气阻力,则下列判断正确的是(斜面上的b点,若小球从0A.小球可能落在d点与c点之间图22c点.小球一定落在B C.小球落在斜面的速度方向与斜面的夹角一定增大D.小球落在斜面的速度方向与斜面的夹角一定相同设第一次平抛的初速度为解析v,v与斜面的夹角为θ答案BD 0012.θ=ab则有cos ab sin θ=gt v t1102.当初速度变为2Ev时,速度变为20012,即小球一定=2ab,解得θ=gt x=设此时小球在斜面上的落点到a点的距离为x,则有x cos θ2vt,x sin 2022 D项正确.知,斜面倾角一定时,α也一定,C项错误,=落在c点,A项错误,B项正确.由tan α2tan θ处时其速度方向恰好沿斜面方向,然后沿斜面无摩擦滑下,.如图所示,水平抛出的物体,抵达斜面上端P训练4)—时间图象,其中正确的是(下列选项中的图象描述的是物体沿x方向和y方向运动的速度答案 C 解析O~t段,水平方向:v=v恒定不变;竖直方向:v=gt;t~t段,水平方向:v=v+a0x0QxPPy水t,竖直方向:v=v+at(a<g),因此选项A、B、D均错误,C正确.Pyy竖直竖直平训练5.如图4所示,在竖直放置的半圆形容器的中心O点分别以水平初速度v、v抛出两个小球(可视为质点),21最终它们分别落在圆弧上的A点和B点,已知OA与OB互相垂直,且OA 与竖直方向成α角,则两小球初速度之v1比为() 图4 v2 B.cos αA .tan αC.tan αtan αcos D.cos αα答案 C 解析两小球被抛出后都做平抛运动,设容器半径为R,两小球运动时间分别为t、t,对A球:R sin 21v11122v=α;对B球:R cos α=vt,R sin α=gt,解四式可得:=gtRt,cos α=tan αtan α,C项正确.211122v222二、平抛运动中临界问题的分析例3如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外马路宽x=10 m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v2)取(的大小范围.g10 m/s点时为球落在马路最右侧A若v太大,小球落在马路外边,因此,要使球落在马路上,v的最大值v解析max. 的平抛初速度,如图所示,小球做平抛运动,设运动时间为t112gt=H=vt,小球的竖直位移:+则小球的水平位移:Lx11max2 解以上两式得gv13 m/s. ) ==(L+x max H2的最小值v为球恰好越过围墙的最高点Pv太小,小球被墙挡住,因此,球不能落在马路上,v落在马路上若min B点时的平抛初速度,设小球运动到P点所需时间为t,则此过程中小球的水平位移:L=vt22min12小球的竖直方向位移:H-h=gt22g=5 m/s解以上两式得v=L min2?H-h?因此v的范围是v≤v≤v,即5 m/s≤v≤13 m/s. 答案5 m/s ≤v≤13 m/smax0min1.本题使用的是极限分析法,v不能太大,否则小球将落在马路外边;v又不能太小,否则被围墙挡住而不能落在00马路上.因而只要分析落在马路上的两个临界状态,即可解得所求的范围.2.从解答中可以看到,解题过程中画出示意图的重要性,它既可以使抽象的物理情境变得直观,也可以使隐藏于问题深处的条件显露无遗.小球落在墙外的马路上,其速度最大值所对应的落点位于马路的外侧边缘,而其速度最小值所对应的落点却不是马路的内侧边缘,而是围墙的最高点P,这一隐含的条件只有在示意图中才能清楚地显露出来.训练62011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如图15所示为李娜将球在边界A处x正上方B点水平向右击出,球恰好过网C落在D处(不计空气阻力)的示意图,已知AB=h,AC=x,CD=,12网高为h,下列说法中正确的是()2图15A.击球点高度h与球网的高度h之间的关系为h=1.8h2121x2gh1B.若保持击球高度不变,球的初速度v只要不大于,一定落在对方界内0h1C.任意降低击球高度(仍高于h),只要击球初速度合适(球仍水平击出),球一定能落在对方界内2D.任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内1122答案AD 解析由平抛运动规律可知h=gt,1.5x=vt,h-h=gt,x=vt,得h=1.8h,A正确;2112021012122若保持击球高度不变,球的初速度v较小时,球可能会触网,B错误;任意降低击球高度,只要初速度合适,球可0能不会触网,但球会出界,C错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x,一定能落在对方界内,D正确.训练7.(2011·广东·17)如图20所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上.已知底线到网的距离为L,重力加速度为g,将球的运动视作平抛运20 图) 动,下列叙述正确的是(g L A.球被击出时的速度v等于H2H2 .球从击出至落地所用时间为B g C.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量有关12H2,B正确.球在水平方向做匀速直线运动,由s=v得,t=t得,v答案AB由平抛运动规律知,H=gtg2gsL,==A=L正确.击球点到落地点的位移大于L,且与球的质量无关,C、D错误.2tHH2g训练8.如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8 m,水平距离为8 m,2) (g则运动员跨越壕沟的初速度至少为(取=10 m/s)B. 2 m/sA.0.5 m/sD . 20 m/ C.10 m/s s2Δhx8=0.4 s,v==m/s=20 m/s. 答案D 解析运动员做平抛运动的时间t=0.4tg训练9.《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图9甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h=0.8 m ,l =2 m ,h =2.4 m ,l =1 m ,21212)10 m/s 取重力加速度g =小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(图9解析 (1)设小鸟以v 弹出后能直接击中堡垒,则 01??2gth =h +212? ??t =vl +l 021?2.40.8+2h+h ?×??2210.8 ss t = == 10gl +l 2+121所以v == m /s =3.75 m/st 0.8设在台面的草地上的水平射程为x ,则t =xv ?10?2h 1?=1.5 m<=vl 可见小鸟不能直接击中堡垒.所以 x 110g 2 h =gt ?11?2三、类平抛问题模型的分析方法 1.类平抛运动的受力特点物体所受的合外力为恒力,且与初速度的方向垂直. 2.类平抛运动的运动特点F 合在初速度v 方向上做匀速直线运动,在合外力方向上做初速度为零的匀加速直线运动,加速度a =.m 3.类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合外力的方向)的匀加速直线运动.两分运动彼此独立,互不影响,且与合运动具有等时性. (2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a 、a,初速度v分0xy解为v、v,然后分别在x、y方向列方程求解.yx例4质量为m的飞机以水平初速度v飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重0力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图16所示,求:图16(1)飞机受到的升力大小;(2)上升至h高度时飞机的速度.解析(1)飞机水平方向速度不变,则有l=vt012at竖直方向上飞机加速度恒定,则有h=22hv 2,故根据牛顿第二定律得飞机受到的升力F为解以上两式得a=02l2hv2)(1+mg+ma=mgF=02gl2hv2的a=t;竖直方向初速度为0、加速度(2)由题意将此运动分解为水平方向速度为v的匀速直线运动,l=v0002l匀加速直线运动.上升到h高度其竖直速度22hv 2hv00v2·h=2=ah=y2llv02222h+v 4=所以上升至h高度时其速度v=vl+y0lv2h2h y 如图所示,tan θ==,方向与v成θ角,θ=arctan .0vll0v2h2h0v222,方向与v成θ角,θ=arctan 4l(1(1)答案mg+)(2)+h002glll45°训练的光滑斜面放10如图17所示,两个倾角分别为30°、c,在同一水平面上,斜面高度相等.有三个完全相同的小球a、b、17图小球在两斜面之间,a、c两小球开始均静止于同一高度处,其中b.t、b、c小球到达水平面的时间分别为t、t、在斜面顶端,两斜面间距大于小球直径.若同时由静止释放,a312下列关于时间的关系.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t′、t′、t′312不正确的是()A.t>t>t231 B.tt′t′、t==t′、t=312312′t′>t C.t′>213 <t′t′、t<t′、t.D t<312231D 答案α=53°的光滑斜面顶端,并刚好训练.如图所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角为112cossinsmm0.8 沿光滑斜面下滑,已知斜面顶端与平台的高度差h=53°=,g =10 0.6/,,则: 53°=0.8,v是多大?(1)小球水平抛出的初速度0是多少?(2)斜面顶端与平台边缘的水平距离x m,则小球离开平台后经多长时间t到达斜面底端?(3)若斜面顶端高H=20.8(3)2.4 s (2)1.2 m(1)3 m/s说明此时小球速度方向与斜面平行,由题意可知,小球落到斜面上并沿斜面下滑,解析(1) 否则小球会弹起,2v,v tan 53°==2gh,所以v yy0v,v则=4 m/s s. =3 m/y01.2 m ×tx=gt由(2)v=得t0.4 s,=v=30.4 m=11y10=,初速度sin 53°v5 m/s.则g(3)小球沿斜面做匀加速直线运动的加速度a=13H12=-=,解得2.4 s. =+tt)s+t=vat不合题意舍去,所以=ttt2 s(或2212224sin 53°2。
(完整版)平抛运动超全练习题及答案详解
体的轨迹。
⑴完成上述步骤,将正确的答案填在横线上。
⑵上述实验步骤的合理顺序是
。
⑶已知图中小方格的边长 L= 1.25cm ,则小球
平抛的初速度为 v0=Fra bibliotek(用 L、g 表示),
其值是
(取 g= 9.8m/s 2),小球在b点的速率
a b c
d
。
15、在倾角为α的斜面上 P 点,以水平速度υ 0 向斜面下方抛出一小球, 落在 O点 ( 图 ). 不计空气阻力,试求小球落在 O的速度 .
L=
gt 2 2sin37
°
= 75
m.
(2) 设运动员离开 O点时的速度为 v0,运动员在水平方向的分运动为匀速直线运动,
Lcos37°
有 Lcos37°= v0t , 即 v0= t
= 20 m/s.
(3) 解法一:运动员的平抛运动可分解为沿斜面方向的匀加速运动
( 初速度为
v0cos37°、加速度为 gsin37 °) 和垂直斜面方向的类竖直上抛运动
=
m/s = 13 m/s
2H
2×5
g
10
所以小球抛出时的速度大小为 5 m/s ≤ v0≤13 m/s. 答案: 5 m/s ≤ v0≤13 m/s
20 解析: (1) 由平抛运动规律,有竖直方向
h=
1 2
gt
2
水平方向 s=vt
得水平距离 s=
2h g v= 0.90 m.
(2) 由机械能守恒定律,动能
)
A .是匀变曲线速运动
B.是变加速曲线运动
C.任意两段时间内速度变化量的方向相同
D .任意相等时间内的速度变化量相等
3、物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的
专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。
专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)-2024年高考物理一轮综合复习
2024年高考物理一轮大单元综合复习导学练专题23平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标导练内容目标1平抛运动临界问题目标2平抛运动中的相遇问题目标3类平抛运动目标4斜抛运动【知识导学与典例导练】一、平抛运动临界问题【例1】某天,小陈同学放学经过一座石拱桥,他在桥顶A处无意中把一颗小石子水平沿桥面向前踢出,他惊讶地发现小石子竟然几乎贴着桥面一直飞到桥的底端D处,但是又始终没有与桥面接触。
他一下子来了兴趣,跑上跑下量出了桥顶高OA=3.2m,桥顶到桥底的水平距离OD=6.4m。
这时小陈起一颗小石,在A处,试着水平抛出小石头,欲击中桥面上两块石板的接缝B处(B点的正下方B′是OD的中点),小陈目测小石头抛出点离A点高度为1.65m,下列说法正确的是()A .石拱桥为圆弧形石拱桥B .小陈踢出的小石头速度约为6.4m/sC .小陈抛出的小石头速度约为4.6m/sD .先后两颗小石子在空中的运动时间之比为2:1【答案】C【详解】A .石头做平抛运动,石子几乎贴着桥面一直飞到桥的底端D 处,且始终没有与桥面接触,则石拱桥为抛物线形石拱桥,故A 错误;B .石头做平抛运动,水平方向为匀速直线运动,竖直方向为自由落体运动,水平方向,有11OD v t =竖直方向,有2112OA gt =代入数据联立解得10.8s t =,18m/s v =故B 错误;C .小陈踢出的石子经过B 点时,水平方向的位移为总位移的12,则时间为总时间的12,A 和B 竖直方向的距离为21111( 3.2m 0.8m 2244AB t h g OA ===⨯=小陈抛出的小石头做平抛运动,水平方向的位移为2212OD v t =竖直方向位移为2212AB h h gt +=代入数据解得20.7s t =,232m/s 4.6m/s 7v =≈故C 正确;D .先后两颗小石子在空中的运动时间之比为12:8:7t t =故D 错误。
精炼总结平抛运动的知识点、例题与练习题(有答案)
第4节 抛体运动的规律【知识要点】1、分解平抛运动的理论依据上节的实验探究得到了这样的结论:平抛运动竖直方向的分运动是自由落体运动,水平方向的分运动是匀速直线运动。
这个结论还可从理论上得到论证:物体以一定初速度v 水平抛出后,物体只受到重力的作用,方向竖直向下,根据牛顿第二定律,物体的加速度方向与所受合外力方向一致,大小为a =mg/m =g ,方向竖直向下;由于物体是被水平抛出的,在竖直方向的初速度为零。
所以,平抛运动的竖直分运动就是自由落体运动。
而水平方向上物体不受任何外力作用,加速度为零,所以水平方向的分运动是匀速直线运动,速度大小就等于物体抛出时的速度v 。
2、平抛物体的规律如图4-1所示,以物体水平抛出时的位置为坐标原点,以水平抛出的方向为x 轴的正方向,竖直向下的方向为y 轴的正方向,建立坐标系,并从这一瞬间开始计时。
(1)位移:水平方向的分运动x =vt竖直方向的分运动y =12 gt 2(2)轨迹:从以上两式中消去t ,可得y =22vg x 2y =22v g x 2是平抛运动物体在任意时刻的位置坐标x 和y 所满足的方程,我们称之为平抛运动的轨迹方程。
(3)速度:水平分速度v x =v ,竖直分速度v y =gt根据运动的合成规律可知物体在这个时刻的速度(即合速度)大小v =22222t g v v v y x +=+设这个时刻物体的速度与竖直方向的夹角为θ,则有tan?θ=xy v v =vgt 。
3、对平抛运动的进一步讨论(1)飞行时间:由于平抛运动在竖直方向的分运动为自由落体运动,有221gt h =,gh t 2=即平抛物体在空中的飞行时间取决于下落高度h ,与初速度v 0无关。
(2)水平射程:由于平抛运动在水平方向的分运动为匀速直线运动,故平抛物体的水平射程即落地点与抛出点间的水平距离x =v t =vgh 2 即水平射程与初速度v 和下落高度h 有关,与其他因素无关。
(完整版)平抛运动测试题及答案
平抛运动试题一、选择题:1.如图1所示,在光滑的水平面上有一小球a以初速度v0运动,同时刻在它的正上方有小球b也以v0初速度水平抛出,并落于c点,则( )A .小球a先到达c点B .小球b先到达c点C .两球同时到达c点D .不能确定2.一个物体从某一确定的高度以v0的初速度水平抛出,已知它落地时的速度为vt, 那么它的运动时间是( )A .g v v t 0-B .g v v t 20-C .gv v t 222- D .g v v t 202-3.如图2所示,为物体做平抛运动的x-y图象.此曲线上任意一点P (x ,y )的 速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( ) A.0.6xB.0.5xC.0.3xD.无法确定4.下列关于平抛运动的说法正确的是( )A. 平抛运动是非匀变速运动B. 平抛运动是匀速运动 图2C. 平抛运动是匀变速曲线运动D. 平抛运动的物体落地时的速度一定是竖直向下的5.将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已知甲和乙抛射点的高度相同,乙和丙抛射速度相同。
下列判断中正确的是( )A. 甲和乙一定同时落地B. 乙和丙一定同时落地C. 甲和乙水平射程一定相同D. 乙和丙水平射程一定相同6.对平抛运动的物体,若g 已知,再给出下列哪组条件,可确定其初速度大小( ) A .水平位移 B .下落高度C .落地时速度大小和方向D .落地位移大小和方向7. 关于物体的平抛运动,下列说法正确的是( )A. 由于物体受力的大小和方向不变, 因此平抛运动是匀变速运动;B. 由于物体速度的方向不断变化, 因此平抛运动不是匀变速运动;C. 物体的运动时间只由抛出时的初速度决定,与高度无关;D.平抛运动的水平距离由抛出点的高度和初速度共同决定.8. 把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知( )A.L=S/2 ;B. L=2S;C.L S =12; D.L S =2 . 9.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同10.物体在平抛运动过程中,在相等的时间内,下列哪个量是相等的( ) A.位移 B.加速度C.平均速度D.速度的增量图1二、填空题:11.如图3所示的演示实验中,A 、B 两球同时落地,说明 。
平抛运动典型分类例题.docx
1.定义水平抛出的物体只在重力作用下的运动.2.特征加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.平抛运动的速率随时间变化不是均匀的,但速度随时间的变化是均匀的,要注意区分.4.规律(1)平抛运动如图所示;(2)其合运动及在水平方向上、竖直方向上的运动如下表所示:①从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向角正切值的两倍.②抛物线上某点的速度反向延长线与初速度延长线的交点到抛点的距离等于该段平抛水平位移的一半.③在任意两个相等的t ∆内,速度矢量的变化量v ∆是相等的,即v ∆的大小与t ∆成正比,方向竖直向下.④平抛运动的时间为t =,取决于下落的高度,而与初速度大小无关.水平位移0x v t v == 4.求解方法(1)常规方法:将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,利用运动的合成及分解来做.(2)特殊方法:巧取参考系来求解,例如:选取具有相同初速度的水平匀速直线运动物体为参考系,平抛物体做自由落体运动;选取自由落体运动的物体为参考系,平抛物体做匀速直线运动.题型一:对平抛性质的理解【例1】 关于平抛运动,下列说法正确的是( )A .是匀变速运动B .是变加速运动C .任意两段时间内速度变化量的方向相同D .任意相等时间内的速度变化量相等【例2】 物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的 ( )A .速度的增量B .加速度C .位移D .平均速率题型二:对平抛基本公式、规律运用【例3】 以速度0v 水平抛出一个小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B 0C .小球运动的时间为2v gD .此时小球的速度方向与位移方向相同【例4】 一架飞机水平匀速飞行.从飞机上海隔l s 释放一个铁球,先后释放4个,若不计空气阻力,从地面上观察4个小球( )A .在空中任何时刻总是捧成抛物线,它们的落地点是等间距的B .在空中任何时刻总是排成抛物线,它们的落地点是不等间距的C .在空中任何时刻总在飞机正下方,排成竖直的直线,它们的落地点是等间距的D .在空中任何时刻总在飞机的正下方,捧成竖直的直线,它们的落地点是不等间距的【例5】 在光滑的水平面上有一个小球a 以初速度0v 向右运动,以此同时,在它的正上方有一个小球b 也以0v 的初速度水平向右抛出(如右上图),并落于水平面的c 点,则( ) A .小球a 先到达c 点B .小球b 先到达c 点C .两球同时到达c 点D .不能确定【例6】 甲、乙两球位于同一竖直直线上的不同位置,甲比乙高h ,如图所示,将甲、乙两球分别以1v 、2v 的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( )A .同时抛出,且1v <2vB .甲迟抛出,且1v >2vC .甲早抛出,且1v >2vD .甲早抛出,且1v <2v【例7】 滑雪运动员以20/m s 的速度从一平台水平飞出,落地点与飞出点的高度差3.2m .不计空气阻力,取210/g m s =.运动员飞过的水平距离为s ,所用时间为t ,则下列结果正确的是( ) A .16m, =0.50s s t = B . 16m, =0.80s s t = C .20m, =0.50s s t = D . 20m, =0.80s s t =【例8】 一物体从某高度以初速度0v 水平抛出,落地时速度大小为t v ,则它运动时间为( )A .0t v v g -B .02t v v g -C .222t v v g - D题型三:与斜面组合类【例9】 如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan sin φθ=B .tan cos φθ=C . tan tan φθ=D .tan 2tan φθ=【例10】 如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30° 的斜面上,可知物体完成这段飞行的时间是 ( )A 、sB 、sC 、s D 、2s【例11】 如图所示,相对的两个斜面,倾角分别为37。
完整word版高中物理平抛运动经典例题
处越过A的壕沟,沟面如图1所示,某人骑摩托车在水平道路上行驶,要在[例1],摩托车的速度至少要有多大?对面比A处低图1解析:在竖直方向上,摩托车越过壕沟经历的时间在水平方向上,摩托车能越过壕沟的速度至少为2. 从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在为的斜面上。
可知物体完成这段飞行的时间是(倾角)D.B.A.C.图2和竖直分速度(如图解析:2先将物体的末速度乙所示)。
分解为水平分速度根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与间的夹角等于斜面的倾角与水平面垂直,所以。
再根据平抛运动的斜面垂直、与分解可知物体在竖直方向做自由落体运动,那么我们根据了。
则就可以求出时间所以根据平抛运动竖直方向是自由落体运动可以写出所以所以答案为C。
3. 从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)点,以水平速度向斜面下方抛出一个物体,落在斜面上在倾角为的斜面上的P[例3]点物体速度Q的Q点,证明落在。
,所用时间为点的位移是P运动到斜面上的Q,则由“分解设物体由抛出点解析:位移法”可得,竖直方向上的位移为;水平方向上的位移为。
又根据运动学的规律可得,竖直方向上水平方向上,则点的速度所以Q所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右4] 如图3[例,小球均落在坡面上,两侧斜坡的倾角分别为若不计空气和,抛出两个小球A和B 两小球的运动时间之比为多少?B阻力,则A和图3和都是物体落在斜面上后,解析:位移与水平方向的夹角,则运用分解位移的方法可以得到所以有.同理则4. 从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
(完整word版)高一物理平抛运动练习题(附答案)
高一物理平抛运动练习题班级_________姓名_______________座号______ 命题人:郑俊峰一、单项选择题(答案填写到第3页的框格内)1. 关于做平抛运动的物体,正确的说法是A.速度始终不变B.加速度始终不变C.受力始终与运动方向垂直D.受力始终与运动方向平行2. 在“探究平抛运动的规律”的实验中,如果小球每次从斜槽滚下的初始位置不同,则下列说法中错误的是A.小球平抛的初速度不同B.小球每次做不同的抛物线运动C.小球在空中运动的时间每次均不同D.小球通过相同的水平位移所用的时间均不同3. 以初速度v 0水平抛出一个物体,经过时间t 速度的大小为v t ,经过时间2t ,速度大小的正确表达式应该是A .gt v 20+B .gt v t +C .220)2(gt v +D .223()t v gt +4. 物体做平抛运动,它的速度方向与水平方向的夹角θ的正切tanθ随时间t 的变化图像是图中的5.如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd.从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上的b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点二、双项选择题(答案填写到第3页的框格内)6.某人向放在水平地面的正前方小桶中水平抛球,结果球划着一条弧线飞到小桶的前方(如图所示)。
不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛时,他可能作出的调整为A .减小初速度,抛出点高度不变B .增大初速度,抛出点高度不变C .初速度大小不变,降低抛出点高度D .初速度大小不变,提高抛出点高度7.以速度v 0水平抛出一小球后,不计空气阻力,某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是A .此时小球的竖直分速度大小大于水平分速度大小B .此时小球速度的方向与位移的方向相同C .此时小球速度的方向与水平方向成45度角D .从抛出到此时小球运动的时间为2v 0g8.一快艇要从岸边某一不确定位置处到达河中离岸边100 m 远的一浮标处,已知快艇在静水中的速度v x 图象和流水的速度v y 图象如图所示,则A .快艇的运动轨迹为直线B .快艇的运动轨迹为曲线C .能找到某一位置使快艇最快到达浮标处的时间为20 sD .快艇最快到达浮标处经过的位移为100 m题号 1 2 3 4 5 6 7 8 答案 B C C B A AC AD BC三、填空实验题9.如右图是利用闪光照相研究平抛运动的示意图.小球A由斜槽滚下,从桌边缘水平抛出,当它恰好离开桌边缘时,小球B也同时下落,闪光频率为10 Hz的闪光器拍摄的照片中B球有四个像,像间距离已在图中标出,单位为cm,两球恰在位置4相碰.则A球离开桌面时的速度______.(g取10 m/s2)【解析】小球做平抛运动满足x=v0t,由闪光照片知t=0.3 s,v0=1 m/s.【答案】 1 m/s10.如下图甲所示的演示实验中,A、B两球同时落地,说明________________________,某同学设计了如下图乙的实验:将两个斜滑道固定在同一竖直面内,最下端水平,把两个质量相等的小钢球,从斜面的同一高度由静止同时释放,滑道2与光滑水平板衔接,则他将观察到的现象是____________________________________,这说明__________________________________________________________________________.【答案】平抛运动在竖直方向上是自由落体运动球1落到光滑水平板上并击中球2平抛运动在水平方向上是匀速直线运动四、计算解答题11.平抛一物体,当抛出1 s后它的速度与水平方向成45°角,落地时速度方向与水平方向成60°角.求(取g=10m/s2):(1)物体的初速度;(2)物体的落地速度;(3)开始抛出时物体距地面的高度;(4)物体的水平射程.12.如右图所示,一小球从平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h =0.8 m ,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,则:(1)小球水平抛出的初速度v 0是多大?(2)斜面顶端与平台边缘的水平距离s 是多少?(3)若斜面顶端高H =20.8 m ,则:小球离开平台后经多长时间t 到达斜面底端?【解析】 (1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以v y =v 0tan 53°,v 2y =2gh ,则v y =4 m/s ,v 0=3 m/s.(2)由v y =gt 1得t 1=0.4 s ,s =v 0t 1=3×0.4 m =1.2 m.(3)小球沿斜面做匀加速直线运动的加速度a =g sin 53°,初速度v =5 m/s.则H sin 53°=v t 2+12at 22, 解得t 2=2 s .(或t 2=-134s 不合题意舍去) 所以t =t 1+t 2=2.4 s.。
第16讲 斜面上的平抛运动模型及类平抛运动模型(解析版)
第16讲 斜面上的平抛运动模型及类平抛运动模型一.知识总结斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。
1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个规律(推论) (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切值。
(2)刚落到侧面时的末速度方向都平行,竖直分速度与水平分速度(初速度)之比等于斜面倾斜角正切值的2倍。
(3)运动的时间与初速度成正比⎝ ⎛⎭⎪⎫t =2v 0tan θg 。
(4)位移与初速度的二次方成正比⎝ ⎛⎭⎪⎫s =2v 20tan θg cos θ。
(5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面最远所用的时间为平抛运动时间的一半。
2.常见的模型模型方法分解速度,构建速度三角形,找到斜面倾角θ与速度方向的关系 分解速度,构建速度的矢量三角形分解位移,构建位移三角形,隐含条件:斜面倾角θ等于位移与水平方向的夹角基本 规律水平:v x =v 0竖直:v y =gt 合速度:v =v 2x +v 2y水平:v x =v 0 竖直:v y =gt 合速度:v =v 2x +v 2y水平:x =v 0t 竖直:y =12gt 2 合位移: s =x 2+y 2方向:tanθ=v xv y方向:tanθ=v yv x方向:tanθ=yx运动时间由tanθ=v0v y=v0gt得t=v0g tanθ由tanθ=v yv0=gtv0得t=v0tanθg由tanθ=yx=gt2v0得t=2v0tanθg3.类平抛运动模型(1)模型特点:物体受到的合力恒定,初速度与恒力垂直,这样的运动叫类平抛运动。
如果物体只在重力场中做类平抛运动,则叫重力场中的类平抛运动。
学好这类模型,可为电场中或复合场中的类平抛运动打基础。
(2).类平抛运动与平抛运动的区别做平抛运动的物体初速度水平,物体只受与初速度垂直的竖直向下的重力,a=g;做类平抛运动的物体初速度不一定水平,但物体所受合力与初速度的方向垂直且为恒力,a=F合m。
(完整)必修2平抛运动知识点总结及经典练习题,推荐文档.docx
第二讲平抛运动一、基础知识及重难点【知识点 1】抛体运动1.定义:以一定的速度将物体抛出,如果物体的作用,这时的运动叫抛体运动。
2.平抛运动:初速度沿方向的抛体运动。
3.平抛运动的特点:( 1)初速度沿方向;( 2)只受作用【知识点 2】平抛运动的理解1.条件:①初速度v0②只受2.运动的性质:加速度为重力加速度g 的曲线运动,它的轨迹是一条.3.特点:①水平方向:不受力,→运动②竖直方向:只受重力,且v0 0 →运动4.研究方法:采用“化曲为直”方法——运动的分解v ≠ 0,水平方向0匀速直线运化曲为直不受力平抛运动是曲线运运动分解v0 =0,竖直方向自由落体运只受重力【知识点3】平抛运动的规律1、平抛运动的速度(1)水平方向: v x=(2)竖直方向: v y=大小:v( 3)合速度:v y方向: tan2、平抛运动的位移v x x x( 1)水平方向: x =( 2)竖直方向: y =y v大小: l ( 3)合位移:θy方向: tan v vxy ★ 注意:合位移方向与合速度方向不一致。
y消去 t轨迹方程y3、几个结论:(1)平抛物体任意时刻瞬时速度v 与平抛初速度 v0夹角θ的正切值为位移 s 与水平位移 x 夹角 a 的正切值的两倍,即 tan θ=2tan α(2)平抛物体任意时刻瞬时速度v 的反向延长线一定通过物体水平位移的中点。
( 3)运动时间:y 1 at2t 2 y(时间取决于下落高度y)2g2 y( 5)落地速度:v v02v y2v022gy (取决于初速度v0和下落高度y)【知点 4】平抛运的特点1、理想化特点 :物理上提出的平抛运是一种理想化模型,即把物体看出点,抛出后只考重力作用,忽略空气阻力。
2、匀速特点:平抛运的加速度恒定,始重力加速度 g 所以平抛运是一种运。
3、速度化特点:平抛运中,任意一段内速度的化量v=g t,方向恒直向下(与 g 同向),即任意两个相等的隔内速度的化相同,如右所示。
平抛运动公式 知多少?Microsoft Office Word 文档
平抛运动公式知多少?荥阳二高------陈玉东根据平抛运动的运动特点,可以把相应的曲线运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动(初速度为零的匀加速直线运动)。
这样就出现了合运动与分运动。
平抛运动主要研究速度和位移两组公式。
以从O到P 这一段平抛运动为例,如图所示。
若研究P点的速度,则与速度相关的公式有:水平方向速度:V X=V0竖直方向速度:Vy=gt合速度的大小:V合=V x2+V y2合速度的方向:tanθ=V yV x只要说明合速度与水平方向的夹角,就可以知道合速度的方向了,除了用正切来计算这个夹角之外,也可以用正弦或余弦来计算这个夹角。
sinθ=V yV合cosθ=V xV合以上是有关合速度与分速度的公式。
下面我们来分析合位移与分位移的公式。
水平方向位移:x =V0 t竖直方向位移:y=12gt2合位移的大小:S合=x2+y2合位移的方向:tan∅=yx与分析合速度方向的方法相似,除了用正切来求这个夹角之外,还可以用正弦和余弦来求这个夹角。
sin∅=yscos∅=xS我们还要注意到:合速度方向是沿曲线的切线,而合位移方向是沿曲线的割线(与曲线相交)两条线的方向不同。
这两个方向有什么关系呢?合速度方向:tanθ=V yV x =gtV0合位移的方向:tan∅=yx =12gt2v0t=gt2V0因此,tanθ=2tan∅.这个关系在同一条平抛曲线上的任何位置都是适用的。
如果平抛运动的知识不与其他章节的知识综合,这些公式就能解决本章所有的常见题型。
完整word版高考复习平抛运动解题方法归类解析
平抛运动解题方法归类例析一、平抛运动的研究方法运动的合成与分解是研究曲线运动的基本方法. 根据运动的合成与分解,可以把平抛运动分解为水平方向的匀速运动和竖直方向的自由落体运动,然后研究两分运动的规律,必要时可以再用合成方法进行合成。
二、平抛运动规律以抛出点为坐标原点,水平初速度v方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图所0示的坐标系,则平抛运动规律如下表:的飞镖以速处,将质量m h、离靶面距离L【典例精析1】:(双选)(2010 年广州一模)人在距地面高四个量中的一个,可使飞镖投中靶心v、L、m、水平投出,落在靶心正下方,如图所示.只改变hv度00) 的是(B.适当提高hv A.适当减小 0LD.适当减小C.适当减小m从题意中判断,要使飞镖投中靶心,可以在保持水平距离的条[解析]只会使下落时间更长,故v件下相应提升出手高度,或者,如出手高度不变,则需减少其下落时间,减小0BD。
应适当减小水平距离L。
质量对其运动无影响,综上,选【问题探究】:平抛物体落在水平面上时,物体在空中运动时间和水平射程分别由什么决定。
无关,而物体v][解析当平抛物体落在水平面上时,物体在空中运动的时间由高度h决定,与初速度0两者共同决定。
的水平射程由高度h及初速度v0三、对平抛运动规律的进一步理解1.速度的变化规律Δ时间,t,从抛出点起,每隔不变;竖直方向加速度恒为=vg,速度v=gtv水平方向分速度保持yx0速度的矢量关系如右图所示,这一矢量关系有三个特点;。
v(1)任意时刻的速度水平分量均等于初速度0ΔΔ的方向均竖直向内的速度改变量t(2)任意相等时间间隔vΔΔΔ=v=tg。
下,大小均为v y平抛运动的速率并不随时间均匀变化,但速度随时间是注意:均匀变化的。
随着时间的推移,末速度与竖直方向的夹角越来越大,但永(3) 远不会等于°。
90 1.位移的变化规律2ΔΔt。
(1)任意相等时间间隔内,水平位移不变,且=xv02ΔΔΔt内,竖直方向上的位移差不变,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动是较为复杂的匀变速曲线运动,有关平抛运动的命题也层出不穷。若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。
(一)平抛运动
1.定义:水平抛出的物体只在重力作用下的运动。
2.特点:
(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
取沿斜面向下为 轴的正方向,垂直斜面向上为 轴的正方向,如图6所示,在 轴上,小球做初速度为 、加速度为 的匀变速直线运动,所以有
①
②
当 时,小球在 轴上运动到最高点,即小球离开斜面的距离达到最大。
由①式可得小球离开斜面的最大距离
当 时,小球在 轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为
图5
解析:本题如果用常规的“分解运动法”比较麻烦,如果我们换一个角度,即从运动轨迹入手进行思考和分析,问题的求解会很容易,如图5所示,物体从A、B两点抛出后的运动的轨迹都是顶点在 轴上的抛物线,即可设A、B两方程分别为
,
则把顶点坐标A(0,H)、B(0,2H)、E(2 ,0)、F( ,0)分别代入可得方程组
所以
根据平抛运动竖直方向是自由落体运动可以写出
所以 所以答案为C。
3.从分解位移的角度进行解题
对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)
这个方程组的解的纵坐标 ,即为屏的高。
6.灵活分解求解平抛运动的最值问题
[例7]如图6所示,在倾角为 的斜面上以速度 水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
图6
解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。
图15
解析:根据上述关系式结合图中的几何关系可得
所以
此式表明 仅与 有关,而与初速度无关,因此 ,即以不同初速度平抛的物体落在斜面上各点的速度方向是互相平行的。
推论5:平抛运动的物体经时间 后,位移 与水平方向的夹角为 ,则此时的动能与初动能的关系为
证明:设质量为 的小球以 的水平初速度从A点抛出,经时间 到达B点,其速度 与水平方向的夹角为 ,根据平抛运动规律可作出位移和速度的合成图,如图16所示。
图1
解析:在竖直方向上,摩托车越过壕沟经历的时间
在水平方向上,摩托车能越过壕沟的速度至少为
2.从分解速度的角度进行解题
对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2]如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为 的斜面上。可知物体完成这段飞行的时间是()
证明:如图13,设平抛运动的初速度为 ,经时间 后到达A点的水平位移为 、速度为 ,如图所示,根据平抛运动规律和几何关系:在速度三角形中
在位移三角形中 由上面两式可得
图13
[例11]一质量为 的小物体从倾角为 的斜面顶点A水平抛出,落在斜面上B点,若物体到达B点时的动能为35J,试求小物体抛出时的初动能为多大?(不计运动过程中的空气阻力)
3.平抛运动的规律
描绘平抛运动的物理量有 、 、 、 、 、 、 、 ,已知这八个物理量中的任意两个,可以求出其它六个。
运动分类
加速度
速度
位移
轨迹
分运动
方向
0
直线
方向
直线
合运动
大小
抛物线
与 方向的夹角
(二)平抛、类平抛运动的常见问题及求解思路
关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。
又因为 ,所以
由以上各式可得 ,解得
推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角形
[例9]宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间 ,小球落到星球表面,测得抛出点与落地点之间的距离为 ,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为 。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为 。
(3)平抛运动在竖直方向上是自由落体运动,加速度 恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为 …竖直方向上在相等的时间内相邻的位移之差是一个恒量 。
(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为 )方向和位移方向(与水平方向之间的夹角是 )是不相同的,其关系式 (即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
[例4]如图3所示,在坡度一定的斜面顶点以大小相同的速度 同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为 和 ,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?
图3
解析: 和 都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到
所以有
同理 则
由 可得
所以当物体距斜面的距离最远时的动能为
根据物体在做平抛运动时机械能守恒有
即重力势能减少了3J
解析:设第一次抛出小球,小球的水平位移为 ,竖直位移为 ,如图8所示,构建位移矢量直角三角形有
若抛出时初速度增大到2倍,重新构来自位移矢量直角三角形,如图9所示有,
由以上两式得
令星球上重力加速度为 ,由平抛运动的规律得
由万有引力定律与牛顿第二定律得
由以上各式解得
推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
证明:设平抛运动的初速度为 ,经时间 后的水平位移为 ,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有
水平方向位移
竖直方向 和
由图可知, 与 相似,则
联立以上各式可得
该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
图10
[例10]如图11所示,与水平面的夹角为 的直角三角形木块固定在地面上,有一质点以初速度 从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。
图14
解析:由题意作出图14,根据推论4可得
,所以
由三角知识可得
又因为
所以初动能
[例12]如图15所示,从倾角为 斜面足够长的顶点A,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为 ,球落到斜面上前一瞬间的速度方向与斜面的夹角为 ,第二次初速度 ,球落在斜面上前一瞬间的速度方向与斜面间的夹角为 ,若 ,试比较 和 的大小。
图16
由上面推论4可知
从图16中看出
小球到达B点的速度为
所以B点的动能为
[例13]如图17所示,从倾角为 的斜面顶端平抛一个物体,阻力不计,物体的初动能为9J。当物体与斜面距离最远时,重力势能减少了多少焦耳?
图17
解析:当物体做平抛运动的末速度方向平行于斜面时,物体距斜面的距离最远,此时末速度的方向与初速度方向成 角,如图17所示
图4
解析:A与B、B与C的水平距离相等,且平抛运动的水平方向是匀速直线运动,可设A到B、B到C的时间为T,则
又竖直方向是自由落体运动,则
代入已知量,联立可得
5.从平抛运动的轨迹入手求解问题
[例6]从高为H的A点平抛一物体,其水平射程为 ,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为 。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。
7.利用平抛运动的推论求解
推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。
[例8]从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为 和 ,初速度方向相反,求经过多长时间两小球速度之间的夹角为 ?
图7
解析:设两小球抛出后经过时间 ,它们速度之间的夹角为 ,与竖直方向的夹角分别为 和 ,对两小球分别构建速度矢量直角三角形如图7所示,由图可得 和
A. B. C. D.
图2
解析:先将物体的末速度 分解为水平分速度 和竖直分速度 (如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以 ;又因为 与斜面垂直、 与水平面垂直,所以 与 间的夹角等于斜面的倾角 。再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据 就可以求出时间 了。则
4.从竖直方向是自由落体运动的角度出发求解
在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。为此,我们可以运用竖直方向是自由落体的规律来进行分析。
[例5]某一平抛的部分轨迹如图4所示,已知 , , ,求 。
图11
解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成 角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有
, 和 由上述推论3知
据图9中几何关系得 由以上各式解得
即质点距斜面的最远距离为
图12
推论4:平抛运动的物体经时间 后,其速度 与水平方向的夹角为 ,位移 与水平方向的夹角为 ,则有
[例3]在倾角为 的斜面上的P点,以水平速度 向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度 。