等比数列教学设计(共2课时)复习过程
人教版中职数学(基础模块)下册6.3《等比数列》word教案(可编辑修改word版)
【课题】 6.3 等比数列【教学目标】知识目标:理解等比数列前项和公式.n 能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.n 【教学重点】等比数列的前项和的公式.n 【教学难点】等比数列前项和公式的推导.n 【教学设计】本节的主要内容是等比数列的前项和公式,等比数列应用举例.重点是等比数列的前n 项和公式;难点是前项和公式的推导、求等比数列的项数的问题及知识的简单实际n n n 应用.等比数列前项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解n 并学会应用.等比数列的通项公式与前项和公式中共涉及五个量:n ,只要知道其中的三个量,就可以求出另外的两个量.n n S a n q a 、、、、1教材中例6是已知求的例子.将等号两边化成同底数幂的形式,利n n S a a 、、1n q 、用指数相等来求解的方法是研究等比数列问题的常用方法.n 【教学备品】教学课件.【课时安排】3课时.(135分钟)【教学过程】教学 过程教师行为学生行为教学意图时间*揭示课题6.3 等比数列.*创设情境 兴趣导入【趣味数学问题】从趣过 程行为行为意图间传说国际象棋的发明人是印度的大臣西萨•班•达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏.国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子.并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒.计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺.这位大臣所要求的麦粒数究竟是多少呢?各个格的麦粒数组成首项为1,公比为2的等比数列,大臣西萨•班•达依尔所要的奖赏就是这个数列的前64项和.质疑引导分析思考参与分析味小故事出发使得学生自然的走向知识点10*动脑思考 探索新知下面来研究求等比数列前n 项和的方法.等比数列的前n 项和为{}n a (1).321n n a a a a S ++++= 由于故将(1)式的两边同时乘以q ,得1,n n a q a +⋅= (2) 2341+=+++++ n n n qS a a a a a .用(1)式的两边分别减去(2)式的两边,得 (3)()()1111111+-=-=-⋅=-n n n n q S a a a a q a q .当时,由(3)式得等到数列的前项和公式1≠q {}n a n 总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结问题得到等比数列通项公式过程行为行为意图间 (6.7)1111-=≠-nn a q S q q()().知道了等比数列中的、n 和,利用公式{}n a 1a ),1(≠q q (6.7)可以直接计算.n S 由于,11q a a q a n n n ==+因此公式(6.7)还可以写成(6.8)111-=≠-n n a a q S q q ().当时,等比数列的各项都相等,此时它的前项和1=q n 为.(6.9) 1na S n =【想一想】在等比数列中,知道了、q 、n 、、五个量{}n a 1a n a n S 中的三个量,就可以求出其余的两个量.针对不同情况,应该分别采用什么样的计算方法?【注意】在求等比数列的前n 项和时,一定要判断公比q 是否为1.引导分析参与分析引导启发学生思考求解35*巩固知识 典型例题例5 写出等比数列,27,9,3,1--的前n 项和公式并求出数列的前8项的和.解 因为,所以等比数列的前n 项313,11-=-==q a 说明强调引领观察思考通过例题进一过程行为行为意图间和公式为,1[1(3)]1(3)1(3)4n nn S ⨯----==--故 .881(3)16404S --==-*例6 一个等比数列的首项为,末项为,各项的和4994为,求数列的公比并判断数列是由几项组成.36211解 设该数列由n 项组成,其公比为q ,则,194a =,.49n a =21136n S =于是 9421149361q q-⋅=-,即,⎪⎭⎫ ⎝⎛-=-q q 944936)1(211解得 .23q =所以数列的通项公式为 192,43n n a -⎛⎫=⋅ ⎪⎝⎭于是 ,1492943n -⎛⎫= ⎪⎝⎭即,323241⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-n 解得 .5n =故数列的公比为,该数列共有5项.23【注意】讲解说明引领分析强调含义主动求解观察思考求解领会步领会注意观察学生是否理解知识点45过 程行为行为意图间例6中求项数n 时,将等号两边化成同底数幂的形式,利用指数相等来求解.这种方法是研究等比数列问题的常用方法.现在我们看一看本节趣味数学内容中,国王为什么不能兑现他对大臣的奖赏承诺?国王承诺奖赏的麦粒数为,646419641(12)21 1.841012S -==-≈⨯-据测量,一般麦子的千粒重约为40g ,则这些麦子的总质量约为7.36×g ,约合7360多亿吨.我国2000年小麦1710的全国产量才约为1.14亿吨,国王怎么能兑现他对大臣的奖赏承诺呢!说明思考反复强调50*运用知识 强化练习练习6.3.31.求等比数列,,,,…的前10项的和.919294982.已知等比数列{}的公比为2,=1,求.n a 4S 8S 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*巩固知识 典型例题【趣味问题】设报纸的厚度为0.07毫米,你将一张报纸对折5次后的厚度是多少?能否对折50次,为什么?【小知识】复利计息法:将前一期的本金与利息的和(简称本利和)作为后一期的本金来计算利息的方法.俗称“利滚利”.例7 银行贷款一般都采用“复利计息法”计算利息.小王从银行贷款20万元,贷款期限为5年,年利率为5.76%, 说明强调引领讲解说明观察思考主动求解通过例题进一步领会注意观察学生是否过 程行为行为意图间如果5年后一次性还款,那么小王应偿还银行多少钱?(精确到0.000001万元)解 货款第一年后的本利和为2020 5.76%20(10.0576) 1.057620,+⨯=+=⨯第二年后的本利和为21.057620 1.057620 5.76% 1.057620,⨯+⨯⨯=⨯依次下去,从第一年后起,每年后的本利和组成的数列为等比数列…231.057620,1.057620,1.057620,⨯⨯⨯其通项公式为11.057620 1.0576 1.057620-=⨯⨯=⨯n n n a 故.55 1.05762026.462886=⨯=a 答 小王应偿还银行26.462886万元.引领分析强调含义说明观察思考求解领会思考求解理解知识点反复强调4550*运用知识 强化练习张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%,5年后应偿还银行多少钱?质疑求解强化60*理论升华 整体建构思考并回答下面的问题:等比数列的前n 项和公式是什么?结论:).1(1)1(1≠--=q qq a S n n 质疑归纳回答理解及时了解学生知识掌握情况70过程行为行为意图间).1(11≠--=q qq a a S n n 强调强化*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?引导回忆*自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.已知等比数列{}中,求n a 13226==a S ,,3q a 与.2.等比数列{}的首项是6,第6项是,这个数列n a 316-的前多少项之和是?25564提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题6.3A 组(必做);教材习题6.3B 组(选做)(3)实践调查:运用等比数列求和公式解决现实生活中的实际问题.说明记录分层次要求90【教师教学后记】项目反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克服;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;−辈子时光在匆忙中流逝,谁都无法挽留。
高中数学选择性必修二 4 3 1(第2课时)等比数列的性质及应用 教案
重点
等比数列的性质、等比数列的应用
难点
等比数列的运算、等比数列的性质及应用
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
温故知新
等比数列
等差数列
定义
公比(公差)
q不可以是0
d可以是0
等比(差)中项
等比中项
等差中项 2A=a+b
等比数列的性质及应用教学设计
课题
等比数列的性质及应用
单元
第一单元
学科
数学
年级
高二
教材分析
《等比数列》是人教A版数学选择性必修第二册第四章的内容。本节是数列这一章的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中蕴涵的类比、化归、分类讨论、整体变换和方程思想方法,都是学生今后学习和工作中必备的数学素养。
分析:复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和 构成等比数列.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 ,则 是等比数列,
首项 ,
公比q=1+0.400%,所以
所以,
12个月后的利息为 (元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列 ,则 也是一个等比数列,首项 ,公比为1+r,于是
因此,以季度复利计息,存4个季度后的利息为 元.
解不等式 ,得
所以,当季度利率不小于1.206%时,按季结算的利息不少于按月结算的利息.
例5已知数列Байду номын сангаас的首项 .
高中数学 第1章 数列 3.1 等比数列 第2课时 等比数列的性质教案 高二数学教案
第2课时 等比数列的性质阅读教材P 23思考交流以下P 24例3以上部分,完成下列问题.对于等比数列{a n },通项公式a n =a 1·q n -1=a 1q·q n.根据指数函数的单调性,可分析当q >0时的单调性如下表:思考:(1)若等比数列{a n }中,a 1=2,q =2,则数列{a n }的单调性如何?[提示] 递减数列.(2)等比数列{a n }中,若公比q <0,则数列{a n }的单调性如何? [提示] 数列{a n }不具有单调性,是摆动数列. 2.等比中项阅读教材P 25练习2以上最后两段部分,完成下列问题. (1)前提:在a 与b 中间插入一个数G ,使得a ,G ,b 成等比数列.(2)结论:G 叫作a ,b 的等比中项. (3)满足关系式:G 2=ab .思考:(1)任意两个数都有等差中项,任意两个数都有等比中项吗?[提示] 不是,两个同号的实数必有等比中项,它们互为相反数,两个异号的实数无等比中项.(2)两个数的等差中项是唯一的,若两个数a ,b 存在等比中项,唯一吗?[提示] 不唯一,如2和8的等比中项是4或-4.1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2D .12D [由a 5=a 2q 3,得q 3=a 5a 2=142=18,所以q =12,故选D .]2.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,…,则此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列 C .公比为q 3的等比数列 D .不一定是等比数列B [由于a n a n +1a n -1a n =a n a n -1×a n +1a n=q ·q =q 2,n ≥2且n ∈N +,所以{a n a n +1}是以q 2为公比的等比数列,故选B .]3.等比数列{a n }中,若a 1=2,且{a n }是递增数列,则数列{a n }的公比q 的取值范围是________.(1,+∞) [因为a 1=2>0,要使{a n }是递增数列,则需公比q >1.]4.4-23与4+23的等比中项是________. 2或-2 [由题意知4-23与4+23的等比中项为 ±4-234+23=±16-12=±2.]等比中项及应用x =_____________.(2)设a ,b ,c 是实数,若a ,b ,c 成等比数列,且1a ,1b ,1c成等差数列,则c a +ac的值为________.(1)-4 (2)2 [(1)由题意得(2x +2)2=x (3x +3),x 2+5x +4=0,解得x =-1或x =-4,当x =-1时,2x +2=0,不符合题意,舍去, 所以x =-4.(2)由a ,b ,c 成等比数列,1a ,1b ,1c成等差数列,得⎩⎪⎨⎪⎧b 2=ac ,2b =1a +1c,即4ac =⎝ ⎛⎭⎪⎫1a +1c 2,故(a -c )2=0, 则a =c ,所以c a +ac=1+1=2.]应用等比中项解题的两个注意点(1)要证三数a ,G ,b 成等比数列,只需证明G 2=ab ,其中a ,b ,G 均不为零.(2)已知等比数列中的相邻三项a n -1,a n ,a n +1,则a n 是a n -1与a n +1的等比中项,即a 2n =a n -1·a n +1,运用等比中项解决问题,会大大减少运算过程.1.(1)已知1既是a 2与b 2的等比中项,又是1a 与1b的等差中项,则a +ba 2+b2的值是( ) A .1或12B .1或-12C .1或13D .1或-13(2)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.(1)D(2)4×⎝ ⎛⎭⎪⎫32n -1[(1)由题意得,a 2b 2=(ab )2=1,1a +1b=2,所以⎩⎪⎨⎪⎧ab =1,a +b =2或⎩⎪⎨⎪⎧ab =-1,a +b =-2.因此a +b a 2+b 2的值为1或-13.(2)由已知可得(a +1)2=(a -1)(a +4), 解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32,所以a n =4×⎝ ⎛⎭⎪⎫32n -1.]等比数列的设法与求解【例2】 已知四个实数,前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80,则这四个数为________.1,-2,4,10或-45,-2,-5,-8 [由题意设此四个数分别为b q,b ,bq ,a ,则b 3=-8,解得b =-2,q 与a 可通过解方程组⎩⎪⎨⎪⎧2bq =a +b ,ab 2q =-80求出,即为⎩⎪⎨⎪⎧a =10,b =-2,q =-2或⎩⎪⎨⎪⎧a =-8,b =-2,q =52,所以此四个数为1,-2,4,10或-45,-2,-5,-8.]灵活设项求解等比数列的技巧(1)三个数成等比数列设为aq,a ,aq .(2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3.(3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3.2.已知三个数成等比数列,其积为1,第2项与第3项之和为-32,则这三个数依次为________.-25,1,-52 [设这三个数分别为aq,a ,aq ,则⎩⎪⎨⎪⎧a 3=1,a +aq =-32,解得a =1,q =-52,所以这三个数依次为-25,1,-52.]等比数列的性质及应用[探究问题]1.在等差数列{a n }中,a n =a m +(n -m )d ,类比等差数列中通项公式的推广,你能得出等比数列通项公式推广的结论吗?[提示] a n =a m ·qn -m.2.在等差数列{a n }中,由2a 2=a 1+a 3,2a 3=a 2+a 4,…我们推广得到若2p =m +n ,则2a p =a m +a n ,若{a n }是等比数列,我们能得到什么类似的结论.[提示] 若2p =m +n ,则a 2p =a m ·a n .3.在等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,类比这个性质,若{a n }是等比数列,有哪个结论成立?[提示] 若m +n =p +q ,则a m ·a n =a p ·a q .【例3】 (1)在等比数列{a n }中,a n >0,若a 3·a 5=4,则a 1a 2a 3a 4a 5a 6a 7=________.(2)设{a n }为公比q >1的等比数列,若a 2 018和a 2 019是方程4x 2-8x +3=0的两根,则a 2 030+a 2 031=________.(3)在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比q 为整数,则a n =________.思路探究:利用等比数列的性质求解.(1)128 (2)2·312 (3)-(-2)n -1[(1)a 3a 5=a 24=4,又a n>0,所以a 4=2,a 1a 2a 3a 4a 5a 6a 7=(a 1·a 7)·(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 24·a 4=a 74=27=128.(2)解方程4x 2-8x +3=0得x 1=12,x 2=32,因为q >1,故a 2 019=32,a 2 018=12,故q =3, ∴a 2 030+a 2 031=a 2 018q 12+a 2 019·q 12=(a 2 018+a 2 019)q 12=2·312.(3)在等比数列{a n }中,由a 4a 7=-512得a 3a 8=-512, 又a 3+a 8=124,解得a 3=-4,a 8=128或a 3=128,a 8=-4,因为公比q 为整数,所以q =5a 8a 3=-51284=-2, 故a n =-4×(-2)n -3=-(-2)n -1.]1.(变条件)将例3(3)中等比数列满足的条件改为“a 4+a 7=2,a 5a 6=-8”,求a 1+a 10.[解] 因为{a n }是等比数列,所以a 5a 6=a 4a 7=-8, 又a 4+a 7=2,解得a 4=4,a 7=-2或a 4=-2,a 7=4, 当a 4=4,a 7=-2时,q 3=-12,a 1+a 10=a 4q3+a 7q 3=-7,当a 4=-2,a 7=4时,q 3=-2,a 1+a 10=a 4q3+a 7q 3=-7.故a 1+a 10=-7.2.(变结论)例3(3)题的条件不变,求log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9|.[解] 因为a 4a 7=-512,所以a 2a 9=a 3a 8=-512, 故log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9| =log 4(|a 2a 9|·|a 3a 8|)=log 45122=log 229=9.等比数列的常用性质性质1:通项公式的推广:a n =a m ·qn -m(m ,n ∈N +).性质2:若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .特别的,若k +φ=2m (m ,k ,φ∈N +),则a k ·a φ=a 2m .性质3:若{a n },{b n }(项数相同)是等比数列,则{λb n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.性质4:在等比数列{a n }中,序号成等差数列的项仍成等比数列.性质5:⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1⇔{a n }递增;⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1⇔{a n }递减;q =1⇔{a n }为常数列;q<0⇔{a n }为摆动数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n 项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.1.判断正误(正确的打“√”,错误的打“×”)(1)数列-1,-2,-4,-8,-16是递减数列.( ) (2)等比数列{a n }中,a 1>1,q <0,则数列|a 1|,|a 2|,|a 3|,…,|a n |,…是递增数列.( )(3)若G 是a ,b 的等比中项,则G 2=ab ,反之也成立.( ) [答案] (1)√ (2)× (3)× [提示] (1)正确;(2)不正确,如a 1=2,q =⎝ ⎛⎭⎪⎫-12,则|a n |=2×12n -1=12n -2是递减数列;(3)不正确,当G 是a ,b 的等比中项时,G 2=ab 成立,但当G 2=ab 时,G 不一定是a ,b 的等比中项,如G=a =b =0.2.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36D .32C [因为{a n }是等比数列,所以a 2a 6=a 24=36.]3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =_____________.3 [因为a 891=a 888q891-888=a 888q 3,所以q 3=a 891a 888=813=27.所以q =3.]4.在等比数列{a n }中,a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.[解] 在等比数列{a n }中,由a 3a 4a 5=a 34=8,得a 4=2,又因为a2a6=a3a5=a24,所以a2a3a4a5a6=a54=25=32.。
《数学》教案:等比数列
4.某企业2014年的年产值为2 000万元,若产值在2014年的基础上,每年递增10%,问2020年该企业的年产值能够达到多少万元?(精确到0.01万元)
5.某人计划贷款买一部家用汽车,贷款150 000元,贷款期限为5年,年利率为5.20%,按复利计息法计算利息.如果5年后一次性还款,此人应偿还银行多少钱?(精确到0.01元)
解设这个等比数列的第1项为 公比为q,那么
①
②
②÷①,得
将 代入式①,可得
于是
三、等比数列的前n项和公式
等比数列的前n项和公式为
.(7-5)
例6求下列数列前8项的和:
(1) ;(2)
解(1)因 ,所以,当 时,
(2)因 ,所以,当 时,
讲解
说明
分析
讲解
提问
讲解
说明
分析
讲解
提问
讲解
说明
分析
讲解
提问
理解
【教学设备】
电脑、投影仪。
【教学时间】
2课时(90 min)。
【教学过程】
环节
教学内容
教师
Байду номын сангаас活动
学生活动
设计意图
新课讲解
一、等比数列的定义
一般地,如果一个数列从第2项起,每一项与其前一项的比都等于同一常数,那么,这个数列称为等比数列,这个常数称为等比数列的公比,用字母q 表示.
如果三个数a,G,b成等比数列,则
(3) ;
(4) ;
(5) ;
(6) .
2.求出下列等比数列中的未知项:
(1) ;(2) ,且 .
高中数学等比数列教案
高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
《等比数列》教学设计
《等比数列》教学设计一、目的要求1.理解等比数列的概念。
2.掌握等比数列的通项公式,并会根据它进行有关计算。
二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。
因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。
这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。
事实上,由等比数列的定义可知这个数列是非0数列。
取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。
2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。
事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。
因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。
3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。
事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。
4.本课内容的重点是等比数列的概念及其通项公式。
与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。
等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。
与等差数列一样,等比数列也具有一种对称性。
对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。
类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。
利用上面的性质,常可使一些问题变得简便。
例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。
高三数学一轮复习精品教案2:6.3 等比数列教学设计
第三节 等比数列考纲传真1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.1.等比数列2.等比数列的性质(1)对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . (2)通项公式的推广:a n =a m q n-m(m ,n ∈N *)(3)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(4)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{1a n },{a 2n },{a n ·b n },{a nb n }(λ≠0)仍是等比数列.1.(人教A 版教材习题改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12『解析』 由题意知:q 3=a 5a 2=18,∴q =12.『答案』 D2.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .-11B .-8C .5D .11『解析』 8a 2+a 5=0,得8a 2=-a 2q 3,又a 2≠0,∴q =-2, 则S 5=11a 1,S 2=-a 1,∴S 5S 2=-11.『答案』 A3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6 D .7『解析』 由题意a 27=a 3a 11=16,且a 7>0,∴a 7=4, ∴a 10=a 7·q 3=4×23=25,从而log 2a 10=5. 『答案』 B4.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________. 『解析』 ∵S 3=21,q =4,∴a 1(1-q 3)1-q =21,∴a 1=1,∴a n =4n -1.『答案』 4n -15.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.『解析』 由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q =1-(-2)53=11.『答案』 11等比数列的基本计算(1)(2012·辽宁高考)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.(2)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. ①求{a n }的公比q ;②若a 1-a 3=3,求S n .『思路点拨』 建立关于a 1与公比q 的方程,求出基本量a 1和公比,代入等比数列的通项公式与求和公式.『尝试解答』 (1)设数列{a n }的首项为a 1,公比为q , ∵a 25=a 10,2(a n +a n +2)=5a n +1.∴⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9, ①2(1+q 2)=5q , ②由①得a 1=q ;由②知q =2或q =12,又数列{a n }为递增数列,∴a 1=q =2,从而a n =2n .『答案』 2n(2)①∵S 1,S 3,S 2成等差数列, ∴a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12.②由已知可得a 1-a 1(-12)2=3,故a 1=4,从而S n =4[1-(-12)n ]1-(-12)=83『1-(-12)n 』.,1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,体现了方程思想的应用.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,此外在运算过程中,还应善于运用整体代换思想简化运算.(2013·泰安调研)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5). (1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .『解』 (1)设公比为q ,则a n =a 1qn -1.由已知有⎩⎨⎧a 1+a 1q =2(1a 1+1a 1q),a 1q 2+a 1q 3+a 1q 4=64(1a 1q 2+1a 1q 3+1a 1q 4).化简得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1.所以a n =2n -1.(2)由(1)知b n=(a n+1a n)2=a2n+1a2n+2=4n-1+14n-1+2.因此T n=(1+4+…+4n-1)+(1+14+…+14n-1)+2n=4n-14-1+1-14n1-14+2n=13(4n-41-n)+2n+1.等比数列的判定与证明(2013·徐州质检)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.『思路点拨』正确设等差数列的三个正数,利用等比数列的性质解出公差d,从而求出数列{b n}的首项、公比;利用等比数列的定义可解决第(2)问.『尝试解答』(1)设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{b n}中的b3,b4,b5依次为7-d,10,18+d.依题意,(7-d)(18+d)=100,解之得d=2或d=-13(舍去),∴b3=5,公比q=2,因此b1=54.故b n=54·2n-1=5·2n-3.(2)证明由(1)知b1=54,公比q=2,∴S n=54(1-2n)1-2=5·2n-2-54,则S n+54=5·2n-2,因此S1+54=52,S n+54S n-1+54=5·2n-25·2n-3=2(n≥2).∴数列{S n+54}是以52为首项,公比为2的等比数列.,1.本题求解常见的错误:(1)计算失误,不注意对方程的根(公差d)的符号进行判断;(2)不能灵活运用数列的性质简化运算.2.证明数列{a n}是等比数列一般有两种方法:(1)定义法:a n+1a n=q(q是不为零的常数,n∈N*);(2)等比中项法:a 2n +1=a n ·a n +2≠0(n ∈N *).(1)在正项数列{a n }中,a 1=2,点(a n ,a n -1)(n ≥2)在直线x -2y =0上,则数列{a n }的前n 项和S n =________.(2)数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1,求证:数列{c n }是等比数列,并求{a n }的通项公式.『解析』 (1)由题意知a n -2a n -1=0,∴a n =2a n -1(n ≥2), ∴数列{a n }是首项为2,公比为2的等比数列. ∴S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.『答案』 2n +1-2(2)证明 ∵a n +S n =n ,∴a 1+S 1=1,得a 1=12,∴c 1=a 1-1=-12.又a n +1+S n +1=n +1,a n +S n =n ,∴2a n +1-a n =1,即2(a n +1-1)=a n -1. 又∵a 1-1=-12,∴a n +1-1a n -1=12,即c n +1c n =12,∴数列{c n }是以-12为首项,以12为公比的等比数列.则c n =-12×(12)n -1=-(12)n ,∴{a n }的通项公式a n =c n +1=1-(12)n .等比数列的性质及应用(1)(2013·嘉兴模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于( )A .50B .70C .80D .90 (2)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. ①求数列{a n }的通项公式;②设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n }的前n 项和.『思路点拨』 (1)利用S 3,S 6-S 3,S 9-S 6成等比数列的性质求解;(2)灵活应用a 2n =a n -1·a n +1,求a 1与公比q ,进而求出a n ,b n ,然后利用裂项相消法求和. 『尝试解答』 (1)∵S 3,S 6-S 3,S 9-S 6成等比数列, ∴S 3·(S 9-S 6)=(S 6-S 3)2,又S 3=40,S 6=40+20=60, ∴40(S 9-60)=202,故S 9=70. 『答案』 B(2)①设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .②b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1),1b 1+1b 2+…+1b n =-2『(1-12)+(12-13)+…+(1n -1n +1)』=-2n n +1.所以数列{1b n }的前n 项和为-2nn +1.,1.本题充分利用已知条件,数列的性质,简化了运算.2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)(2012·课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2『解析』 (1)由于a 5·a 6=a 4·a 7=-8,a 4+a 7=2,∴a 4,a 7是方程x 2-2x -8=0的两根, 解之得a 4=4,a 7=-2或a 4=-2,a 7=4.∴q 3=-12或q 3=-2.当q 3=-12时,a 1+a 10=a 4q 3+a 7·q 3=4×(-2)+(-2)×(-12)=-7,当q 3=-2时,a 1+a 10=a 4q 3+a 7·q 3=-2-2+4×(-2)=-7.(2)∵a 5·a 2n -5=a 2n =22n ,且a n >0,∴a n =2n ,∵a 2n -1=22n -1,∴log 2a 2n -1=2n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+5+…+(2n -1)=n [1+(2n -1)]2=n 2.『答案』 (1)D (2)C等差、等比数列的综合应用已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c nb n =a n +1成立,求c 1+c 2+c 3+…+c 2 010.『思路点拨』 (1)可用基本量法求解;(2)作差a n +1-a n =c nb n .『尝试解答』 (1)由已知a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).解得d =2(∵d >0).∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1.(2)由c 1b 1+c 2b 2+…+c n b n =a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c n b n=a n +1-a n =2.∴c n =2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎪⎨⎪⎧3 (n =1)2·3n -1 (n ≥2).∴c 1+c 2+c 3+…+c 2010=3+6-2×32 0101-3=3+(-3+32010)=32 010.,1.本题中第(2)题相当于已知数列{c n b n }的前n 项和,求c nb n.2.在解决等差、等比数列的综合题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式.本题第(1)问就是用基本量公差、公比求解;第(2)问在作差a n +1-a n 时,要注意n ≥2.已知数列{a n }中,a 1=1,a 2=2,且a n +1=(1+q )a n -qa n -1(n ≥2,q ≠0).(1)设b n =a n +1-a n (n ∈N *),证明:{b n } 是等比数列; (2)求数列{a n }的通项公式;(3)若a 3是a 6与a 9的等差中项,求q 的值,并证明:对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.『解』(1)证明 由题设a n +1=(1+q )a n -qa n -1(n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0,所以{b n }是首项为1,公比为q 的等比数列. (2)由(1),a 2-a 1=1,a 3-a 2=q ,…,a n -a n -1=q n -2(n ≥2) 将以上各式相加,得a n -a 1=1+q +…+q n -2(n ≥2),即a n =a 1+1+q +…+q n -2(n ≥2).所以当n ≥2时,a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1,n , q =1. 上式对n =1显然成立.(3)由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1.由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8,由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2.于是q =-32.另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q (1-q 6).由①可得a n -a n +3=a n +6-a n ,所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.一个推导利用错位相减法推导等比数列的前n 项和公式. 两个防范1.由a n +1=qa n (q ≠0),并不能立即断言{a n }为等比数列,还要验证a 1≠0.2.运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止忽略q =1这一特殊情形. 两种方法证明{a n }是等比数列的主要方法:(1)定义法:若a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.等比数列是每年高考的热点内容,主要考查等比数列的通项公式,前n 项和公式及等比数列的性质,各种题型均有可能出现.注重等比数列与相关知识综合交汇,或“非标准”的等比数列是命题新的生长点.创新探究之七 等比数列与三角函数的交汇创新(2011·福建高考)已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.『规范解答』 (1)由q =3,S 3=133,得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3. 因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin(2×π6+φ)=1.又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin(2x +π6).创新点拨:(1)等比数列和三角函数相结合,考查学生的阅读理解能力与知识迁移能力. (2)等比数列和三角函数两部分知识跨度较大,放在一起考查,对学生灵活处理问题的能力有较高要求.应对措施:(1)采取先局部,后整体的策略,即先单独考虑等比数列和三角函数,再从整体上考虑两部分知识之间的联系.(2)对两部分知识的结合点,要从其如何产生和有何作用两个方面考虑.1.(2012·湖北高考)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④ 『解析』 设等比数列{a n }的公比为q ,则a n +1a n =q ,①中,f (a n +1)f (a n )=a 2n +1a 2n =q 2,∴①满足定义,②中,f (a n +1)f (a n )=2a n +12a n =2a n +1-a n =2(q -1)a n 不满足定义.对于③,f (a n +1)f (a n )=|a n +1a n|=|q |满足定义. 对于④,取a n =2n ,则f (a n )=ln|2n |=n ·ln 2不是等比数列. 综上知,①、③是“保等比数列”函数. 『答案』 C2.(2012·陕西高考)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列. (1)求数列{a n }的公比;(2)对任意k ∈N *,证明S k +2,S k ,S k +1成等差数列. 『解』(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3. 由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)证明 对任意k ∈N *,由(1)知,S k +2=S k +a k +1+a k +2=S k +a k +1-2a k +1=S k -a k +1, 且S k +1=S k +a k +1,∴S k +2+S k +1=2S k ,从而对任意k ∈N *,S k +2,S k ,S k +1成等差数列.。
等比数列教案
Many things in life are not that we can't do it, but that we don't believe it can be done.简单易用轻享办公(页眉可删)等比数列教案等比数列教案1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
等比数列性质课程设计
等比数列性质课程设计一、课程目标知识目标:1. 学生能理解并掌握等比数列的定义及通项公式。
2. 学生能运用等比数列的性质解决相关问题,如求和、求项等。
3. 学生能了解等比数列在实际问题中的应用,如人口增长、复利计算等。
技能目标:1. 学生能通过观察、分析等比数列的规律,培养逻辑思维和抽象思维能力。
2. 学生能运用等比数列的性质,解决具有一定难度的数学问题,提高解题能力。
3. 学生能运用等比数列知识,解决实际问题,培养数学应用能力。
情感态度价值观目标:1. 学生在学习等比数列的过程中,培养对数学的兴趣和热情,增强自信心。
2. 学生通过合作交流,培养团队精神和沟通能力,形成积极向上的学习态度。
3. 学生认识到数学与现实生活的联系,体会数学的价值,树立正确的价值观。
课程性质:本课程为数学学科课程,以等比数列性质为主要内容,注重知识掌握与实际应用。
学生特点:学生处于高中年级,具备一定的数学基础,逻辑思维能力逐渐成熟,但需加强抽象思维和数学应用能力的培养。
教学要求:教师应结合学生特点,运用多样化教学手段,激发学生学习兴趣,注重培养数学思维和实际应用能力。
在教学过程中,将课程目标分解为具体学习成果,便于教学设计和评估。
二、教学内容1. 等比数列的定义及基本性质- 等比数列的概念- 等比数列的通项公式- 等比数列的公比及其对数列的影响2. 等比数列的运算- 等比数列的求和公式- 等比数列的乘法法则- 等比数列的除法法则3. 等比数列的应用- 实际问题中的等比数列模型- 人口增长与衰减问题- 复利计算问题4. 等比数列的性质证明- 等比数列通项公式的推导- 等比数列求和公式的推导- 等比数列性质的证明方法5. 综合练习与拓展- 各类等比数列问题的解题方法与技巧- 等比数列与其他数列的结合问题- 等比数列在实际问题中的拓展应用教学大纲安排:第一课时:等比数列的定义及基本性质第二课时:等比数列的运算第三课时:等比数列的应用第四课时:等比数列的性质证明第五课时:综合练习与拓展教学内容进度:第一周:1、2课时第二周:3、4课时第三周:5课时三、教学方法为了提高等比数列性质课程的教学效果,充分激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:- 对于等比数列的基本概念、性质、公式等理论知识,采用讲授法进行教学,使学生明确知识点,为后续学习打下基础。
等比数列的概念(教案)
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
4.3.1第2课时等比数列的应用及性质教学设计高中数学新人教A版选择性()
4.掌握等比数列的判断及证明方法。
教学重难点:
1.理解复利计算方法,能解决存款利息的有关计算方法。
2.掌握等比数列的判断及证明方法。
教学过程
教学环节
师生活动
环节一
【基础铺垫】
知识点一实际应用题常见的数列模型
1.储蓄的复利公式:本金为a元,每期利率为r,存期为n期,则本利和y=a(1+r)n。
所以当n≥2时,Sn-1=2an-1+n-1-4,
Sn-Sn-1=(2an+n-4)-(2an-1+n-5),
即an=2an-1-1,
所以an-1=2(an-1-1),
又bn=an-1,
所以bn=2bn-1,
且b1=a1-1=2≠0,
所以数列{bn}是以2为首项,2为公比的等比数列。
反思感悟判断一个数列是等比数列的常用方法
2.总产值模型:基数为N,平均增长率为p,期数为n,则总产值y=N(1+p)n。
知识点二等比数列的常用性质
设数列{an}为等比数列,则:
(1)若k+l=m+n(k,l,m,n∈N*),则ak·al=am·an。
(2)若m,p,n成等差数列,则am,ap,an成等比数列。
(3)在等比数列{an}中,连续取相邻k项的和(或积)构成公比为qk(或 )的等比数列。
=log3[(a1a10)(a2a9)(a3a8)(a4a7)(a5a6)]
=log395=10.
反思感悟利用等比数列的性质解题
(1)基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,选择恰当的性质解题。
(2)优缺点:简便快捷,但是适用面窄,有一定的思维含量。
跟踪训练2(1)公比为 的等比数列{an}的各项都是正数,且a3a11=16,则log2a16等于()
等比数列教学案
等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。
授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。
教学难点:等比数列通项公式的探求。
教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,?(2)8,16,32,64,128,256,? (3)1,1,1,1,1,1,1,?(4)1,2,4,8,16,?263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,?,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q?0),3.递推公式:an?1∶an?q(q?0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0. (4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。
2.2.2等比数列的性质(第二课时)
1.进一步了解等比数列的项与序号之间的规律.
2.理解等比比数列的性质.
3.掌握等比你数列的性质及其应用.
难点
等比数列性质的应用
核心问题
等比数列的性质
专家小组
4组
教具学具
平板、多媒体
课时安排
本课题共2课时,本节次为第2课时
教学
过程
教学程序及内容设计
学习指导与评价
课前
学习
超前
探究
1.在等比数列{an}中,若am*an=ap*aq(m,n,p,q∈N*),则m+n=p+q成立吗?
板书设计(课堂笔记要点)
பைடு நூலகம்课题
一、复习回顾 三、例题展示
二、等比数列的性质
1、
2、 四、当堂达标练习
3、
4、
5、
2、通过错误结论强化性质的重要性。
重点
展示
导标
1.利用通项公式时,如果只有一个等式条件,可通过消元把所有的量用同一个量表示
2.已知等比数列的两项和,求其余几项和或者求其中某项,对于这样的问题,在解题过程中通常就要注意考虑利用等比数列的性质.
1、等比数列性质的灵活应用
2、解题过程中的运算技巧也会渗透着等比数列的性质
2.在公比为q的等比数列{an}中,若m+n=2p(m,n,p∈N*),则2ap与am,an有何关系?
专家小组学案展示
课前
预习
等比数列的下列性质.
(1)若m+n=p+q(m,n,p,q∈N*),则am*an=ap*aq.其中am,an,ap,aq是数列中的项.
(2)当m+n=2p(m,n,p∈N*),则am*an= .
等差、等比数列的综合复习导学案
编写者 王治强 审核者 使用时间2012年 月 日课题 :§1.5 等差、等比数列的综合复习 课时: 2课时 学习目标:1. 系统掌握数列的有关概念和公式;2. 了解数列的通项公式n a 与前n 项和公式n S 的关系;3. 能通过前n 项和公式n S 求出数列的通项公式n a . 教学重点难点:重点: 数列的有关概念和公式难点: 数列的通项公式n a 与前n 项和公式n S 的关系自主学习:一、基本知识回顾:1、数列的概念,通项公式,数列的分类,从函数的观点看数列.2、等差、等比数列的定义.3、等差、等比数列的通项公式.4、等差中项、等比中项.5、等差、等比数列的前n 项和公式及其推导方法.二、知识连接1、数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2、等差、等比数列中,a 1、n a 、n 、d (q )、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.3、求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.4、数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.5、数列求和主要方法: (1)逆序相加; (2)错位相消; (3)叠加、叠乘; (4)分组求和;(5)裂项相消,如111(1)1n n n n =-++.★6、正整数和公式有:① 1+2+3+……+n=2)1(+n n ②6)12)(1(3212222++=++++n n n n (记住就行)③233332)1(321⎥⎦⎤⎢⎣⎡+=++++n n n (记住就行) 合作交流:例1:一个首项为正数的等差数列{}n a ,满足511S S =,请问:这个数列的前多少项和为最大?例2、已知数列的前n 项和n n S n +=2,求:⑴ 4321,,,a a a a ⑵ 通项公式n a例3、数列{}n a 是等差数列,且395750,616a a a a +==,试求数列{}na 前n 项和n S 的最大值,并指出对应的n 取值基础达标:1、已知等差数列{}n a 中,315,a a是方程2610x x --=的两根,则7911a a a ++=( )A.9B.-9C.18D.-182、若在8和5832之间插入五个数,使其构成一个等比数列,则此等比数列的第五项是( ).A .648B .832C .1168D .19443、 设数列{}n a 是单调递增的等差数列,前三项的和是12, 前三项的积是48,则它的首项是( ).A. 1B. 2C. 4D. 84、公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是( )A .1B .2C .3D .45、在数列{}n a 中,122008,2009a a ==,且当n N +∈,都有12n n n a a a ++=+,则2009a =( ) 200820091A B C D -20096、在等差数列{}n a 中,1425,,a a a 依次成等比数列,且1425114a a a ++=,求成等比数列的这三个数7、已知数列{}n a 的前n 项和n S ,满足:()12log 1n S n +=+,求此数列的通项公式na达标检测:1、在等差数列1,4,7,10,…的每相邻的两项之间插入一个数,使之成为一个新的等差数列,则新的数列的通项公式为( )23132223144n n n n A a n B a n C a nD a n n=-=-==+2、若等差数列{}n a 的首项为11=a ,等比数列{}n b ,把这两个数列对应项相加所得的新数列{}n n b a +的前三项为3,12,23,则{}n a 的公差与{}n b 的公比之和为( ) A .-5 B .7 C .9 D .143、等比数列{}n a 的前n 项和为n S ,已知132,,S S S 成等差数列⑴ 求{}n a 的公比q ; ⑵ 若133a a -=,求n S4、等差数列{}n a 中,10a <,前n 项和为n S ,且760,0S S ><,请问:n 为何值时,n S 最小?★5、观察下面的数阵, 容易看出, 第n 行最右边的数是2n , 那么第20行最左边的数是几?第20行所有数的和是多少? 1 2 3 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 … … … … … …能力提升:1、在数列{}n a 中,nnn na a a a +==+1,111,求n a .2、在数列{}n a 中,n n n a a a ⋅==+2,111,求n a .3、求 1614,813,412,211的前n 项和.4、求和:n n an a a a s ++++= 323215、已知数列{}n a 中,11211++++++=n n n n a n ,又+⋅=n n n a a b 2,求数列{}n b 的前n 项的和.。
高一数学《等比数列的性质及应用》教案设计【8篇】
高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
等比数列教案(精选7篇)
等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列教学设计(共2课时)《等比数列》教学设计(共2课时)一、教材分析:1、内容简析:本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。
2、教学目标确定:从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。
在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。
从而可以确定如下教学目标(三维目标):第一课时:(1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识第二课时:(1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质(2)运用等比数列的定义及通项公式解决问题,增强学生的应用3、教学重点与难点:第一课时:重点:等比数列的定义及通项公式难点:应用等比数列的定义及通项公式,解决相关简单问题第二课时:重点:等比中项的理解与运用,及等比数列定义及通项公式的应用难点:灵活应用等比数列的定义及通项公式、性质解决相关问题二、学情分析:从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。
本课正是由此入手来引发学生的认知冲突,产生求知的欲望。
而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。
高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。
同时,高一阶段又是学生形成良好的思维能力的关键时期。
因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。
多数学生愿意积极参与,积极思考,表现自我。
所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。
这也体现了教学工作中学生的主体作用。
三、教法选择与学法指导:由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。
在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知识。
因此,在教法和学法上可做如下考虑:1、教法:采用问题启发与比较探究式相结合的教学方法教法构思如下:提出问题−−−−−−→−作用于原来的认知结构引发认知冲突−−−−−−−→−析在原有认知的基础上分观察分析−−−−→−在特殊情况下归纳概括−−−→−一般情况下得出结论−−−→−例题和练习总结提高。
在教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。
同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。
2、学法指导:学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。
我考虑从以下几方面来进行学法指导:(1) 把隐含在教材中的思想方法显化。
如等比数列通项公式的推导体现了从特殊到一般的方法。
其通项公式11-=n n q a a 是以n 为字变量的函数,可利用函数思想来解决数列有关问题。
思想方法的显化对提高学生数学修养有帮助。
(2) 注重从科学方法论的高度指导学生的学习。
通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。
训练逻辑思维的严密性和深刻性的目的。
四、 教学过程设计:第一课时1、创设情境,提出问题 (阅读本章引言并打出幻灯片)情境1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依次为:1,2,,2,2,2432 ……,632 (1)于是发明者要求的麦粒总数是情境2:某人从银行贷款10000元人民币,年利率为r ,若此人一年后还款,二年后还款,三年后还款,……,还款数额依次满足什么规律?10000(1+r),100002)1(r +,100003)1(r +,…… (2) 情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,……各次取得的木棒长度依次为多少?,81,41,21…… (3) 问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得7)21( 2、自主探究,找出规律:学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。
也就是说这些数列从第二项起,每一项与前一项的比都具有“相等”的特点。
于是得到等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,公比常用字母q )0(≠q 表示,即1:(,2,0)n n a a q n N n q -=∈≥≠。
如数列(1),(2),(3)都是等比数列,它们的公比依次是2,1+r,21 ⋅⋅⋅⋅⋅⋅23631+2+2+2++2点评:等比数列与等差数列仅一字之差,对比知从第二项起,每一项与前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”。
3、观察判断,分析总结:观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:1,3,9,27,……,81,41,21,1----…… 1,-2,4,-8,……-1,-1,-1,-1,……1,0,1,0,……思考:①公比q 能为0吗?为什么?首项能为0吗?②公比1=q 是什么数列?③0φq 数列递增吗?0πq 数列递减吗?④等比数列的定义也恰好给出了等比数列的递推关系式:这一递推式正是我们证明等比数列的重要工具。
选题分析;因为等差数列公差d 可以取任意实数,所以学生对公比q 往往忘却它不能取0和能取1的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比q 有防患意识,问题③是让学生明白0φq时等比数列的单调性不定,而0πq 时数列为摆动数列,要注意与等差数列的区别。
备选题:已知R x ∈则,,,32x x x ……n x ,……成等比数列的从要条件是什么?4、观察猜想,求通项:方法1:由定义知道,,,3134212312q a q a a q a q a a q a a =====……归纳得:等比数列的通项公式为:11-=n n q a a )(*∈N n(说明:推得结论的这一方法称为归纳法,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现阶段我们只承认它是正确的就可以了)方法2:迭代法根据等比数列的定义有23123n n n n a a q a q a q ---=⋅=⋅=⋅=……2121n n a q a q --=⋅=⋅方法3:由递推关系式或定义写出:,,,342312q a a q a a q a a ===……q a a n n =-1,通过观察发现•••342312a a a a a a ……q q q a a n n ⋅⋅=-1……1-=n q q 11-=∴n n q a a ,即:11-=n n q a a )(*∈N n (此证明方法称为“累商法”,在以后的数列证明中有重要应用) 公式11-=n n q a a )(*∈N n 的特征及结构分析:(1) 公式中有四个基本量:n a q n a ,,,1,可“知三求一”,体现方程思想。
(2) 1a 的下标与的1-n q 上标之和n n =-+)1(1,恰是n a 的下标,即q 的指数比项数少1。
5、问题探究:通项公式的应用例、已知数列{}n a 是等比数列,64,283=-=a a ,求14a 的值。
备选题:已知数列{}n a 满足条件:n n p a )54(=,且2544-=a 。
求8a 的值 6、课堂演练:教材138页1、2题备选题1:已知数列{}n a 为等比数列,45,106431=+=+a a a a ,求4a 的值 备选题2:公差不为0的等差数列{}n a 中,632,,a a a 依次成等比数列,则公比等于7、归纳总结:(1)等比数列的定义,即11n n a q a -=)0(≠q (2)等比数列的通项公式11-=n n q a a )(*∈N n 及推导过程。
8、课后作业:必作:教材138页练习4;习题1(2)(4)2、3、4、5选作:1、已知数列{}n a 为等比数列,且1231237,8a a a a a a ++==,求n a2、已知数列{}n a 满足111,21n n a a a +==+(1)求证:{}1n a +是等比数列;。
(2)求{}n a 的通项n a 。
第二课时1、复习回顾:上节课,我们学习了……(打出幻灯片)(1) 等比数列定义:1:(,2,0)n n a a q n N n q -=∈≥≠(2) 通项公式:11-=n n q a a (,0)n N q *∈≠(3)若11n n a n a n --=,数列{}n a 是等比数列吗?111()n n n a a n--=⋅对不对? (注意:考虑公比q 为常数)2、尝试练习:在等比数列{}n a 中(1)2418,8a a ==,求1,a q(2)514215,6,a a a a -=-=求n a(3)在-2与-8之间插入一个数A ,使-2,A ,-8成等比数列,求A(鼓励学生尝试用不同的方法求解,相互讨论分析不同的解法,然后归纳出等比数列的性质)3、性质探究:(1)若a,G,b 成等比数列,则2G ab =有,称G 为a,b 的等比中项,即G =(a b 与同号);思考:2a 是谁的等比中项?3a 呢?n a 呢?总结归纳得到性质(2)(2)211(2)nn n a a a n -+=⋅≥ 逆向思考:若数列{}n a 满足211(2)nn n a a a n -+=⋅≥,它一定是等比数列吗? (3)若m n p q +=+,则(,,,m n p q a a a a m n p q ⋅=⋅为正整数)(4)(,,)n m n m a a q n m n m N -*=⋅∈f4、灵活运用:下面我们来看应用等比数列性质可以解决那些问题。