3.1--二重积分的概念和性质

合集下载

第一节二重积分的概念与性质

第一节二重积分的概念与性质

第一节二重积分的概念与性质第一篇:第一节二重积分的概念与性质第九章重积分第一节二重积分的概念与性质与定积分类似,二重积分的概念也是从实践中抽象出来的,它是定积分的推广,其中的数学思想与定积分一样,也是一种“和式的极限”.所不同的是:定积分的被积函数是一元函数,积分范围是一个区间;而二重积分的被积函数是二元函数,积分范围是平面上的一个区域.它们之间存在着密切的联系,二重积分可以通过定积分来计算.内容分布图示★ 曲顶柱体的体积★ 非均匀平面薄片的质量★ 二重积分的概念★ 二重积分的性质★ 例1★ 例4★ 内容小结★习题9-1★ 返回★ 二重积分的中值定理★ 例2★ 例3 ★ 例5 ★ 课堂练习内容要点:一、二重积分的概念引例1 求曲顶柱体的体积;引例2 求非均匀平面薄片的质量二重积分的定义二、二重积分的性质性质1—性质6二重积分与定积分有类似的性质.性质 1 ⎰⎰[αf(x,y)±βg(x,y)]dσ=α⎰⎰f(x,y)dσ±β⎰⎰g(x,y)dσ.DDD性质2 如果闭区域D可被曲线分为两个没有公共内点的闭子区域D1和D2, 则⎰⎰f(x,y)dσ=⎰⎰f(x,y)dσ+⎰⎰f(x,y)dσ.DD1D2这个性质表明二重积分对积分区域具有可加性.性质3 如果在闭区域D上, f(x,y)=1,σ为D的面积, 则⎰⎰1⋅dσ=⎰⎰dσ=σ.DD这个性质的几何意义是: 以D为底、高为1的平顶柱体的体积在数值上等于柱体的底面积.性质4 如果在闭区域D上, 有f(x,y)≤g(x,y),则⎰⎰f(x,y)dσ≤⎰⎰g(x,y)dσ.DD特别地, 有⎰⎰f(x,y)dσ≤⎰⎰|f(x,y)|dσ.DD性质5 设M,m分别是f(x,y)在闭区域D上的最大值和最小值, σ为D的面积, 则mσ≤⎰⎰f(x,y)dσ≤Mσ.D这个不等式称为二重积分的估值不等式.例题选讲:二重积分的性质(x例1不作计算,估计I=⎰⎰eD2+y2)dσ的值,其中D是椭圆闭区域:x2a2+y2b2≤1(0<b<a).例2(讲义例1)估计二重积分I=⎰⎰Ddσx+y+2xy+1622的值, 其中积分区域D为矩形闭区域{(x,y)|0≤x≤1,0≤y≤2}.例3判断r≤x+y≤1ln(x2+y2)dxdy的符号.例4积分⎰⎰D-x2-y2dxdy有怎样的符号, 其中D:x2+y2≤4.例5(讲义例2)比较积分⎰⎰ln(x+y)dσ与⎰⎰[ln(x+y)]2dσ的大小,其中区域D是三DD角形闭区域,三顶点各为(1,0),(1,1),(2,0).课堂练习1.将二重积分定义与定积分定义进行比较, 找出它们的相同之处与不同之处.2.试用二重积分表示极限lim∑∑en→+∞n2i=1j=11nni2+j2n2.第二篇:第一节二重积分的概念与性质09-3-30第九章重积分第一节二重积分的概念与性质教学目的:理解并掌握二重积分的概念;几何意义;二重积分存在的条件.熟练掌握二重积分的性质;能正确运用性质进行判断、计算与证明.重点: 二重积分的性质的运用.难点: 运用性质判断与计算.教学方法:直观教学,讲练结合.教学过程:一、二重积分的概念与几何意义1、【定义】: 设f(x,y)是有界闭区域D上的有界函数,将闭区域其中∆σi表示D D任意分成n个小闭区域∆σ1,∆σ2,Λ,∆σn,第i个小闭区域,也表示它的面积,在每个∆σi上任取一点(ξi,ηi),作乘积f(ξi,ηi)⋅∆σi,(i=1,2,Λ,n),并作和n∑f(ξ,η)∆σiii=1i,如果当各小闭区域的直径di中的最大值λ=max{di}→0时,这和 1≤i≤n式limλ→0∑f(ξ,η)∆σ的极限存在,且此极限与小区间∆σiiii=1ni的分法以及点(ξi,ηi)的取法无关,则称此极限为函数f(x,y)在闭区域D 上的二重积分,记为f(x,y)dσ,即D∑f(ξ,η)∆σ.⎰⎰f(x,y)dσ=limλD→0iiii=1n其中:① f(x,y)称为被积函数, ② f(x,y)dσ称为被积表达式,③ x,y称为积分变量, ④ dσ称为面积元素, ⑤ D称为积分区域,⑥n∑f(ξ,η)∆σ称为积分和.iiii=12、面积元素dσ在直角坐标系下用平行于坐标轴的直线网来划分区域D,则面积元素为 dσ=dxdy故二重积分可写为DD⎰⎰f(x,y)dσ3、【二重积分存在定理】设f(x,y)是有界闭区域D上的连续函数,则二重积分⎰⎰f(x,y)dσ存在.D4、二重积分的几何意义≥0时,二重积分(1)当被积函数f(x,y)⎰⎰f(x,y)dσD表示以f(x,y)为顶,以D为底面的曲顶柱体的体积.(2)当被积函数f(x,y)≤0时,二重积分表示曲顶柱体体积的相反数.二、二重积分的性质假设被积函数在有界闭区域D上连续.1.2.⎰⎰kf(x,y)dσ=k⎰⎰f(x,y)dσ,k为常数.DD⎰⎰[f(x,y)±g(x,y)]dσ=⎰⎰f(x,y)dσ±⎰⎰g(x,y)dσ.DDD二重积分的线性性:设α,β为常数则上述两式合并为⎰⎰[αf(x,y)+βg(x,y)]dσD=α⎰⎰f(x,y)dσ+β⎰⎰g(x,y)dσ.DD3.(二重积分对区域可加性)⎰⎰f(x,y)dσ=⎰⎰f(x,y)dσ+⎰⎰f(x,y)dσ,(D=D+DDD1D2).4.⎰⎰dσ=σ, σ为D的面积.D.(积分不等式)若f(x,y)≤g(x,y),则⎰⎰f(x,y)dσ≤⎰⎰g(x,y)dσ.DD注意:若在D上f(x,y)≤g(x,y)但等号不是恒成立,则有⎰⎰f(x,y)dσ<⎰⎰g(x,y)dσ.DD推论:⎰⎰f(x,y)dσ≤⎰⎰DDf(x,y)dσ.6.【积分估值定理】设M、m分别是f(x,y)在闭区域D上的最大值和最小值,则 mσ≤⎰⎰f(x,y)dσ≤Mσ.其中σ为D的面积.D7.【积分中值定理】设函数f(x,y)在闭区域D上连续,则在D上至少存在一点(ξ,η)使得d=⎰⎰f(x,y)σD.σ为D的面积.fξ(η,⋅)σ8.设区域D=D1+D2,且D1与D2关于x轴对称;(1)当f(x,y)关于y是偶函数即 f(x,-y)=f(x,y)时,有⎰⎰f(x,y)dσ=2⎰⎰f(x,y)dσ.DD1当f(x,y)关于y是奇函数时即f(x,-y)=-f(x,y)时,有⎰⎰f(x,y)dσ=0.D(2)类似有设区域D=D1+D2,且D1与D2关于y轴对称;当f(x,y)关于x是偶函数时即f(-x,y)=f(x,y)时,有⎰⎰f(x,y)dσ=2⎰⎰f(x,y)dσ.DD1当f(x,y)关于x是奇函数时即f(-x,y)=-f(x,y)时,有⎰⎰f(x,y)dσ=0.D三、应用举例例1 比较3与(x+y)dσ(x+y)dσ⎰⎰⎰⎰DD的大小,其中D={(x,y)|(x-2)+(y-1)≤2}.22解:如图,由于点A(1,0)在(x-2)+(y-1)≤2上,过点A的切线为x+y=1,那么在D上有 1≤x+y≤(x+y)≤(x+y),23(x+y)dσ<(x+y)dσ.⎰⎰⎰⎰DD2222cosx+ydσ,I=cos(x+y)dσ, 2⎰⎰⎰⎰D例2(05.4)设I1=I3=⎰⎰cos(x2+y2)2dσ,其中D={(x,y)|x+y2≤1},则DD(A)I3>I2>I1(B)I1>I2>I3(C)I2>I1>I3(D)I3>I1>I2答(A).因为在区域D上,0≤x+y≤1<所以π,且cosz∈[0,π]为减函数,π>1≥x2+y2≥x2+y2≥(x2+y2)2≥0,2222222从而cos(x+y)≤cos(x+y)≤cos(x+y),故I3>I2>I1.例3设D:x2+y2≤a2,当a=()时,(a)1(b)3⎰⎰Da2-x2-y2dxdy=π.331(c)3(d)3 242答(b).根据二重积分的几何意义,此积分表示半径为a的上半球体1433的体积.由⋅aπ=π得a=3⇒选(b).232例4当D是由()围成的区域时,⎰⎰dxdy=1.D(a)x轴,y轴及2x+y-2=0(b)x=1,x=2及y=3,y=1,y=(d)x+y=1,x-y=1 22答(a,b,c).因为⎰⎰dxdy=1表示积分区域的面积为1,故只需考察哪(c)x=D些选项积分区域的面积为1.例5 判断x+y≤1ln(x2+y2)dσ的正负.解:在区域D={(x,y)|x+y≤1 }上有x+y≤1且等号不恒成立,所以ln(x+y)≤ln1=0且等号不能恒成立,故x+y≤1ln(x2+y2)dσ<x+y1(ln1)dσ=0.例6估计积分值I=⎰⎰xy(x+y)dσ,D={(x,y)|0≤x≤1,0≤y≤2}.D解:0≤xy(x2+y2)≤6⇒0≤I≤12.(注意:积分区域为矩形SD=2)例7D1={(x,y)|x+y≤1,x,y≥0}D2={(x,y)|(x-2)+(y-1)≤2}I1=⎰⎰(x+y)2dσ,I2=⎰⎰(x+y)3dσ,D1D1I3=⎰⎰(x+y)2dσ,I4=⎰⎰(x+y)3dσD2D2试用适当符号连接I1,I2,I3,I4.解:在D1上有I1>I2(0≤x+y≤1),在D2上I4>I3(x+y≥1).又由(x+y)2≤1⇒I1≤由(x+y)2≥1⇒I3≥故I4>I3>I1>I2.22例8 设D={(x,y)|1≤x+y≤4},证明 3πe≤xe⎰⎰D⎰⎰dσ=D1,2>I1,2+y2⎰⎰dσ=2π>D2dσ≤3πe4.证明因为SD=σ=4π-π=3π,又因为e≤e由积分的估值性质得 3πe≤xe⎰⎰Dx+y2≤e4,+y2dσ≤3πe4.例9设D={(x,y)|x+y≤R}(1)若f(x,y)在D上有界且可积,则limR→0⎰⎰f(x,y)dσ=0.Df(x,y)dσ=πf(0,0).R→0R2⎰⎰D(1)证明:设m,M分别为函数f(x,y)在D上的最小值与最大值,则(2)若f(x,y)在D上连续,则limm≤f(x,y)≤M,由积分估值定理知⎰⎰mdσ≤⎰⎰f(x,y)dσ≤⎰⎰Mdσ又D={(x,y)|x+y≤R}所以πmR≤D2D⎰⎰f(x,y)dσ≤πMRDD2,limR→0⎰⎰f(x,y)dσ=0.DD(2)解:由积分中值定理知f(x,y)在D上连续⇒∃(ξ,η)∈D,s..t⎰⎰f(x,y)dσ=πR2⋅f(ξ,η),所以lim112f(x,y)dσ=lim⋅πRf(ξ,η)R→0R2⎰⎰R→0R2D=πlimf(ξ,η)=πlimf(ξ,η)=πf(0,0).R→0(ξ,η)→(0,0)小结:1.定义∑f(ξ,η)∆σ为二重积分.⎰⎰f(x,y)dσ=limλD→0iiii=1n2.二重积分几何意义:表示曲顶柱体的体积.3.正确运用各条性质进行判断、计算、证明.课后记:比较大小与证明问题下手较困难.第三篇:6.7 二重积分的概念与性质第6章多元函数微积分6.7二重积分的概念与性质习题解1.利用二重积分定义证明:⎰⎰kf(x,y)dσ=k⎰⎰f(x,y)dσ。

二重积分的概念和性质

二重积分的概念和性质
c
D x2(y)
d
x1(y) D
c
x2(y)
[Y—型区域的特点]穿过区域且平行于x 轴的直线与区 域边界相交不多于两个交点.
(3) [既非X-型域也非Y-型域]
则必须分割.
在分割后的三个区域上分别都 是X-型域(或Y—型域)
1
解 I1, I2, I3 被积函数相同, 且非负, 由它们的积分域范围可知
o 1x
I2I1I3
21
2. 设D 是第二象限的一个有界闭域 , 且 0 < y <1, 则
I1 yx3d, I2 y2x3d,
D
D
的大小顺序为 ( D)
I3 y12x3d
D
提示
(A )I1I2I3 ; (B )I2I1I3; (C )I3I2I1; (D )I3I1I2.
f(x,y)df(,)
D
二重积分中值定理
几何意义 曲顶柱体的体积等于一个平顶柱体的体积
16
以下仅证性质7(中值定理)
证明
f(x,y)是有D 上 界的 闭连 域续
必有最大、最 M、 小 m值
由估值性质得
由于 0
m f(x,y)dM m1Df(x,y)dM
[二重积分的比较大小] 1.若区域D相同,则比较被积函数的大小; 2.若被积函数相同,则比较区域D的大小.
25
26
§10.2 二重积分的计算法(一)
一 利用直角坐标计算二重积分 二 小结 思考题
27
复习与回顾
n
(1)二重积分 Df(x,y)dl i0m i 1f(i,i) i
10
(1)积分存在时,其值与区域的分法和点 (i,的i) 取法无关

二重积分的概念及性质

二重积分的概念及性质

二重积分的概念及性质前面我们已经知道了,定积分与曲边梯形的面积有关。

下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。

二重积分的定义设z=f(x,y)为有界闭区域(σ)上的有界函数:(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);(2)在每一个子域(△σk)上任取一点,作乘积;(3)把所有这些乘积相加,即作出和数(4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:即:=其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.关于二重积分的问题对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。

上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。

二重积分的性质(1).被积函数中的常数因子可以提到二重积分符号外面去.(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末:(4).如果在(σ)上有f(x,y)≤g(x,y),那末:≤(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使其中σ是区域(σ)的面积.二重积分的计算法直角坐标系中的计算方法这里我们采取的方法是累次积分法。

也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。

为此我们有积分公式,如下:或在这里我们可能会有这个问题:累次积分的上下限是怎么确定的呢?累次积分上下限的确定方法我们先来对区域作些补充说明:如果经过区域(σ)内任意一点(即不是区域边界上的点)作平行于y轴(或x 轴)的直线,且此直线交(σ)的边界不超过两点,那末称(σ)为沿y轴(x轴)方向的正规区域.如果(σ)即是沿y轴方向也是沿x轴方向的正规区域,那末(σ)就称为正规区域.下图所示的即为正规区域:关于累次积分上下限的取法如下所述:(1).如果(σ)为沿y轴方向的正规区域,那末二重积分可化为先对y再对x的累次积分.其中对y的积分下限是(σ)的下部边界曲线所对应的函数y1(x),积分上限是上部边界曲线所对应的函数y2(x).对x的积分下限与上限分别是(σ)的最左与最右点的横坐标a与b.(2).如果(σ)为沿x轴方向的正规区域,那末二重积分可化为先对x再对y的累次积分.其中对x的积分下限是(σ)的左部边界曲线所对应的函数x1(y),积分上限是右部边界曲线所对应的函数x2(y).对y的积分下限与上限分别是(σ)的最低与最高点的横坐标c与d.(3).如果(σ)为正规区域,那末累次积分可以交换积分次序。

二重积分

二重积分

2 ( x ) f ( x, y )dy dx V a 1 ( x )
对于一般的连续函数或分片连续函数z=f (x, y),当 D {( x, y) | 1 ( x) ≤y≤ 2 ( x) a≤x≤b}时,也有上述 , 计算公式 b 2 ( x ) f ( x, y )dy dx f ( x, y)dxdy a 1 ( x) 20 D
f ( , )
i 1 i i
n
i
6
最后,当n个小闭区域的最大直径(区域的直 径是指区域边界上任意两点距离的最大值λ 趋于零时, 若上述和式的极限存在,就定义 此极限值为曲顶柱体的体积,即曲顶柱体的 体积 n
V lim f ( i , i )
0
i 1
7
(2) 平面薄片的质量
x

解法2
2
1
x x 9 ( )dx 2 2 8
dy xydx
y 2
1 3
本题积分区域D亦可看成Y型,故又有
xydxdy
D
2
1

2
1
y3 9 (2 y )dy 2 8
27
例6.2.2 计算二重积分
( x y x)dxdy
2 2 D
其中D为闭区域 {(x, y) | 0≤x≤2,x≤y≤2x} . 解 :区域D的形状如图6.2.6,它是X型区域,故
设有一平面薄片占据xOy平面上的有界闭区域D, 如果薄片的面密度是D上的正值连续函 数 ( x, y) ,要计算此平面薄片的质量, 可以采取类似于上面求曲顶柱体的体积的方法: 2 先将D分成n个子区 , 1 ,… , n (如 图6.1.2),

二重积分概念与性质

二重积分概念与性质

的怎样划分以及 M i 在 i 上如何选取,只要
d 0 时恒有同一极限I ,则称此极限为f(M)
在几何形体 上的黎曼积分。
记为 : I lim
d 0
f (M )
i 1 i i
n

f ( M )d
根据几何形体的具体形式,可分别给出 各几何形体上的积分的具体表达式及名称: 1、若为一块可求面积的平面图形 D ,则 D 上的 积分称为:二重积分。 直角坐标系下记为: f ( x, y)d f ( x, y)dxdy
d e ,
a2
a2
ab e
D
( x 2 y2 )
d abe .
d 例 2 估计 I 的值, 2 2 x y 2 xy 16 D 其中 D: 0 x 1, 0 y 2 . 1 解: f ( x, y) , 区域面积 2 , ( x y)2 16
L
4、如果是可求面积的曲面块S,则 S上的积分称 为:第一类曲面积分。
记为: f ( x, y, z )dS
S
二、二重积分的概念
定义 设 f ( x , y )是有界闭区域 D 上的有界函数, 将 闭 区 域 D 任 意 分 成 n 个 小 闭 区 域 1 ,
2 , , n,其中 i 表示第 i 个小闭区域,
对上面五种情况:各自具体的对象不同,但归结为 处理同一种形式的和的极限问题,概括地给出下 面定义: Def: 有界闭区域 上黎曼积分定义: 设 为一几何形体,它是可度量的,在该几何体 上定义一函数f(M), M ,将 分为若干可度 量的小块 1 , 2 n ,并把它们的度量大 i ) 为最大直径; 小仍记为 i ,并令 d max( i M i ,做和式(黎曼 在每小分块 i 中任取一点 n 和数/积分和数) f (M i ) i ,若该和式不 i 1 论对

高中数学(人教版)二重积分的概念与性质课件

高中数学(人教版)二重积分的概念与性质课件
3) 求和. m
取近似 2) 取近似. m i ( i , i ) i Vi f ( i , i ) i 和 ) f ( , 求
i 1 i i
n
3) 求和. V
n
i
( , )
i 1 i i
n
n
i
, i ) i4) 取极限.m lim ( i , i ) i 4) 取极限.V lim f ( i 取极限
o
x
(一)引例
1.曲顶柱体的体积 1) 分割. 用一组曲线网把D分成n个小区域
2.平面薄片的质量
1) 分割. 用一组曲线网把D分成n个小块
1 , 2 , , i , , n
i
几 何 问 题 2) 取近似. V f ( , )
3) 求和. V
1 , 2 , , i , , n
D
f ( x, y) 0
一般情况
曲顶柱体体积的负值
曲顶柱体体积的代数和
例 1
根据二重积分的几何意义,计算下列积分值:
D : x2 y2 R2.
(1)
y
d
D
o
z
x
( 2)

D
R 2 x 2 y 2 d
o
y
x
二重积分的概念与性质
一、二重积分的概念
二、二重积分的性质
二重积分的概念与性质
0
i 1
i , i ) i . f ( f ( x , y )d lim 0
D i 1
n
积 分 区 域
被 积 函 数
积 分 变 量
被面 积积 积 表元 分 达素 和 式

第一节二重积分的概念与性质

第一节二重积分的概念与性质

第⼀节⼆重积分的概念与性质第⼀节⼆重积分的概念与性质学习指导1.教学⽬的:使读者理解⼆重积分的概念与性质。

2.基本练习:熟悉⼆重积分的⼏何、物理背景。

熟悉⼆重积分的性质。

3.应注意的事项:⼆重积分是⼆元函数乘积和式的极限,是定积分的推⼴,因此从引例到研究⽅法,从定义到性质都是类似的,读者要善于⽐较,触类旁通,温故⽽知新。

第⼀节⼆重积分的概念与性质⼀、⼆重积分的概念1. 曲顶柱体的体积(1)曲顶柱体(2)曲顶柱体的体积现在我们来讨论如何定义并计算上述曲顶柱体的体积V。

平顶柱体的体积2. 平⾯薄⽚的质量(1) 问题的提出(2) 均匀薄⽚的质量(3) ⾮均匀薄⽚质量的计算⽅法(4) ⼆重积分的定义上⾯两个问题的实际意义虽然不同,但所求量都归结为同⼀形式的和的极限。

在物理、⼒学、⼏何和⼯程技术中,有许多物理量或⼏何量都可以归结为这⼀形式的和的极限。

因此我们要⼀般的研究这种和的极限,并抽象出下述⼆重积分的定义。

定义设是有界闭区域上的有界函数.将闭区域任意分成个⼩闭区域其中表⽰第个⼩闭区域,也表⽰它的⾯积。

再每个上任取⼀点,作乘积,并作和。

如果当个⼩闭区域的直径中最⼤值趋于零时,这和的极限总存在。

则称此极限为函数在闭区域上的⼆重积分,记作,即。

(1)叫做被积函数,叫做被积表达式,叫做⾯积元素,与叫其中积分变量,叫做积分区域,叫做积分和。

(5) 直⾓坐标系中的⾯积元素在⼆重积分的定义中对闭区域的划分是任意的,如果在直⾓坐标系中⽤平⾏于坐标轴的直线⽹来划分,那么除了包含边界点的⼀些⼩闭区域外,其余的⼩闭区域都是矩形闭区域。

设矩形闭区域的边长为和,则。

因此在直⾓坐标系中,有时也把⾯积元素记作。

⽽把⼆重积分记作其中叫做直⾓坐标系中的⾯积元素。

(6) ⼆重积分的存在性这⾥我们要指出,当在闭区域上连续时,式右端的和的极限必定存在,也就是说,函数在上的⼆重积分必定存在。

我们总假定函数在闭区域上连续,所以在上的⼆重积分都是存在的,以后就不在每次加以说明了。

二重积分的概念及几何意义

二重积分的概念及几何意义
被积函数的可加性
若函数$f(x,y)$和$g(x,y)$在区域$D$ 上均可积,则有 $iint_{D}[f(x,y)+g(x,y)]dsigma=iint_ {D}f(x,y)dsigma+iint_{D}g(x,y)dsig ma$。
积分区域的可加性
简单区域的叠加
若复杂区域$D$可以划分为有限个简单区域(如矩形、三角形等)的并集,且函数在每个简单区域上 均可积,则二重积分可以通过在这些简单区域上分别进行积分并求和得到。
复杂区域的分解
对于复杂的不规则区域,可以通过引入辅助线将其划分为几个较简单的子区域,然后在每个子区域上 分别进行积分,最后将结果相加。这种方法在处理具有复杂边界或包含多个不同部分的积分区域时特 别有用。
03
二重积分的计算
直角坐标系下的二重积分
积分区域为矩形区域
通过对矩形区域进行划分,将二重积分转化为累次积分进行计算。
对于环形区域,可以通过对内外圆的极径 进行划分,将环形区域划分为若干个小扇 形区域,然后对每个小扇形区域进行积分 ,最后将结果相加得到二重积分的值。
二重积分的换元法
直角坐标与极坐标的互化
通过直角坐标与极坐标之间的互化公式,可以将直角坐标系下的二重积分转化为极坐标 系下的二重积分进行计算。
一般变换
对于一般的二重积分,可以通过变量代换的方法将其转化为更简单的形式进行计算。常 用的变量代换方法有极坐标代换、广义极坐标代换等。
积分的数乘性质
若函数$f(x,y)$在区域$D$上可积,则对于任意常数$k$,有 $iint_{D}kf(x,y)dsigma=kiint_{D}f(x,y)dsigma$。
可加性质
积分区域的可加性
若区域$D$可分成两个不相交的区域$D_1$和 $D_2$,且函数$f(x,y)$在$D_1$和$D_2$上均 可积,则有 $iint_{D}f(x,y)dsigma=iint_{D_1}f(x,y)dsigm a+iint_{D_2}f(x,y)dsigma$。

二重积分知识点

二重积分知识点

二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。

二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。

本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。

二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。

若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。

2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。

三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。

4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。

二重积分的概念与性质

二重积分的概念与性质

(2)二重积分与被积函数和积分区域有关,与积分变量 的表示无关。即
f x, ydxdy f u,vdudv
D
D
(3)二重积分的几何意义:若f(x, y)0,二重积分表示以 f(x, y)为曲顶,以Байду номын сангаас为底的曲顶柱体的体积;若f(x, y)0,二 重积分表示曲顶柱体的体积的负值;当f(x, y)有正、有负时, 二重积分就等于这些区域上柱体体积的代数和。
存在,则称此极限为函数f(x, y)在区域D上的二重积分,记作
f x, yd ,即
D
n
D
f x, yd
lim 0 i1
f
i ,i k
关于二重积分的几点说明: (1)当f(x, y)在闭区域D上连续时, f(x, y) 在D上的二重积 分必定存在。以后总假定f(x, y)在D上连续。
高等数学
二重积分的概念与性质
一、二重积分的定义
定义 设f(x, y)是有界闭区域D上的有界函数.将D任意分成 n个小区域Δσ1,Δσ2,…,Δσn,小区域Δσi的面积仍记为
n
Δσi.在Δσi内任取一点(ξi, ηi),作和式 f (i ,i )i 。 i 1
如果当各小区域中的最大直径λ趋于零时,若此和式的极限
f x, yd f x, yd f x, yd
D
D1
D2
性质4 若在D上,f(x, y)=1,σ为区域D的面积,则
1d = d
D
D
性质5 若在D上,f(x, y) σ(x, y),则有不等式
f x, yd x, yd
D
D
特殊地,由于-|f(x, y)| f(x, y) |-f(x, y)| , 又有
二、二重积分的性质

二重积分的概念及性质

二重积分的概念及性质

∬_D [af(x,y)+bg(x,y)]dxdy = a∬_D f(x,y)dxdy + b∬_D g(x,y)dxdy
2
面积加法
∬_D [f(x,y)+g(x,y)]dxdy = ∬_D f(x,y)dxdy+∬_D g(x,y)dxdy
3
积分可交换
与积分上下限无关:
∬_D[f(x,y)+g(x,y)]dxdy = ∬_D f(x,y)dxdy + ∬_D g(x,y)dxdy
极坐标下的二重积分
轮换对称性
交换二重积分中的积分极限 和被积函数中的变量,可得 到相同的结果。
转化公式
从直角坐标系转化为极坐标 系的公式为:
∬_D f(x,y)dxdy = ∬_D f(r*co sθ, r*sinθ)rd rd θ
相关例题
可以将某个区域在直角坐标 系中的极坐标方程转换成在 极坐标系下的积分形式。
对二重积分的符号化表示
累加表示
二重积分可以通过累加的方式求 解即:
∬_D f(x,y)dxdy = ∆ x ∆ y Σ f(x_i, y_j)
积分表示
二重积分可以用积分符号表示如 下:
∬_D f(x,y)dxdy = ∫ ∫ _D f(x,y)d A
计算方法
按照累加或积分的方式计算。
基本性质
1
线性性
总结
本次讲座全面介绍了二重积分的定义及性质、极坐标下的二重积分,坐标变 换下的二重积分,以及应用。相信我们的学生已经得到了充分的掌握。
极坐标与直角坐标之间的 转换
常用在圆、椭圆、其他轮换面 上等的二重积分中转换。
弧坐标与直角坐标之间的 转换
用于圆周上对于弧长的积分的 计算及二重积分的变换。

二重积分计算-2022年学习资料

二重积分计算-2022年学习资料
第3章重积分-3.1二重积分的概念与性质-一、问题的提出-1.曲顶柱体的体积-柱体体积=底面积×高-特点: 顶。-=fx,y-柱体体积=?-特点:曲顶-上页-返回
求曲顶柱体的体积采用“分割、求和-取极限”的方法,如下动画演示.-播放-上页-氨回
步骤如下:-先分割曲顶柱体的底,-并取典型小区域,-z=fx,y-用若干个小平-顶柱体体积之-和近似表示曲 5,7-顶柱体的体积,-八0-曲顶柱体的体积V=im-∑f5,n△c-上页-返回
二、二重积分的概念-定义设fx,y是有界闭区域上的有界函-数,将闭区域D任意分成个小闭区域△O1,-△o2 ,△om,其中△σ :表示第个小闭区域,-也表示它的面积,在每个△O;上任取一点-5,n,-作乘积-f5,n △o,-i=1,2,„,n,-并作和-∑f5,n:△o,-上页-返回
如果当各小闭区域的直径中的最大值凯趋近于零-时,这和式的极限存在,则称此极限为函数-∫x,y在闭区域D上的 重积分,-记为∬fx,yMo,-即-2→0-积分区域-被积函数-积分变量-被积表达式-面积元素-积分和-上 -返回
例4计算二重积分∬cd,其中区城D是-由x=0,x=1,y=0,y=1围成的矩形-解如图,因为D是矩形区域 且-ex+y=e·e',-所以--eua-I x-=ee'0=e-12,-上页-返回
例5求∬2e-dd,其中D是以0,0,L,1,-0,1为顶点的三角形-解∵∫eydy无法用初等函数表示-0 8-∴.积分时必须考虑次序-0.6-0.4-0.2-∬redd-xerd-0.20.40.60.8-=e-2-上页-返回
例1计算∬,1+x2-d。,其中D是由直线-y=x、x=-1和y=1所围成的闭区域-解若视为X一型,则原积 =-若视为Y-型,则-y1+x2-y2do=小,i1+x2-y2c4,-其中关于x的积分计算比较麻烦,故合 选择积-分次序对重积分的计算非常重要.-上页

二重积分的概念及性质

二重积分的概念及性质
单击此处添加文本具体内容,简明扼要地 阐述你的观点
积分区域的可加性
该性质可以用于简 化复杂的积分区域, 将复杂区域分解为 简单区域进行计算。
如果D1和D2是平面上互不相交的可积区域,则 它们分别上的二重积分之和等于它们并集上的二 重积分。即,如果D=D1∪D2,则 ∫∫Df(x,y)dσ=∫∫D1f(x,y)dσ+∫∫D2f(x,y)dσ。
二重积分的概念
二重积分的计算方法是通过将区域划分为一系列小的矩形或平行四边 形,然后计算每个小区域的面积并求和。 二重积分是定积分的一种扩展,它涉及到两个自变量的积分。在二维 平面中,二重积分表示一个函数在某个区域上的面积。
二重积分的几何意义
如果函数在某个区域上取负值,那么二重积分表示该函数与该区 域围成的区域的面积的负值。 二重积分的几何意义是二维平面上的面积。具体来说,如果一个 函数在某个区域上非负,那么二重积分表示该函数与该区域围成 的面积。
得出结果
将所有小矩形的积分结果相加,得到整个矩形区 域上的二重积分值。
转换坐标 将被积函数从直角坐标转换为极坐标形式,即$x = rhocostheta$,$y = rhosintheta$。 分层积分 将极坐标下的二重积分拆分成两个累次积分,即先对角度积分再对极径积分。 逐个计算 对每个角度范围,计算其在极径上的积分值,并求和。 得出结果 将所有角度范围的积分结果相加,得到整个极坐标区域上的二重积分值。 极坐标下的二重积分计算
任意形状区域
对于任意形状的平面区域,可以通过分割成若干 个小区域,对每个小区域进行积分,然后将结果 相加得到总面积。
平面曲线段的长度计算
直线段
对于直线段,其长度即为该直线的方程在给定区间上的积分。
圆弧

二重积分的基本知识点讲解

二重积分的基本知识点讲解

2015考研数学:二重积分的基本知识点来源:文都教育二重积分是考研数学中的大题常考点,主要考查的是同学们的计算能力。

下面文都考研数学老师对二重积分的基本知识点进行一些讲解,以帮助广大考生备考。

1.二重积分的概念设二元函数(,)f x y 在有界闭区域D 上有界.(1)将区域D 划分成若干小区域12,,,n σσσ∆∆∆;(2)(,)(1)i i i i n ξησ∀∈∆≤≤,作1(,)n i iii f ξησ=∆∑; (3)令1max{}i i n d λ≤≤=,i d 为i σ∆的直径,01(,)lim (,)n i ii i D f x y d f λσξησ→==∆∑⎰⎰.注:①二重积分与区域的划分及点的取法无关;②若(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上的二重积分一定存在; ③(,)D f x y d σ⎰⎰的几何意义是以D 为底,以(,)z f x y =为顶的曲顶柱体的体积; ④(,)Df x y d σ⎰⎰的物理意义是以(,)f x y ρ=为面密度的平面区域D 的质量. 2.二重积分的性质(1)[(,)(,)](,)g(,)D D D f x y g x y d f x y d x y d σσσ±=±⎰⎰⎰⎰⎰⎰. (2)(,)(,)D D kf x y d k f x y d σσ=⎰⎰⎰⎰. (3)1212(,)(,)(,)D D D D f x y d f x y d f x y d σσσ+=+⎰⎰⎰⎰⎰⎰. (4)D d A σ=⎰⎰.(5)(比较定理)若在D 上恒有(,)(,)f x y g x y ≤,则(,)(,)D Df x y dg x y d σσ≤⎰⎰⎰⎰.(6)(估值定理)设,M m 分别为(,)f x y 在区域D 上的最大与最小值,A 为D 的面积,则(,)DmA f x y d MA σ≤≤⎰⎰.(7)(中值定理)若(,)f x y 在闭域D 上连续,A 为D 的面积,则在D 上至少存在一点(,)ξη,使(,)(,)Df x y d f A σξη=⎰⎰.(8)二重积分的对称性质①若积分区域D 关于x 轴对称,则二重积分10,(,)(,)(,)2(,),(,)(,)D D f y f x y f x y f x y d f x y d f y f x y f x y σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰关于为奇函数,即关于为偶函数,即,其中1D 为D 在上半平面部分.②若积分区域D 关于y 轴对称,则二重积分20,(,)(,)(,)2(,),(,)(,)D D x x f f x y f x y f x y d f x y d f f x y f x y σσ-=-⎧⎪=⎨-=-⎪⎩⎰⎰⎰⎰关于为奇函数,即关于为偶函数,即,其中2D 为D 在右半平面部分.③设区域D 关于y x =对称,则(,)(,)D Df x y d f y x d σσ=⎰⎰⎰⎰.④设积分区域D 关于原点对称,(,)f x y 同时为,x y 的奇函数或偶函数,则 1,,0,(,)(,)(,)2(,),(,)(,)D D x y x y f f x y f x y f x y d f x y d f f x y f x y σσ--=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰关于的奇函数,即关于为偶函数,即,其中1D 为D 的右半平面部分.3.积分法(1)直角坐标法①(X -型区域)设12{(,)|,()()}D x y a x b x y x ϕϕ=≤≤≤≤,则21()()(,)(,)b x a x D f x y d dx f x y dy ϕϕσ=⎰⎰⎰⎰.②(Y -型区域)设12{(,)|()(),}D x y y x y c y d ϕϕ=≤≤≤≤,则21()(y)(,)(,)d y c D f x y d dy f x y dx ϕϕσ=⎰⎰⎰⎰.(2)极坐标变换令00cos cos ()sin sin x x r x r y r y y r θθθθ-==⎧⎧⎨⎨=-=⎩⎩或,其中12{(,)|,()()}D r r r r θαθβθθ=≤≤≤≤,则 21()()(,)(cos ,sin )r r D f x y d d rf r r dr βθαθσθθθ=⎰⎰⎰⎰.4.应用(1)几何应用设:(,)((,))z x y x y D ϕ∑=∈为空间曲面,则该曲面段的面积为221()()D z z A d x yσ∂∂=++∂∂⎰⎰.(2)物理应用①质量(,)Dm x y d ρσ=⎰⎰. ②形心坐标(,)(,),(,)(,)DD D D x x y d y x y d x y x y d x y d ρσρσρσρσ==⎰⎰⎰⎰⎰⎰⎰⎰,特别地,若薄片密度均为,则形心坐标,DD D D xd yd x y d d σσσσ==⎰⎰⎰⎰⎰⎰⎰⎰.(3)转动惯量设l 为平面xoy 上的直线,区域D 上任意一点(,)P x y 到直线l 的距离为d ,则区域D 绕直线l 的转动惯量为2(,)l D I dx y d ρσ=⎰⎰,特别地,2222(,),(,),()(,)x y o D D DI y x y d I x x y d I x y x y d ρσρσρσ===+⎰⎰⎰⎰⎰⎰.。

二重积分的概念与性质知识点与题型解析

二重积分的概念与性质知识点与题型解析

二重积分的概念与性质知识点与题型解析1、曲顶柱体曲顶柱体:是以一个有界的平面区域D为底,以区域的边界∂D为准线,垂直于底的直线为母线的柱面为侧面,曲面为顶的柱体。

一般取底面D所在平面为xOy坐标面,母线指向曲顶一侧的方向为z轴正西构建空间直角坐标系。

2、二重积分的建模思想与模型构建步骤(1) 建模思想:微元法(2) 建模步骤:“大化小, 常代变, 近似和,取极限”(3) 模型转换:公式中△σk表示小区域面积,括号中△σk表示区域。

3、定积分的几何意义与物理意义几何意义:(1) 当f(x,y)=1,则表示积分区域D的面积;(2) 当f(x,y)≥0,则表示以积分区域D,以D的边界为准线,母线平行于z轴的柱面为侧面,顶为z=f(x,y)的曲顶柱体的体积.物理意义:当f(x,y)>0,则表示面密度为ρ=f(x,y)的,占有平面区域D的平面薄片的质量.4、二重积分存在定理定理1:若函数f(x,y)在有界闭区域D上连续,则f(x,y)在D上可积。

定理2:若函数f(x,y)在有界闭区域D上除去有限个点或有限条光滑曲线外都连续,则f(x,y)在D上可积。

5、二重积分的积分性质性质1 (线性运算性质)设函数f(x,y),g(x,y)在有界闭区域D上可积,α,β为实常数,则有【注】在应用中,利用线性运算性质可以拆分积分;利用逆运算,也可以将多个积分合并为一个积分。

即同一区域上的两个不同函数的积分和,可以合并为被积函数的和在该积分区域上的积分。

性质2 (对积分区域的可加性)将有界闭区域D分成除边界外互不重叠的两个闭子区域D1和D2,若函数f(x,y)在区域D上可积,则有性质3 (保序性) (1) 若函数f(x,y)在有界闭区域D上可积且非负,则(2) 若函数f(x,y),g(x,y)在有界闭区域D上可积,且在D上有f(x,y)≤g(x,y),则特别有绝对值不等式性质4 (估值定理)若函数f(x,y)在有界闭区域D上可积,且存在常数m和M使得在D上成立m≤f(x,y)≤M,则有其中A为区域D的面积.若函数f(x,y)在有界闭区域D上连续且非负,D1为D的闭子区域,则有性质5(积分中值定理)设函数f(x,y)在有界闭区域D上连续,则至少存在一点(ξ,η)∈D,使得其中A为区域D的面积.性质6(偶倍奇零)设函数f(x,y)在有界闭区域D上连续.●如果D关于x轴对称,记其x轴上方区域为D1,则有●如果D关于y轴对称,记其y轴右侧区域为D1,则有即积分区域关于x轴对称,被积函数关于y变量有奇偶性;积分区域关于y轴对称,被积函数关于x变量有奇偶性,则积分偶倍奇零。

二重积分的概念和性质

二重积分的概念和性质

f (x, y)dxdy 即
R
f (x, y)d f (x, y)dxdy
R
R
⑵根据二重积分的定义,曲顶柱体的体积是:
V f (x, y)d
R
⑶函数 f (x, y) 在闭区域 R 上连续,则 f (x, y) 在 R 上
的二重积分必定存在.
⑷二重积分仅与积分区域R 和 f (x, y) 有关,而与对 区域 R 的分法和(i ,i ) 的取法无关.
平顶柱 体的体积
=底面积(区域 D的面积)×高( z f (x, y) 为常数)
请回忆在微积分上册解决曲边梯形面积的思想分析方法
z
z
x
D
y
x
i
D
y
(i ,i )
曲顶柱体体积 V :
⑴分割:D 1 2 n
V V1 V2 Vn
i 为 Vi 的窄条曲顶柱体的底,d i 为 i 的直径
R
R {(x, y) 0 x 2,0 y 4}
解:⑴在区域R上有:0 xy 2 (此处严格的找法
应该按照二元函数在有界闭区域上最值的找法 去做),根据积分性质
0 SR 2xyd 4 SR
R
而 SR 2 ,所以:
0 xyd 8
R
⑵的解法同⑴
例3:试将下列区域 R 用 x, y 的不等式组形式表示 出来,并写成集合形式

y 2x yx
R
R (x, y) 0 x 2, x y 2x

y x2 / 4 1
y 2x
R
6
2
2

x2

R

二重积分知识点

二重积分知识点

二重积分知识点一、基本概念二重积分是在平面上对一个有界区域内的函数进行积分,其本质是对该区域进行分割,然后对每个小部分进行近似求和,最后取极限得到积分值。

二重积分也可以看作是将一个曲面投影到平面上,并对其在平面上的投影面积进行积分。

二、计算方法1. 通过直角坐标系计算:将被积函数表示为x和y的函数,根据被积区域的形状选择合适的坐标系,然后按照一元函数求导法则进行计算即可。

2. 通过极坐标系计算:将被积函数表示为r和θ的函数,根据被积区域的形状选择合适的极坐标系,在极坐标系下进行计算即可。

三、应用领域1. 物理学:在物理学中,二重积分常用于求解质心、转动惯量等问题。

2. 经济学:在经济学中,二重积分可以用于估算市场需求曲线和供给曲线之间的交点。

3. 工程学:在工程学中,二重积分可以用于计算物体表面或体内某些特性(如温度、压力等)的平均值。

四、注意事项1. 被积函数必须在被积区域内连续,否则二重积分不存在。

2. 被积区域必须是有界的,否则二重积分不存在。

3. 选择合适的坐标系或极坐标系可以简化计算过程。

4. 在计算过程中要注意积分上下限和被积函数的表达式是否正确。

五、常见误区1. 计算二重积分时忘记乘以微元面积,导致结果错误。

2. 选择不合适的坐标系或极坐标系,导致计算过程复杂或无法进行。

3. 对于非简单闭合曲线围成的区域,需要将其拆分为多个简单闭合曲线围成的子区域进行计算。

4. 忘记对被积函数进行化简或变形,导致计算结果错误。

六、例题解析1. 求解二重积分∬Dxydxdy,其中D为由y=x^2和y=4-x^2所围成的区域。

解:首先画出该区域图形,并确定其在直角坐标系下的边界方程为y=x^2和y=4-x^2。

因此可以将被积区域拆分为两个子区域D1和D2,其中D1为x从-2到2,y从0到4-x^2,D2为x从-2到2,y 从x^2到4-x^2。

然后根据题目要求进行计算,得到二重积分的值为16/15。

2. 求解二重积分∬D(x^3+y^3)dxdy,其中D为由y=x和y=x^3所围成的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
(4)若 f ( x, y) 在 D 上可积, 则 f ( x, y ) 在 D 上也可积, 且
f ( x, y) dxdy
D D
f ( x, y ) dxdy
(5)估值定理: 若可积函数 f ( x, y) 在 D 上满足 m f ( x, y ) M , 则
mS D f ( x, y)dxdy MS D
i
(2)任取 i xi 1 , xi ;
n
(3)作和式 S n f ( i )xi ;
i 1 n
(4)若极限 lim S n lim f ( i )xi 存在;
0 0
i 1
(5) 极限值与区间 [ a, b] 分割的任意性和 i xi 1 , xi 取值的任意性无关, 则称函数 f ( x )
n
在区间 [ a, b] 上可积, 该极限值 lim S n lim f ( i )xi 称为函数 f ( x ) 在区间 [ a, b] 上的
0 0
i 1
定积分,记作
b n

a
f ( x )dx lim f ( i ) xi
0
i 1
例:设 D 2 为有界闭集,二元函数 z f ( x, y ),( x, y ) D 为定义在集合 D 上的 有界函数 (不仿假设 f ( x, y) 0,( x, y ) D ) 。 求以平面 z 0 为底, 曲面 z f ( x, y) 为顶的曲顶柱体 ( x, y, z ) 0 z f ( x, y), ( x, y ) D 的体积(如下图)
其中 S D 为 D 区域的面积。进一步, 若函数 g ( x, y ) 在 D 上非负可积, 则
m g ( x, y )dxdy f ( x, y ) g ( x, y )dxdy M g ( x, y )dxdy
D D D
(6) 中值定理: 若函数 f ( x, y) 在 D 上连续, g ( x, y ) 在 D 上取定号且可积, 则
第 1 节课
二重积分引入
定积分的定义 设函数 f ( x ) 在有界闭区间 [ a, b] 上有定义, 且有界,若: (1)任意分割区间 [ a, b] :取点列 x0 , x1 , , xn :
a x0 x1 xn b
记 xi xi xi 1 , max xi ;
解:为了求曲顶柱体的体积,我们做下列几个过程: (1)分割 T :将 D 分成 n 个小区域 Di (i 1, 2, , n) ,记 i (i 1, 2, , n) 为 小区域 Di 的面积, diam(Di ) max 为小区域 Di 的直径,
T max diam( D1 ), diam( D2 ), , diam( Dn )
D D
D
其中 S D dxdy 为 D 区域的面积.
D
(7)若 D 区域关于 x 轴对称, 可积函数 f ( x, y) 满足 f ( x, y ) f ( x, y ) , 则
f ( x, y)dxdt 0
D
若 D 区域关于 x 轴对称, 可积函数 f ( x, y) 满足 f ( x, y ) f ( x, y ) , 则
i i i 1
i
称为函数 f ( x, y) 在区间 D 上的二重积分, 记作
n

Dபைடு நூலகம்
f ( x, y )d lim
n
f ( , )
i i i 1
i
D 称为积分区域, f ( x, y) 称为被积函数, x, y 称为积分中间变量, 面积元素 d 又
记作 dxdy . 二重积分的值与积分中间变量的符号无关:
D
D
n
f ( , )
i i i 1
i
称为 Riemann 和;
n
(4)求极限: lim f (i ,i ) i ;
T 0 i 1
(5) 验证上述 Riemann 和的极限值与分割的任意性和取点的任意性无关。
此时,该极限值就是曲顶柱体 ( x, y, z ) 0 z f ( x, y ), ( x, y) D 的体积,
f ( x, y)dxdt 2 f ( x, y)dxdy
D D1
第 4 节课
D
关于二重积分性质的例题
例:估计 ( y 3 x 2 y 2 )dxdy 的大小,其中 D {( x, y ) x 2 y 2 2 } 。 解: y 3 dxdy 0 , 0 x 2 y 2 2 ,故 0 ( y 3 x 2 y 2 )dxdy 2
X , X Di
X X
称为分割的模; (2)取点:任取 (i ,i ) Di , i 1, 2, , n ; (3)求 Riemann 和:小曲顶柱体 ( x, y, z ) 0 z f ( x, y ),( x, y ) Di 的体 积可以近似表示为 f (i ,i ) i ,其和
i
存在;
(5)极限值与区域 D 分割的任意性和点 ( i , i ) Di , i 1, , n, 选值的任意 性 无 关 ,
n
则 称 函 数 f ( x, y ) 在 区 域 D 上 可 积 ,
n
该 极 限 值
lim S n lim
n
f ( , )
n
V lim f (i ,i ) i
T 0 i 1
第 2 节课
二重积分的定义
二重积分定义
设函数 f ( x, y) 在有界闭区域 D R 2 上有定义, 且有界, 若: (1)任意分割区域 D , 记 i sup X Y , max i ;
X ,Y Di
1i n
(2)任取 (i ,i ) Di , i 1,, n ;
n
(3)作和式 S n f ( i , i ) i , 其中 i 为 Di 的面积;
i 1 n
(4)若极限 lim S n lim
n
n
f ( , )
i i i 1
( , ) D ,使
f ( x, y) g ( x, y)dxdy f ( , ) g ( x, y)dxdy
D D
特别地, g ( x, y ) 1 时, ( , ) D 使
f ( x, y )dxdy f ( , ) dxdy f ( , )S
D D D
(3)保序性: 若可积函数 f ( x, y ) g ( x, y ), ( x, y ) D , 则
f ( x, y)dxdy g ( x, y)dxdy
D D
若可积函数 f ( x, y ) 0, ( x, y ) D , 则 f ( x, y )dxdy 0 .
D 1 D 2
f ( x, y )dxdy f ( x, y )dxdy f ( x, y)dxdy
D1 D2
(2)对被积函数满足线性性:
Af ( x, y) Bg ( x, y)dxdy A f ( x, y )dxdy B g ( x, y )dxdy
f ( x, y)dxdy f (u, v)dudv
D D
第 3 节课 二重积分性质
线性性,保序性,估值性,中值定理,对积分区域的可加性 (1) 对积分区域的可加性: 设 f ( x, y) 在区域 D1 和 D2 上可积, D1 D2 无内点, 则 f ( x, y) 在 D1 D2 上可积,且
相关文档
最新文档