(完整版)等差数列基础练习题.docx
等差数列练习题(有答案)百度文库
一、等差数列选择题1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2402.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤B .6斤C .9斤D .12斤3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .825两 B .845两 C .865两 D .885两 4.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4D .-45.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .14 6.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=27.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1628.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .359.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .4510.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .1611.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =12.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +13.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4514.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32015.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10016.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .100 17.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5918.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩19.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60B .120C .160D .24020.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .151二、多选题21.题目文件丢失!22.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+23.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1224.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=25.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--26.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-27.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 28.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项29.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+30.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( )A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 2.C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 3.C 【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子. 故选:C. 【点睛】关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式. 4.A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.5.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.8.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 9.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 10.C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 11.D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法. 12.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 13.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺.14.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
等差数列练习题(有答案)百度文库(1)
一、等差数列选择题1.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62272.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .143.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .144.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .35.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=27.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个B .3个C .2个D .1个 8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .249.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .412.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .10313.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .1614.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +15.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-16.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .217.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15B .20C .25D .3018.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩19.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .320.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >22.题目文件丢失!23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .825.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值26.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =27.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 28.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =29.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 2.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 3.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 4.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 5.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.8.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 11.B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n n a a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43n n n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14nb ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =. 又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 13.A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=. 又因为n a n λ≥恒成立,即()22nn n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是214.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 15.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 16.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得.【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 17.B 【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B 18.B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.19.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题21.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.22.无23.BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1nn a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 25.ABD由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 26.BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 28.AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题. 29.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 30.CD 【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===, 故选:CD. 【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
等差数列练习题及答案详解.docx
等差数列练习题及答案详解等差数列一、选择题1、等差数列a n中,A. 12B. 48S10120,那么a1a10()24 C.36 D.2、已知等差数列a n,a n2n19 ,那么这个数列的前n项和 s n()A. 有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数3、已知等差数列a n的公差d1, a2a4a10080,2那么 S100A.80B.120 C.135D.160.4、已知等差数列a n中,a2a5a9 a1260,那么 S13 A.390B. 195C.180D.120 5、从前180个正偶数的和中减去前180 个正奇数的和,其差为()A. 0B. 90C. 180D. 3606、等差数列a n的前m项的和为30,前2m项的和为100,则它的前3m 项的和为()A. 130B. 170C. 210D. 2607、在等差数列a n中,a2 6 , a8 6 ,若数列a n的前 n 项和为 S n,则()A. S4S5B. S4S5C. S6S5D. S6S58、一个等差数列前3项和为34,后3项和为146,所有项和为 390 ,则这个数列的项数为()A. 13B.12C.11D.109、已知某数列前n项之和n3为,且前n个偶数项的和为 n2 ( 4n 3) ,则前 n 个奇数项的和为()A.D.3n 2 ( n 1)B.n2(4n 3)C.3n2 1n 3210若一个凸多边形的内角度数成等差数列,最小角为 100°,最大角为 140°,这个凸多边形的边比为()A.6B.8C.10D.12一.选择题( 10×5 分)题12345678910号答案二.填空题1、等差数列a n中,若a6a3a8,则s922 、等差数列a n中,若S n3n2n.,则公差d.3、在小于100的正整数中,被3除余2的数的和是.4 、已知等差数列{ a n}的公差是正整数,且a3a712, a4a64 ,则前10项的和S10=5、一个等差数列共有10 项,其中奇数项的和为25,偶数项的和为 15,则这个数列的第 6 项是2*6 、两个等差数列a n 和b n 的前n项和分别为S n 和S n7n 3,则a8.Tn ,若T n n 3b8三.解答题1、在等差数列a n中,a40.8 , a11 2.2 ,求a 51a52L a80.2、等差数列a n的前n和S n,已知a312,S12 >0,S 13 <0,①求公差 d 的取范;②S1 , S2,L, S12中哪一个最大?并明理由.3、己知{ a n}等差数列,a12, a23,若在每相两之插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第 12 是新数列的第几?(2)新数列的第 29 是原数列的第几?4、等差数列{ a n}的前n的和S n ,且 S 4 =-62,S 6 =-75,求:(1){ a n}的通公式 a n及前n的和 Sn;(2)|a 1 |+|a 2 |+|a 3 |+⋯⋯ +|a 14 |.5、某渔业公司年初用98 万元购买一艘捕鱼船,第一年各种费用 12 万元,以后每年都增加 4 万元,每年捕鱼收益 50 万元,(Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:( 1)年平均获利最大时, 以 26 万元出售该 渔船;( 2)总纯收入获利最大时,以 8 万元出售该渔船 .问哪种方案合算 .参考答案一、选择题1-5 B A C B C 6-10 C B A B A二、填空题1、 02、63、16504、-105、36、6三.解答题1、 an0.2n , a51a 52a 80 393.S 1212 (a 1 a 12 ) 6( a 6 a 7 ) 0a 6 a 7 2a 1 11d2、 ①∵26d 0 S1313(a 1 a 13 ) 13ga 70 a 7 0, ∴a 1a 12d 12224 a 6 a 7 0 a 6 024 a n 是 减数列 ,解得 ,d3, ②由a 7 0a 7, 又∵d3 ∴77∴S 1 , S 2 ,L , S 12 中 S 6 最大 .3、解: 新数列b n , 则 b 1 a 1 2,b 51即 3=2+4d ,∴ d4a 2 3,根据b n b 1 (n 1) d, 有b 5 b 1 4d,1 n 7 ,∴b n2 ( n 1)44又Q a n a 1 (n 1) 1n 1(4 n 3) 7,∴ a n b 4 n 34即原数列的第 n 新数列的第 4n -3 .( 1 )当 n=12 , 4n -3=4×12-3=45,故原数列的第 12 新数列的第 45 ;( 2 )由 4n -3=29,得 n=8 ,故新数列的第 29 是原数列的第 8 。
等差数列求和及练习题(整理).doc
等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。
这个固定的数就叫做“公差”。
二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。
判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】
,
【点睛】
等差数列通项公式除了掌握 ,考生还应掌握
(完整版)等差数列基础习题选(附详细答案)-答案
参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.11。
等差数列知识点总结及考点练习.docx
等差数列知识点总结一、等差数列知识点回顾与技巧点拨1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d =(n -m )d=p .3.等差中项如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,如果A 是x 和y 的等差中项,则A =x +y2.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). 5.等差数列的前n 项和公式若已知首项a 1和末项a n ,则S n =n a 1+a n2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n n -12d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).7.最值问题在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值.一个推导利用倒序相加法推导等差数列的前n 项和公式: S n =a 1+a 2+a 3+…+a n ,① S n =a n +a n -1+…+a 1,②①+②得:S n =n a 1+a n2.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元. (1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…. (2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元. 四种方法等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数;(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ;(4)前n 项和公式法:验证S n =An 2+Bn .注: 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.回顾:1.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为( ) A .B . 1C .D . ﹣12.已知数列{a n }的通项公式是a n =2n+5,则此数列是( ) A . 以7为首项,公差为2的等差数列 B . 以7为首项,公差为5的等差数列 C . 以5为首项,公差为2的等差数列 D . 不是等差数列 3.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于( ) A . 23 B . 24 C . 25 D . 26 4.两个数1与5的等差中项是( ) A . 1 B . 3 C . 2 D . 5.(2005•黑龙江)如果数列{a n }是等差数列,则( ) A . a 1+a 8>a 4+a 5 B . a 1+a 8=a 4+a 5 C . a 1+a 8<a 4+a 5 D . a 1a 8=a 4a 5考点1:等差数列的通项与前n 项和题型1:已知等差数列的某些项,求某项【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法 【例1】已知{}n a 为等差数列,,则解:方法1:方法2:,方法3:令,则方法4:{}n a 为等差数列,也成等差数列,设其公差为,则为首项,20,86015==a a =75a 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 1544582015601560=-=--=a a d ∴241541520)6075(6075=⨯+=-+=d a a b an a n +=38,45162060815==⇒⎩⎨⎧=+=+b a b a b a ∴24384516757575=+⨯=+=b a a ∴7560453015,,,,a a a a a 1d 15a 60a为第4项.方法5:{}n a 为等差数列,三点共线对应练习:1、已知{}n a 为等差数列,(互不相等),求.2、已知个数成等差数列,它们的和为,平方和为,求这个数.题型2:已知前项和及其某项,求项数.【解题思路】⑴利用等差数列的通项公式求出及,代入可求项数;⑵利用等差数列的前4项和及后4项和求出,代入可求项数.【例2】已知为等差数列{}n a 的前项和,,求解:设等差数列的首项为,公差为,则对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数.4.已知为等差数列{}n a 的前项和,,则.题型3:求等差数列的前n 项和【解题思路】(1)利用求出,把绝对值符号去掉转化为等差数列的求和问题.∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a ∴),75(),,60(),,15(756015a a a 2415204582060751560757560751560=⇒-=-⇒--=--a a a a a a q a p a n m ==,k n m ,,k a 551655n n S d n a a n )1(1-+=1a dn S n n a a +1n S n n S n 63,6,994=-==n S a a n 1a d3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a ∴7,663)1(231821==⇒=--=n n n n n S n n n S n 100,7,141===n S a a =n n S n a(2)含绝对值符号的数列求和问题,要注意分类讨论.【例3】已知为等差数列{}n a 的前项和,.(1);⑵求; ⑶求.解:,当时,,当时,,当时,, .由,得,当时,;当时,.(1);⑵;(3)时,,当时,对应练习:5、已知为等差数列{}n a 的前项和,,求.n S n 212n n S n -=321a a a ++10321a a a a ++++ n a a a a ++++ 321212n n S n -=∴1=n 1111211=-==S a 2≥n n n n n n S S a n n n 213)1()1(12)12(221-=-+---=-=-1=n 1111213a ==⨯-∴n a n 213-=0213≥-=n a n 213≤n ∴61≤≤n 0>n a 7≥n 0<n a 27331223321321=-⨯==++=++S a a a a a a )(10987632110321a a a a a a a a a a a a +++-++++=++++ 52)101012()6612(2222106=-⨯--⨯=-=S S 61≤≤n 232132112n n a a a a a a a a n n -=++++=++++ 7≥n )(876321321n n a a a a a a a a a a a +++-++++=++++ .7212)12()6612(222226+-=---⨯=-=n n n n S S n n S n 10,10010010==S S 110S考点2 :证明数列是等差数列【名师指引】判断或证明数列是等差数列的方法有:1、定义法:(,是常数){}n a 是等差数列;2、中项法:(){}n a 是等差数列;3、通项公式法:(是常数){}n a 是等差数列; 4、项和公式法:(是常数,){}n a 是等差数列.【例4】已知为等差数列{}n a 的前项和,. 求证:数列是等差数列.解:方法1:设等差数列{}n a 的公差为,,(常数)数列是等差数列.方法2:, ,, 数列是等差数列.对应练习:6、设为数列{}n a 的前项和,,(1) 常数的值;(2) 证:数列是等差数列.d a a n n =-+1+∈N n d⇔212+++=n n n a a a +∈N n ⇔b kn a n +=b k ,⇔Bn An S n +=2B A ,0≠A ⇔n S n )(+∈=N n nS b nn {}n b d d n n na S n )1(211-+=∴d n a n S b n n )1(211-+==∴2)1(2121111dd n a nd a b b n n =---+=-+∴{}n bd n a n S b n n )1(211-+==∴nd a b n 2111+=+d n a b n )1(2112++=+∴1111222)1(21)1(21++=+=-++++=+n n n b nd a d n a d n a b b ∴{}n b n S n )(+∈=N n pna S n n .21a a =p{}n a考点3 :等差数列的性质【解题思路】利用等差数列的有关性质求解.【例5】1、已知为等差数列{}n a 的前项和,,则 ;2、知为等差数列{}n a 的前项和,,则.解:1、;2、方法1:令,则. ,,;方法2:不妨设., ;方法3:{}n a 是等差数列,为等差数列三点共线..对应练习:7、含个项的等差数列其奇数项的和与偶数项的和之比为( )8.设、分别是等差数列{}n a 、{}n a 的前项和,,则n S n 1006=a =11S nS n)(,m n n S m S m n ≠===+n m S 11001122112)(116611111==⨯=+=a a a a S Bn An S n +=2n m m n B m n A nBm Am mBn An -=-+-⇒⎩⎨⎧=+=+)()(2222 m n ≠∴1)(-=++B m n A ∴)()()(2n m n m B n m A S n m +-=+++=+n m >mn a a n m a a a a a S S m n m m n n n n m -=+-=+++++=-+-+++2))((11321 ∴211-=+=+++m n n m a a a a ∴)(2))((1n m a a n m S n m n m +-=++=++∴⎭⎬⎫⎩⎨⎧n S n ∴⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+n m S n m m S m n S n n m m n ,,,,,∴)(n m S nm nn m S n m n m m n n m n m +-=⇒-+=--++12+n .A n n 12+.B n n 1+.C n n 1-.D nn 21+n S nT n 327++=n n T S nn. 考点4: 等差数列与其它知识的综合【解题思路】1、利用与的关系式及等差数列的通项公式可求;2、求出后,判断的单调性.【例6】已知为数列{}n a 的前项和,;数列满足:, ,其前项和为⑴ 数列{}n a 、的通项公式;⑵设为数列的前项和,,求使不等式对都成立的最大正整数的值. 解:⑴, 当时,;当时,当时,,;,是等差数列,设其公差为.则,.⑵=55b a n a n S n T n T n S n n n S n 211212+={}n b 113=b n n n b b b -=++1229.153{}n b nT {}n c n )12)(112(6--=n n n b a c 57kT n >+∈∀N n k n n S n 211212+=∴1=n 611==S a 2≥n 5)1(211)1(2121121221+=----+=-=-n n n n n S S a n n n 1=n 1651a ==+∴5+=n a n 222112+++++=⇒-=n n n n n n b b b b b b ∴{}n b d3,5153369112111==⇒⎩⎨⎧=+=+d b d b d b ∴23)1(35+=-+=n n b n [][]1)23(211)5(26)12)(112(6-+-+=--=n n b a c n n n 121121)12)(12(2+--=+-=n n n n,是单调递增数列. 当时, 对都成立 所求最大正整数的值为.对应练习:9.已知为数列{}n a 的前项和,,.⑴ 数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数,使得不等式对任意不小于的正整数都成立?若存在,求最小的正整数,若不存在,说明理由.课后练习:1.(2010广雅中学)设数列是等差数列,且,,是数列的前项和,则A .B .C .D .2.在等差数列{}n a 中,,则 .3.数列{}n a 中,,当数列{}n a 的前项和取得最小值时,.4.已知等差数列{}n a 共有项,其奇数项之和为,偶数项之和为,则其公差是 .5.设数列中,,则通项 .6.从正整数数列中删去所有的平方数,得到一个新数列,则这个新数列的第项是 .答案与解析:对应练习:1、【解析】2、【解析】设这个数分别为则∴1211)121121()7151()5131()311(+-=+--++-+-+-=n n n T n +∈N n ∴n T ∴1=n ()323111min =-==T T n ∴57k T n >+∈∀N n ()38573257min <⇔>⇔>⇔k kk T n ∴k 37n S n 31=a )2(21≥=-n a S S n n n k 1+>k k a a k k {}n a 28a =-155a =n S {}n a n 1011S S =1011S S >910S S =910S S <1205=a =+++8642a a a a 492-=n a n nnS =n 101030{}n a 112,1n n a a a n +==++n a = ,5,4,3,2,11964n m k m q n k p a n k q a n m q p n k a a n m a a k k n k n m --+-=⇒--=--⇒--=--)()(5.2,,,,2d a d a a d a d a ++--⎩⎨⎧=+=⇒⎩⎨⎧=+++++-+-=+++++-+-1651051165)2()()()2(5)2()()()2(2222222d a a d a d a a d a d a d a d a a d a d a解得当时,这个数分别为:; 当时,这个数分别为:3、【解析】4、【解析】设等差数列的公差为,则 .5、【解析】方法1:设等差数列的公差为,则 ;方法2:6、【解析】⑴,,⑵由⑴知:,当时,,,数列是等差数列.7、【解析】(本两小题有多种解法),.选B. 8、【解析】填4,1±==d a 4,1==d a 59,5,1,3,7--4,1-==d a 5.7,3,1,5,9--124,363214321=+++=+++---n n n n a a a a a a a a 3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a ∴39780207802)(1=⇒=⇒=+=n n a a n S n n d 23171414=-=--=a a d 101002)1(21=⇒=⨯-+=n n n n S n d ⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=+100109950111049501001004510111d a d a d a ∴110109110211101110-=⨯⨯+=d a S 2902)(90100111001110100-=+⇒-=+=-a a a a S S 1102)(1102)(110100*********-=+=+=a a a a Sn n pna S =21a a =∴111=⇒=p pa a n n na S =2≥n 0))(1()1(111=--⇒--=-=---n n n n n n n a a n a n na S S a ∴)2(01≥=--n a a n n ∴{}n a2))(1(12112531++++=++++=n n a a n a a a a S 奇2)(222642n n a a n a a a a S +=++++= 偶nn a a a a 22121+=++∴nn S S 1+=偶奇∴12652525514225143)12(2)12(7551212=+⨯-⨯=⇒+-=+-+-==--b a n n n n T S b a n n n n ∴. 9、【解析】⑴当时,,且,{}n a 是以为公差的等差数列,其首项为.当时,当时,,;⑵,得或,当时,恒成立,所求最小的正整数课后练习:1、【解析】C . 另法:由,,得,,计算知2、【解析】3、【解析】 由知{}n a 是等差数列,4、【解析】 已知两式相减,得5、【解析】利用迭加法(或迭代法),也可以用归纳—猜想—证明的方法.6、【解析】12652≥n )(22111----=⇒=n n n n n n n S S S S a S S ∴21111-=--n n S S 3111=S ∴21-31∴nS n n S S n n 356635)1(21111-=⇒-=--=∴2≥n )53)(83(18211--==-n n S S a n n n 1=n 11018)53)(83(18a ≠=--∴⎪⎩⎪⎨⎧≥--=)2()53)(83(18)1(3n n n n 0)23)(53)(83(181>---=-+k k k a a k k 3532<<k 38>k ∴3≥k 1+>k k a a .3=k 1091521015216292)(,22S S a d a S d a a a a S =⇒++=++=+=28a =-155a =713815)8(5=---=d 76921=-=d a a 910S S =480.480458642==+++a a a a a 24492-=n a n .250>⇒>n a n ∴.24=n 4.4205=⇒=d d 1)1(21++n n 2008。
等差数列知识点+基础练习题
n-m(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A=或S=n(a+a)2222n+1是项数为2n+1的等差数列的中间项==(2n+1)an+1(项数为奇数的等差数列的各项和等于项数2{a}是等n差数列n+2.{a}是等差数列⇔a n+=1kn+n b(其中k,b是常数)。
(4)数列{a}是等差数列⇔S=An2+Bn,(其中A、B是常数)。
aaa等差数列知识点1.等差数列的定义:a-an 2.等差数列通项公式:n-1=d(d为常数)(n≥2);a=a+(n-1)d=dn+a-d(n∈N*),首项:a,公差:d,末项:an111a-a推广:a=a+(n-m)d.从而d=n m;n mn3.等差中项a+b22A=a+b(2)等差中项:数列{}是等差数列n⇔2a=a+a(n≥2)⇔2a=a+an n-1n+1n+1n n+24.等差数列的前n项和公式:n(n-1)d11n=na+d=n2+(a-d)n=An2+Bn n11(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数2n+1时,a(2n+1)(a+a)S12n+12n+1乘以中间项)5.等差数列的判定方法(1)定义法:若a-a=d或a-a=d(常数n∈N*)⇔{}是等差数列.n n-1n+1n(2)等差中项:数列n ⇔2a=a+a(n≥2)⇔2a=a+an n-1n+1⑶数列n nn n6.等差数列的证明方法定义法:若a-a=d或an n-1n+1-a=d(常数n∈N*)⇔{}是等差数列.n n7.提醒:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a、d、n、a及S,1n n 其中a、d称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即1知3求2。
(2)设项技巧:①一般可设通项a=a+(n-1)dn1②奇数个数成等差,可设为…,a-2d,a-d,a,a+d,a+2d…(公差为d);③偶数个数成等差,可设为…,a-3d,a-d,a+d,a+3d,…(注意;公差为2d)8..等差数列的性质:2 2 2{ a(2222nn+1 ⇒ ⎨ ⎨⎪⎩⎪⎩ ⎪ n+1是项数为 2n+1 的等差数列的中间项).(1)当公差 d ≠ 0 时,等差数列的通项公式 a = a + (n - 1)d = dn + a - d 是关于 n 的一次函数,且斜 n11率为公差 d ;前 n 和 S = na + n 1 n (n - 1) d dd = n 2 + (a - )n 是关于 n 的二次函数且常数项1为 0.(2)若公差 d > 0 ,则为递增等差数列,若公差 d < 0 ,则为递减等差数列,若公差 d = 0 ,则为常数列。
等差数列基础测试题(附详细答案)
等差数列:1、已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( )A .5B .6C .7D .92、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .73、在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)4、等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对5、在等差数列{a n }中,a 1=21,a 7=18,则公差d =( )A.12B.13C .-12D .-136、在等差数列{a n }中,a 2=5,a 6=17,则a 14=( )A .45B .41C .39D .377、若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .338、下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个二、填空题(共20,每小题5分)9、在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.10、△ABC 三个内角A 、B 、C 成等差数列,则B =__________.11、在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.三、解答题(共70分)12、在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式.(10分)13、在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.14、已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(12分)(1)求数列{a n }的通项公式;答案:一、选择题1-5 CCBBC 6-8BDB二、填空题13、解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:3014、解析:∵A 、B 、C 成等差数列,∴2B =A +C . 又A +B +C =180°,∴3B =180°,∴B =60°. 答案:60°15、解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m三、解答题17、解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.18、解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2. 解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7. 解得⎩⎪⎨⎪⎧a 1=1,d =2. ∴a 9=a 1+(9-1)d =1+8×2=17.19、解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2, ∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n . 当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列. ∴b n =b 1+(n -1)d =4+4(n -1)=4n .。
等差数列基础练习题doc
一、等差数列选择题1.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( )A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 2.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-B .8C .12D .143.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .04.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4D .-45.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .14 6.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=27.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .358.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11129.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .8511.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11 C .50 D .55 13.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )A .9B .12C .15D .1814.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10015.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >D .70S <,且80S <17.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 18.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019B .4040C .2020D .403819.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项20.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或20二、多选题21.题目文件丢失! 22.题目文件丢失!23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >25.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 26.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=27.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-28.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <29.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S30.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.故选:D . 【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 2.D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D 3.A 【分析】 转化条件为122527n na a n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0,所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.5.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 8.C 【分析】 首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C . 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项.【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 13.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A 14.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 15.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.16.A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A . 17.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案. 【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 18.B 【分析】由等差数列的性质可得52012016024a a a a +==+,则()15202020202016202010102a a a a S +=⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+()12020202052016202010104101040402a a a a S +===⨯=+⨯⨯ 故选:B 19.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 20.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.二、多选题 21.无22.无23.BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减,可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 24.ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137131302a a S a+⨯==<,故C 错误; 所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD. 25.AC令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222n n n na dS d d n a n n -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断. 26.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误.【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 27.AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD. 28.AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112xf x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题【分析】由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】解:1167891011950S S a a a a a a -=++++==, 因为10a >所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 30.ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N上单调递增,1na 在7nn N ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.。
等差数列基础习题选(附有详细解答)
等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为(的值为( )A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是(,则此数列是( )A.以7为首项,公差为2的等差数列的等差数列的等差数列 B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列的等差数列 D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于(等于( )A.23B.24C.25D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1B.2C.3D.一25.两个数1与5的等差中项是(的等差中项是( )A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是(,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A.﹣2B.﹣3C.﹣4D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为(的公差为( )A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为(项,则它们的公共项的个数为( )A.25B.24C.20D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1D.111.(2005•黑龙江)如果数列{a n}是等差数列,则(是等差数列,则( )A.a1+a8>a4+a5 B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1C.2D.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于(等于( )A.﹣1B.1C.3D.714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于(项和等于( )A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为(的值为( )A.6B.7C.8D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为(的值为( )A.30B.35C.36D.2417.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6D.6或718.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1B.0C.1D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为(的值为( )A.4或5B.5或6C.4D.522.等差数列{a n}中,a n=2n﹣4,则S4等于(等于( )A.12B.10C.8D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为(项和为( )A.230B.140C.115D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25C.50D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于(等于( )A.1B.2C.3D.426.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大(从首项到第几项的和最大( )A.第10项B.第11项C.第10项或11项D.第12项二.填空题(共4小题)27.如果数列{a n}满足:=_________.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=_________.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为项之和为 _________.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为(的值为( )A.B.1C.D.﹣1考点:等差数列.计算题.专题:计算题.分析:,解出该方程组即可得到答案.本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是(,则此数列是( )A.以7为首项,公差为2的等差数列的等差数列的等差数列 B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列是等差数列的等差数列 D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以 a1=2×1+5=7;所以a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.的等差数列.故此数列是以7为首项,公差为2的等差数列.故选A.本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项. 点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于(等于( )A.23B.24C.25D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是(的等差中项是( )A.1B.3C.2D.考点:等差数列.计算题.专题:计算题.分析:的等差中项.由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:是解题的关键,属基础题. 本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是(,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A.﹣2B.﹣3C.﹣4D.﹣5考点:等差数列.专题:计算题.计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为(的公差为( )A.1B.2C.3D.4考点:等差数列的通项公式.计算题.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得的值.,则由题意可得 2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得,解得 d=2,,可得 2a1+4d=10,a1+3d=7,解得故选B.本题主要考查等差数列的通项公式的应用,属于基础题.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为(项,则它们的公共项的个数为( )A.25B.24C.20D.19考点:等差数列的通项公式.计算题.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,个相同的项.∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得 1≤3r≤100 1≤4r﹣1≤100 解得≤r≤根据题意得∵r∈N*个相同的项从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.项和公式的应用,即根据代入公式进行求解.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则(是等差数列,则( )A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n 是等差数列{an}的前n项和,若=()A.1B.﹣1C.2D.考点:等差数列的性质.专题:计算题.计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,项和公式以及等差中项的综合应用, 已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于(等于( )A.﹣1B.1C.3D.7考点:等差数列的性质.专题:计算题.计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于(项和等于( )A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为(的值为( )A.6B.7C.8D.9考点:等差数列的性质.计算题.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,代入等差数列的通项公式可求,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以 a1+a7=6②所以②﹣①可得d=2,a1=﹣3所以a7=9故选D项和公式及等差数列的性质的综合应用,属于基础试题.点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为(的值为( )A.30B.35C.36D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.176考点:等差数列的性质;等差数列的前n项和.计算题.专题:计算题.分析:根据等差数列的定义和性质得 a1+a11=a4+a8=16,再由S11=运算求得结果.根据等差数列的定义和性质得解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.计算题.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a 4=2a 5﹣a 6=0故选B点评: 本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n }的前n 项和S n =n 2﹣8n ,第k 项满足4<a k <7,则k=( ) A . 6 B .7 C . 8 D . 9考点:等差数列的通项公式;等差数列的前n 项和. 专题: 计算题.计算题. 分析:先利用公式a n =求出a n ,再由第k 项满足4<a k <7,建立不等式,求出k 的值.的值.解答:解:a n ==∵n=1时适合a n =2n ﹣9,∴a n =2n ﹣9.∵4<a k <7,∴4<2k ﹣9<7, ∴<k <8,又∵k ∈N +,∴k=7, 故选B .点评:本题考查数列的通项公式的求法,解题时要注意公式a n =的合理运用,属于基础题.21.数列a n 的前n 项和为S n ,若S n =2n 2﹣17n ,则当S n 取得最小值时n 的值为(的值为()A . 4或5B . 5或6C .4 D . 5考点:等差数列的前n 项和. 专题: 计算题.分析: 把数列的前n 项的和S n 看作是关于n 的二次函数,把关系式配方后,把关系式配方后,又根据又根据n 为正整数,为正整数,即可得到即可得到S n 取得最小值时n 的值.解答: 解:因为S n =2n 2﹣17n=2﹣,又n 为正整数,为正整数,所以当n=4时,S n 取得最小值.取得最小值. 故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n }中,a n =2n ﹣4,则S 4等于(等于()A . 12B .10 C . 8 D . 4考点: 等差数列的前n 项和.专题: 计算题.计算题. 分析: 利用等差数列{a n }中,a n =2n ﹣4,先求出a 1,d ,再由等差数列的前n 项和公式求S 4.解答: 解:∵等差数列{a n }中,a n =2n ﹣4,∴a 1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为(项和为( )A.230B.140C.115D.95考点:等差数列的前n项和.综合题.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.项和的公式化简求值,是一道基础题.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25C.50D.100考点:等差数列的前n项和;等差数列的性质.计算题.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得 a1+a10=5,代入前10项和S10 =运算求得结根据条件并利用等差数列的定义和性质可得果.解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于(等于( )A.1B.2C.3D.4考点:等差数列的前n项和.专题:计算题.计算题.分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别代入即可得到首项和公差的关系式,根据公差不为根据公差不为0,即可求出公差与首项的关系并解出公表示出各项后,代入即可得到首项和公差的关系式,的关系式代入即可求出比值. 差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.n nA.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.转化思想.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口项的和有最大值,即可得到正确答案;向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),的等差数列,所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,项开始为负数,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.计算题.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为项之和为 58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.项之和为 a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故前10项之和为故答案为 58.故答案为项和公式及其应用,体现了分类讨论的数学思想,属于中档题. 点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.(考点:数列的求和;等差数列的通项公式.计算题.专题:计算题.分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{bn}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0 由a2+a7=16.得2a1+7d=16 ①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1 所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。
(完整版)等差数列练习题及答案.doc
等差数列1、已知等差数列a n满足 a1 a2 a101 0 ,则有()A 、a1 a101 0 B 、a2a100 0 C、a3a990 D 、a51 512、等差数列a n 的前 n 项和记为 S n,若 a2 a4 a15得值是一个确定的常数,则数列S n 中也为常数的值为( )A 、S7 B、S8 C、S13 D 、S153、在等差数列a n 中 , a3 a9 ,公差d 0 ,则前n项和S n 取得最大值的 n 为( )A 、 4 或 5B 、 5 或 6 C、6 或 7 D、不存在4、等差数列a n 前 m 项和为30,前2m 项和为 100,则它的前 3 m项的和为( )A 、 130 B、 170 C、 210 D 、 2605、等差数列a n 的公差为 2 ,且 a1 a4 a7 a97 50,那么a3a6a9 a99_____.6、等差数列a n , a n=q, a m p ( m n) ,则 a k=________7、在- 1 与 7 之间顺次插入三个数a, b, c ,使这五个数成等差数列,则这五个数为______8、已知数列a n 的前 n 项和为 S n= n2 2n 3 ,求数列 a n 的通项公式 ,并判断a n 是否为等差数列 ?9、若 x y, 两个数列 : x, a1 , a 2 , a 3 , y 和 x, b1 , b2 , b3 , b4 , y 都是等差数列 ,求a2 a1 的值b4 b310、已知公差大于0 的等差数列a n 的前n 项和为S n ,且满足a3 a4 117, a 2 a5 22.(1)求通项a n ; (2) 若数列 { b n } 是等差数列,且 b n =S n求非零常数 c n c答案1【答案】 C2【答案】 C【分析】设首项 a1 , 公差 da2 a4 a15 3(a1 6d )为定值,a713(a1 a13 )a1 6d 为定值,S13 13a7为定值23【答案】 B【分析】设首项 a1 , 公差 da3 a9a1 2d a1 8d ,即a1 5dS n na1 n(n 1)1 (n2 11n)d2d2当n5或6 时 , S n最大4. 【答案】 C【分析】S m , S2 m S m , S3m S2m成等差数列S3m S2m 110S3m 2105【答案】82【分析】 a3 a6 a9 a99a1 a4 a7a97 66d826、【解】从 a n与n的函数关系看,可以看作 a n是n的一次函数 ,因此 ,函数 a n的图象是共线离散的点.已知条件表明 , 点 (m, p), (n, q) 在 a n的图象上 , 问题是求与这两个点共线的点(k, x) 的纵坐标, 由共线条件知p q x q , x p(k n) q(m k) .m n k n m n7【解】设这几个数组成的等差数列为 a n ,知 a11, a5 7 .解得 d 2, 所求数列为1,1,3,5,78【解】解 :当 n 1时 , a1 2;当 n 2 时 , a n S n S n 1 2n 32(n1)a n2n 3(n2)显然 a n 1 a n2(n 2) 但 a2a1 1 21 2a n不是等差数列.9【解】设两个等差数列的公差分别为d1 , d2 即求 d1 ,由已知得d2y x 4d1 4d1 y x即y x 5d 2 5d2 y x解 d1 5 即 a2 a1 54 4d 2 b4 b310【解】 (1) a n 为等差数列 , a 3 a4 a2 a5 22, 又 a3 a4 117,a ,a4 是方程 x 2 22x 117 0 的两实根 .3又公差 d 0 a3 a4 a3 9, a 4 13 a1 2d 9 a1 1a n 4n 3a1 3d 13 d 4(2)、 (1)知S n n 1 n( n 1) 4 2n 2 n2b nS n 2n 2 nb11 6 15n c n c, b22, b33,1 c c cb n 为等差数列2b2 b1621 15b3 ,即1 c 3 c2 c2c2 c 0 , c1( c 0 舍去 ),故c 1 .2 2。
等差数列练习试题及包括答案.docx
等差数列练习题及答案等差数列练习一、选择题1、等差数列a n中,S10120 ,那么 a1a10A. 12B.24C.36 48()D.2、已知等差数列a n ,a n2n 19 ,那么这个数列的前n项和 s n()A. 有最小值且是整数B.有最小值且是分数C. 有最大值且是整数D.有最大值且是分数3、已知等差数列a n的公差d1,a2a4a10080 ,2那么 S100A .80B .120C .135 D.160.4、已知等差数列a n中,a2a5 a9a1260 ,那么S13A.390B.195 C.180D.1205、从前180个正偶数的和中减去前180 个正奇数的和,其差为()A. 0B.90C.180D.3606、等差数列a n的前m项的和为30,前2m项的和为100,则它的前3m 项的和为()A. 130B.170C.210D.2607、在等差数列a n中,a2 6 , a86,若数列a n的前 n 项和为 S n,则()A. S4S5B. S4S5C.S6S5D.S6 S58、一个等差数列前3项和为 34,后 3项和为146 ,所有项和为 390 ,则这个数列的项数为()A. 13B.12C.11D.109、已知某数列前n项之和n3为,且前n个偶数项的和为 n2 ( 4n 3) ,则前 n 个奇数项的和为()A .3n2(n 1)B.n2(4n 3)C.3n2 D.1n32 10若一个凸多边形的内角度数成等差数列,最小角为 100°,最大角为 140°,这个凸多边形的边比为()A.6B.8C.10D.12二.填空题1、等差数列a n中,若a6a3a8,则s9.2 、等差数列a n中,若S n3n22n,则公差d.3、在小于100的正整数中,被3除余2的数的和是4 、已知等差数列{ a n}的公差是正整数,且a3a712, a4a64,则前 10 项的和 S10 =5、一个等差数列共有10 项,其中奇数项的和为25 ,偶数项的和为15,则这个数列的第6 项是2*6 、两个等差数列a n和 b n的前n项和分别为S n和S n7n 3,则a8.Tn ,若T n n 3b8三.解答题1、在等差数列a n中,a40.8 , a11 2.2 ,求a 51a52L a80 .2、设等差数列a n的前n项和为S n,已知a312,S12 >0,S13<0,①求公差 d 的取值范围;② S1 , S2,L , S12中哪一个值最大?并说明理由.3、己知{a n}为等差数列,a12, a23,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12 项是新数列的第几项?(2)新数列的第 29 项是原数列的第几项?4、设等差数列{ a n}的前n项的和为 S n , 且 S 4 =的通项公式 a n及-62, S 6 = -75, 求:(1){ an}前n的和 S n;(2)|a 1 |+|a 2 |+|a 3 |+ ⋯⋯ +|a 14 |.5、某公司年初用98 万元一艘捕船,第一年各种用12 万元,以后每年都增加4 万元,每年捕收益 50 万元,(Ⅰ)第几年开始利?(Ⅱ)若干年后,有两种理方案:(1)年平均利最大,以 26 万元出售船;(2)收入利最大,以 8 万元出售船 .哪种方案合算 .参考答案一、 1-5 B A C B C 6-10 C B A B A二、1 、0 2、63 、16504 、-105、3 6、6三. 1、 an0.2n, a 51a 52 a 80393.S1212(a 1 a 12 ) 6(a 6 a 7 ) 0a 6 a 7 02a 1 11d2、①∵2, ∴ a 16d 0 S1313ga 7a 1 2d 12(a 1 a 13 ) 13 a 72解得 ,24a 6 a 7 0a 6 0247d3 , ②由 a 7a 70 ,又∵7d3∴ a n是递减数列 ,∴ S 1 , S 2 ,L, S 12中 S 6最大 .3、解:设新数列为b n , 则b 1 a 1 2, b 5 a 2 3,根据 b n b 1 (n 1)d ,有 b 5 b 1 4d ,即 3=2+4d ,∴ d,∴ b n2 (n 1)n 7 11444又Q a n a 1(n 1) 1 n 1(4 n 3)7,∴ a n b 4n 34即原数列的第 n 项为新数列的第 4n -3项.( 1)当 n=12 时, 4n -3=4×12- 3=45,故原数列的第 12 项为新数列的第 45 项;(2)由 4n-3=29, 得 n=8,故新数列的第 29是原数列的第8 。
(完整word版)等差数列基础练习题
等差数列·基础练习题一、填空题1. 等差数列8,5,2,…的第20项为___________.2. 在等差数列中已知a 1=12, a 6=27,则d=___________3. 在等差数列中已知13d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是________________— 5. 等差数列—10,—6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________二、选择题8. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( )A.0B. 2log 5 C 。
32 D.0或329。
在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )A 。
84B 。
72 C.60 . D.4810. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )A.6 B 。
3 C 。
12 D.411。
等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于A 。
160 B.180 C.200 D 。
22012。
在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )A 。
45B 。
75 C.180 D.30013. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )A 。
等比数列,但不是等差数列 B.等差数列,但不是等比数列C 。
等差数列,且是等比数列D 。
既不是等差数列也不是等比数列 14. 数列3,7,13,21,31,…的通项公式是( ) A 。
41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在 三、计算题15。
(完整)小学五年级等差数列练习.docx
等差数列1、6+7+8+9+⋯⋯+ 74+ 75=2、2+6+10+ 14+⋯⋯+ 122+126=3、已知数列 2、5、8、 11、14⋯⋯, 47是其中的第几?4、有一个数列: 6、10、 14、18、22⋯⋯,个数列前 100的和是多少?5、在等差数列 1、 5、 9、 13、17⋯⋯ 401中, 401是第几?第 50是多少?6、1+2+3+4+⋯⋯+ 2007+2008=7、( 2+ 4+ 6+⋯⋯+ 2000)-( 1+3+5+⋯⋯+ 1999)=8、1+2-3+4+5-6+ 7+8-9+⋯⋯+ 58+59-60=9、有从小到大排列的一列数,共有100,末 2003,公差 3,求个数列的和。
10、求 1—— 99个自然数的所有数字的和。
2:1、在等差数列 1, 5, 9, 13,17,⋯, 401中 401是第几?2、100个小朋友排成一排数,每后一个同学的数都比前一个同学的数多3,小明站在第一个位置,小宏站在最后一个位置。
已知小宏的数是300,小明的数是几?3、有一堆粗均匀的木,堆成梯形,最上面的一有 5 根木,每向下一增加一根,一共堆了 28 。
最下面一有多少根?4、1+2+3+4+5+6+⋯+97+98+99+100=?5、求 100 以内所有被 5 除余 0 的自然数的和。
6、小王和小胡两个人跑,限定10 秒,跑的距离就。
小王第一秒跑1 米,以后每秒都比以前一秒多跑0.1 米,小胡自始至每秒跑 1.5 米,能取?3:1.数列 4,7,10,⋯⋯ 295, 298 中 298 是第几?2.牛每小都比前一小多爬 0.1 米,第 10 小牛爬了 1.9 米,第一小牛爬多少米?3.求自然数中所有三位数的和。
4.求所有除以4余1的两位数的和。
5.有12个数成等差数列,第六与第七的和是12,求 12 个数的和。
728.一个物体从高空落下,已知第一秒下落距离是 4.9 米,以后每秒落下的距离是都比前一秒多 9.8 米 50 秒后物体落地。
(完整word版)等差数列基础题训练
基础题训练11. 等差数列{}n a 中,已知,2,101-==d a 则=6a ——。
2. 等差数列{}n a 中,已知=++==76593,9,1a a a a a 则_______。
3. 等差数列{}n a 中,==-=982,6,6s a a 则_______.4. 等差数列{}n a 中,===n a a a 则,21,952_________. 5. 等差数列{}n a 中,_____,7,118452=-=-=+a a a a 则。
6. 在等差数列{}n a 中,33,39852741=++=++a a a a a a 则=++963a a a 则____7.在等差数列{}n a 中,若34567a +a +a +a +a =450,则28a +a =_______。
8.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = 。
9.等差数列{}n a 中,n S =40,1a =13,d = -2 时,n =______________. 10.已知等差数列{}n a 的前n 项和为__,,80,35,1107===a s s s n 则d=____. 11。
已知等差数列{}n a 的前m 项和为30, 前2m 项和为100, 则前3m 项和为____. 12.在等差数列{}n a 中,3,15654321=++=++a a a a a a =12s 则____ 13. 等差数列{}n a 中,._____,10,10011010010===a a a 那么若 14.等差数列{}n a 中, 1a 〈0, 最小,若n s s s ,4525=则n=______15.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s . 16.等差数列{}n a 的前n 项和记为n S ,已知102020,410a S ==,(1)求数列{}n a 的通项公式; (2)若S n =135,求以n .基础题训练21。
等差数列基础题训练
等差数列基础题训练基础题训练11.等差数列a n中,已知a i 10,d 2,则――.2.等差数列a n中,已知a3 1,a9 9,则a§ a6 a? ______________ .3.等差数列a n中,a2 6,兎6,则S9 _________ .4.等差数列a n中,a? 9,a5 21,则a n___________ .5.等差数列a n中,a2 a s 11, a4 7,则a s _________ .6.在等差数列a n中a1 a4 a739,则a2 a5 a833,则a3 a6 a9 ______7.________________________________________________ 在等差数列a n中,若a3+a4+a s+a6+a7=450 ,则 a2+a s= ______________ .8.已知等差数列an中,a2与a6的等差中项为5 , a3与a?的等差中项为7 , 则a n _________________________ . ___________9.等差数列a n 中,S n =40,a1 =13,d= -2 时,n= ________________ .10 . 已知等差数列a n 的前n 项和为S n ,S7 35,Se 80,则a〔__, d= ____ .11.已知等差数列a n的前m项和为30,前2m项和为100,则前3m项和为 ___ .12.在等差数列a n中a i a2 a315,84 a5a6 3,则卷______13.等差数列 a n 中,若8io 100,8100 10,那么an o ________________ .14.等差数列a n中,81 <0, S25 S45,若S n最小,则n= _______15.已知等差数列{a n}中,a3a716,a4 a6 0,求{a.}前n项和s n .16.等差数列{a n}的前n项和记为S n,已知a10 20$0 410 ,(1)求数列{a n}的通项公式;(2)若S = 135,求以n .基础题训练21.{a n}为等差数列,且a7-2a4=- 1, a3= 0,则公差d= ( )1A.—2B.—2 D. 22.在等差数列{a n}中,已知a3 2,贝卩该数列的前5项之和为( )(A) 10 ( B) 16 (C 20 (D) 323.设等差数列{a n}的前n项和为S n,若S3 9 , S6 36,则a? a* a93(A ) 63 (B ) 45(C 36(D ) 27那么a g a 6 a ?川a ?9的值是 ((A )- 78 (B )— 82 (Q- 148 (D )— 1825.设S n 是等差数列{a n }的前n 项和.已知a 2 = 3, a 6 = 11,则S ?等于 ( ) A. 13B. 35C. 49D. 636. 设数列{a n }的前n 项和S n n 2,则a 8的值为()(A ) 15(B) 16 (C) 49 (D ) 647.设等差数列a n 的前n 项和为S n ,若a 111, a 4比6,则当S n 取最小值时,n 等于( )A . 6B . 7C. 8 D . 98. 等差数列{a .}中,a 1 3a 8亦120,则3a ? a^的值为______________9. 等差数列{a n }中,a 1 - , a 2 a § 4 , a . 3,则 n4.已知等差数列{%}的公差d2, aia4 a 7|卄 a9750 ,解答题3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础知识点和方法归纳
1. 等差数列的定义与性质
定义: a n 1 a n d ( d 为常数), a n a 1
n 1 d
等差中项: x , A , y 成等差数列
2A
x y
a 1 a n n
n
n 1 前 n 项和
S
n
na 1
d
2
2
性质: a n 是等差数列
(1)若 m n p q ,则 a m
a n a p a q ;
2. 等比数列的定义与性质
定义:
a n
1
q
( q 为常数, q
0 ),
a
n a
q
n 1
a n
.
1
等 比 中 项 : x 、 G 、 y 成 等 比 数 列
G
2
xy , 或
G
xy .
na 1 ( q 1) 前 项和:
S n a 1
q
n
n 1
( q 1) (要注意!)
1 q
性质: a n 是等比数列
(1)若 m n
p q ,则 a · a
a · a
m
n
p
q
等差数列·基础练习题
一、填空
1.等差数列 8,5, 2,⋯的第 20___________.
2.在等差数列中已知 a1=12, a6=27, d=___________
3. 在等差数列中已知d 1
,a7=8,a1=_______________ 3
4.等差数列 -10,-6,-2, 2,⋯前 ___的和是 54
5.数列 a n的前n和S n=3n n2,a n=___________
二、
9. 在等差数列a n中a3a1140 , a4a5a6a7a8a9a10的()
A.84
B.72
C.60.
D.48
10. 在等差数列a n中,前 15 的和S1590 , a8()
A.6
B.3
C.12
D.4
12. 在等差数列a n中,若a3a4a5a6a7450 , a2a8的等于()
A.45
B.75
C.180
D.300
14. 数列 3, 7,13, 21,31,⋯的通公式是()
A. C.a n4n1
B. a n n3n2n 2 a n n2n1 D.不存在
16.设等差数列a n的前n 项和公式是S n5n23n ,求它的前3项,并求它的通项公式
17.如果等差数列a n的前4项的和是2,前 9 项的和是 -6,求其前 n 项和的公式。
数列练习题
1、在等差数列中,
( 1)若,则=__
2 ),则=_
( 3)若,则=______(4)若,则=________
( 5)若,则=________。
( 6)若,则=________。
( 7)若是方程的解,则=________。
( 8)若公差,且是关于的方程的两个根,则= ________。
( 9)若,则=________。
2、在等比数列中,
( 1)若,则=________2)若,则
=________。
( 3)若,则=__4)若,则
=
( 5)若=81,则=________。
( 6)若是方程的解,则=________。
( 7)设是由正数组成的等比数列,公比,且
,那么=________。
等比数列基础习题
一.选择题
1.已知 {a n} 是等比数列, a2=2,a5= ,则公比 q=()
A.
B .﹣
2
.
D
.
C 2
2.如果﹣ 1,a,b,c,﹣ 9 成等比数列,那么()
A.b=3,ac=9B.b=﹣3,ac=9 C.b=3,ac=﹣9 D.b=﹣3,ac=
﹣9
3.已知数列 1,a1,a2,4 成等差数列, 1,b1,b2,b3,4 成等比数列,则的值是()
A.
B .
﹣
.或﹣
D
.
C
4.等比数列 {a n} 中, a6+a2=34,a6﹣a2=30,那么 a4等于()
A .
8B
.
16
.±8
D
.±16
C
5.若等比数列a n满足a n a n+1=16n,则公比为()A.2B.4C.8D.16
6.等比数列n 中,1,5﹣2,a5>a2,则 a n(){a }|a |=1 a =8a=
A.(﹣2)n﹣1B.﹣(﹣ 2n﹣1) C.(﹣2)n D.﹣(﹣ 2)n
7.已知等比数列 {a n} 中,a6﹣2a3=2,a5﹣2a2=1,则等比数列 {a n} 的公比是()
A.﹣1B.2C.3D.4
8.正项等比数列{a n} 中, a2a5=10,则lga3+lga4=()
A.﹣1B.1C.2D.0
9.在等比数列 {b n} 中, b39=9,则 b6的值为()
?b
A.3B.±3C.﹣3D.9
.在等比数列n中,,则( 1 4 9)=()10{a }tan a a a
A.
B ..
D
.
C
11.若等比数列 {a n} 满足 a4+a8=﹣3,则 a6(a2+2a6+a10)=()A.9B.6C.3D.﹣3
.设等比数列n的前
n 项和为n,若=3,则=()
12{a }S
A.
B ..
D
.
1
C
.在等比数列n中, n>0,a2﹣ 1,a4﹣3,则 a4 5 ()13{a }a=1a=9a+a =
A.16B.27C.36D.81
14.在等比数列 {a n} 中 a2=3,则 a1a2a3=()
A.81B.27C.22D.9
15.等比数列
{a n}
中
a4
,a 是方程 x2的两根,则()
8+3x+2=0a5a6a7=
A.8B.±2C.﹣2D.2
16.在等比数列 {a n} 中,若 a3a4a5a6a7=243,的()A.9B.6C.3D.2 17.在 3 和 9 之插入两个正数,使前三个数成等比数列,后三个数成等差数列,两个数的和是()
A.
B ..
D
.
C
.已知等比数列,2,9,⋯,等比数列的公比()
18 1 a
A.3 或 3B.3或.
D .
C 3
19.在等比数列 {a n} 中,前 7 和 S7=16,又 a12+a22+⋯+a72=128,a1a2+a3a4+a5a6+a7=()
A.8B..
D .
C 6
20.等比数列 {a n} 的前 n 和 S n,a1=1,若 4a1,2a2,a3成等差数列, S4=()
A.7B.8C.16D.15二.填空
1、在等比数列{a n}中,
(2)若 S3=7a3, q=______;
(3)若 a1+a2+a3= -3 ,a1a2a3=8, S4=____.
1.在等比数列{ a n}中,
(1)若 a7·a12=5,则 a8·a9·a10·a11=____;
(2)若 a1+a2=324,a3+a4=36,则 a5+a6=______;
(3)若 q 为公比, a k=m,则 a k+p=______;
2.一个数列的前 n 项和 S n=8n -3 ,则它的通项公式 a n=____.
8、若等比数列的首项为 4,公比为 2,则其第 3 项和第 5 项的等比中项是 ______.。