圆度测量

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆度测量方法: 回转轴法、三点法、两点法、投影法和坐标法等方法。

(1)回转轴法: 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式(图1)。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。

(2)三点法:常将被测工件置于V形块中进行测量(图2)。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。

(3)两点法:常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。

(4)投影法:常在投影仪上测量,常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆(图3)比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。

(5)坐标法:一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。

圆度误差评定就是将双绞线导线横截面的实际轮廓与理想圆比较的过程。

圆度误差评定方法:

①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。

②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测圆轮廓的两同心圆的半径差即为圆度误差。

③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆轮廓的两同心圆半径差即为圆度误差。

④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测圆轮廓两同心圆的半径差即为圆度误差.

前三种方法都需要画出误差曲线,然后用同心圆样板试凑的方法来实现,而最小二乘圆法是用m等分点组成的平面曲线来代替连续的轮廓曲线,所以最小二乘圆法是最适合模拟采用的数学方法。当实际轮廓线上各点至某一圆的距离的平方和最小时,该圆即为最小二乘圆。

最常用的的就是最小二乘圆法

《基于图像处理的烟嘴棒圆度检测研究》圆度误差标定

《最小二乘圆法评定圆度误差的优化算法》

圆的最小二乘法拟合法:

圆度测量数据大多采用计算机处理,采用的算法有单纯形法、罚函数法、序列加罚因子法(SWIFT)和混沌算法等。

拟合方法包括几何距离法、代数距离法、非线性最小二乘法和质心法等。研究结果表明,这些方法大多需要满足小偏差和小误差假设,否则,较大噪声或者较多离群点,或者少数但较显著的离群点,都对测量精度影响很大;当样本点较少或分布集中时,现有方法的估计精度不高。

相对代数距离法建立最小二乘圆圆心:

当用相对代数距离法建立模型时,可以得到圆心坐标和半径,但是当实际测量点多于7个时,由于线性方程组的求解相当繁琐,甚至求解过程出现病态性,为此需要讨论新算法。

(1)序列加罚因子法(SWIFT)

罚函数法一般采用一个固定大的正数作为罚因子。因为在搜索过程中罚因子不发生改变,从而影响了算法的收敛速度,并且对于不等式约束,需要将其转化为等式约束。鉴于这种情况,1975年SheelaBV及Ramamoorthy P把单纯形法与罚函数法相结合,每步迭代用单纯形法求无约束极值,而罚项上的罚因子由前一次迭代结果给出,这就加快了计算速度。

(2)混沌算法

混沌优化的基本思想是将混沌变量线性映射到优化变量的取值区间,然后利用混沌变量进行寻优。混沌优化方法直接采用混沌变量进行搜索,搜索过程按混沌运动自身的规律进行,无需像随机优化方法那样通过按某种概率接受/劣化0解的方式跳出局部最优解,因此混沌优化方法更容易跳出局部最优解。

(3)混沌优化算法的改进算法

将SWIFT法和混沌算法结合起来可以充分发挥各自的优点,并将约束优化问题转为非约束优化问题求解,实现全局最优,且使算法更简单、实用、有效,性能良好。

选题背景与意义:

(1)选题背景

随着计算机网络的飞速发展和普及,需要人们在不同的应用领域中组建网络。网线作为网络连接线,是网络设备之间传递信息的主要介质。因此,各类高速网线就应运而生了,包括三类、四类、五类、超五类、六类和七类网线等类型。在原则上网线表示的数字越大,则相对应的版本越新、技术手段越先进、带宽也越宽,当然数据传输速度也越快。不同种类的网线,数据传输速度相差很大,有的甚至可以达到上千倍。导线质量的好坏直接影响着线路的安全运行,电缆的不圆度会改变电缆的截面积,所以也会改变电缆保护层的厚底,所以应该会改变电缆的电阻和击穿电压。在导线进行扭绞之前,对导线进行圆度的检测可以减少网线废品率的增加。对于导线圆度,缺少一个测量系统来提供导线详细的圆度信息。通过本文设计的圆度测量系统,可以得出导线的圆度是否处在网线成缆机所设定的圆度范围内,以此来初步判断导线是否合格。

虽然很多领域采用了基于图像处理的非接触测量技术,但是在线缆圆度测量方面起步还比较晚。故而构造良好的硬件平台和软件开发工具、选取适当的圆度检测算法以及圆度误差评价理论知识结合运用,将是未来网线图像检测的主要研究方向之一。

图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU工作,以提高计算机的图形化处理能力。在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI技术的专用集成电路芯片(ASIC)和数字信号处理器(DSP),近年来,随着EDA技术的发展以及FPGA技术的提高,越来越多的厂商和科研机构将FPGA作为图像处理技术实现的主要平台,以提高图像处理系统的性能。FPGA是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

本课题是以FPGA作为开发设计载体,以EDA技术为开发设计平台,以图像处理技术在FPGA中的设计方法为研究对象,以提高图像处理的速度和FPGA系统资源的合理利用为目标,以期探讨基于FPGA的高速数字图像处理方法。

相关文档
最新文档