对数函数与反三角函数
数学函数图像大全
![数学函数图像大全](https://img.taocdn.com/s3/m/ab31bb25f7ec4afe05a1df5b.png)
基本初等函数幂函数(1)幂函数(2)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数 y =|x| 符号函数y = sgnx 取整函数 y=[x]极限的几何解释 (1)极限的几何解释 (2)极限的几何解释 (3)极限的性质 (1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质 (3) (不等式性质)极限的性质 (4) (局部有界性)极限的性质 (5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)e的值(2)等价无穷小(x->0)sinx等价于xarcsinx等价于x1-cosx等价于x^2/2数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1)夹逼定理(2)数列的夹逼性 (1)数列的夹逼性 (2)pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)$sin(pi/2-a)=cos(a)$$cos(pi/2-a)=sin(a)$$sin(pi/2+a)=cos(a)$$cos(pi/2+a)=-sin(a)$$sin(pi-a)=sin(a)$$cos(pi-a)=-cos(a)$$sin(pi+a)=-sin(a)$$cos(pi+a)=-cos(a)$2.两角和与差的三角函数$sin(a+b)=sin(a)cos(b)+cos(α)sin(b)$$cos(a+b)=cos(a)cos(b)-sin(a)sin(b)$$sin(a-b)=sin(a)cos(b)-cos(a)sin(b)$$cos(a-b)=cos(a)cos(b)+sin(a)sin(b)$$tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))$$tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))$3.和差化积公式$sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)$$sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)$$cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)$$cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)$4.积化和差公式 (上面公式反过来就得到了)$sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]$$cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]$$sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]$5.二倍角公式$sin(2a)=2sin(a)cos(a)$$cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)$ 6.半角公式$sin^2(a/2)=(1-cos(a))/2$$cos^2(a/2)=(1+cos(a))/2$$tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))$7.万能公式$sin(a)= (2tan(a/2))/(1+tan^2(a/2))$$cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))$$tan(a)= (2tan(a/2))/(1-tan^2(a/2))$8.其它公式(推导出来的 )$a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)$ 其中 $tan(c)=b/a$ $a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)$ 其中 $tan(c)=a/b$ $1+sin(a)=(sin(a/2)+cos(a/2))^2$$1-sin(a)=(sin(a/2)-cos(a/2))^2$其他非重点$csc(a)=1/sin(a)$$sec(a)=1/cos(a)$1 三角函数的定义1.1 三角形中的定义图1 在直角三角形中定义三角函数的示意图 在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数1.2 直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: •正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式、半角公式 3.1 倍角公式3.2 半角公式3.3 万能公式4 积化和差、和差化积 4.1 积化和差公式4.2 和差化积公式。
六大基本初等函数图像及其性质
![六大基本初等函数图像及其性质](https://img.taocdn.com/s3/m/c1d8ad39d5bbfd0a7856731d.png)
,
的函数图像关于y轴对称。
时,a值越大,
的图像越靠近y轴;
时,a值越大,
的图像越远离y轴。
4.指数的运算法那么〔公式〕;
;
(1)
(2)
(3)
(4)
b.根式的性质;
(1) ; (2)当n为奇数时,
当n为偶数时,
c.分数指数幂;
(1)
(2)
四、对数函数 ( 是常数且 ),定义域 [无界]
六大根本初等函数图像及其性质
一、常值函数〔也称常数函数〕y =C〔其中C为常数〕;
常数函数〔 〕
y
y
O
O
平行于x轴的直线
y轴本身
定义域R
定义域R
二、 幂函数 , 是自变量, 是常数;
:
2.幂函数的性质;
性质
函数
定义域
R
R
R
[0,+∞)
{x|x≠0}
值域
R
[0,+∞)
R
[0,+∞)
{y|y≠0}
奇偶性
3〕当α为正有理数 时,n为偶数时函数的定义域为〔0, +∞〕,n为奇数时函数的定义域为〔-∞,+∞〕,函数的图形均经过原点和〔1 ,1〕;
4〕如果m>n图形于x轴相切,如果m<n,图形于y轴相切,且m为偶数时,还跟y轴对称;m,n均为奇数时,跟原点对称;
5〕当α为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数。
1.对数的概念:如果a(a>0,a≠1)的b次幂等于N,就是 ,那么数b叫做以a为底N的对数,记作 ,其中a叫做对数的底数,N叫做真数,式子 叫做对数式。
基本初等函数知识总结
![基本初等函数知识总结](https://img.taocdn.com/s3/m/43481940551810a6f52486f5.png)
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
高等数学求导公式
![高等数学求导公式](https://img.taocdn.com/s3/m/7382af6b492fb4daa58da0116c175f0e7dd11971.png)
高等数学求导公式高等数学中的求导公式主要包括常数函数的求导、幂函数的求导、指数函数的求导、对数函数的求导、三角函数的求导、反三角函数的求导、双曲函数的求导、双曲函数的求导、复合函数的求导、隐函数的求导以及参数方程的求导等。
1.常数函数的求导:若f(x)=C,其中C是常数,则f'(x)=0。
2.幂函数的求导:若f(x)=x^n,其中n是任意实数,则f'(x)=n*x^(n-1)。
3.指数函数的求导:若 f(x) = a^x ,其中 a 是正实数(a ≠ 1),则 f'(x) = a^x * ln(a)。
4.对数函数的求导:若 f(x) = loga(x) ,其中 a 是正实数(a ≠ 1),则 f'(x) =1/(x*ln(a))。
5.三角函数的求导:若 f(x) = sin(x) ,则 f'(x) = cos(x)。
若 f(x) = cos(x) ,则 f'(x) = -sin(x)。
若 f(x) = tan(x) ,则 f'(x) = sec^2(x)。
6.反三角函数的求导:若 f(x) = arcsin(x) ,则 f'(x) = 1/sqrt(1-x^2)。
若 f(x) = arccos(x) ,则 f'(x) = -1/sqrt(1-x^2)。
若 f(x) = arctan(x) ,则 f'(x) = 1/(1+x^2)。
7.双曲函数的求导:若 f(x) = sinh(x) ,则 f'(x) = cosh(x)。
若 f(x) = cosh(x) ,则 f'(x) = sinh(x)。
若 f(x) = tanh(x) ,则 f'(x) = sech^2(x)。
8.反双曲函数的求导:若 f(x) = arcsinh(x) ,则 f'(x) = 1/sqrt(x^2+1)。
若 f(x) = arccosh(x) ,则 f'(x) = 1/sqrt(x^2-1) (x > 1)。
分部积分法顺序口诀
![分部积分法顺序口诀](https://img.taocdn.com/s3/m/c68fcc55f90f76c660371a05.png)
分部积分法顺序口诀对于分部积分法,很多小伙伴在学习时感到很烦恼,老是记不住,小编整理了口诀,希望能帮助到你。
一、口诀“反对不要碰,三指动一动”(这是对两个函数相乘里面含有幂函数而言),反——反三角函数对——对数函数三——三角函数指——指数函数(幂函数)。
将分部积分的顺序整理为口诀:“反对幂指三”。
(分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
)反>对>幂>三>指就是分部积分法的要领当出现两种函数相乘时指数函数必然放到( )中然后再用分部积分法拆开算而反三角函数不需要动再具体点就是:反*对->反(对)反*幂->反(幂)对*幂->对(幂)二、相关知识(一)不定积分的公式1、∫a dx = ax + C,a和C都是常数2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且a ≠-13、∫1/x dx = ln|x| + C4、∫a^x dx = (1/lna)a^x + C,其中a > 0 且a ≠15、∫e^x dx = e^x + C6、∫cosx dx = sinx + C7、∫sinx dx = - cosx + C8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C(二)求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
高等数学初等函数
![高等数学初等函数](https://img.taocdn.com/s3/m/1d6522b865ce05087632132e.png)
正切函数 y tan x
y tan x
余切函数 y cot x
y cot x
正割函数 y sec x
y sec x
余割函数 y csc x
y csc x
5、反三角函数
反正弦函数 y arcsin x
y arcsin x
反余弦函数 y arccos x
一般来说,分段函数不是初等函数,但下例所示 的分段函数是初等函数。
例 1 y=∣x∣= x, x 0 是由 y= u 和 u= x 2 复合而成的复合函数,
x, x 0
那就是说,原函数与 x2 是同一个函数,因此它也是初等函数。
小结
函数的分类:
有 有理整函数(多项式函数) 理
代 数
函 数 有理分函数(分式函数)
一般地,若函数 y=f(u)的定义域为 D1,u=φ (x)的定义域
为 D2,值域 w2={u│u= φ (x),x∈D2}且 W2∩D1≠φ这样得到的
以 x 为自变量,y 为因变量的函数,称为由函数y=f(u)和 u= φ(x) 复合而成的复合函数,记作 y=f[φ (x)],其中 u 称为中 间变量。
初 等
函 数
函
无理函数
函数
数
超越函数
非初等函数(分段函数,有无穷多项等函数)
例:
设f
(x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
大一高数之函数
![大一高数之函数](https://img.taocdn.com/s3/m/0cd85a7527284b73f24250fc.png)
……
……
t 年后人口为p=9.6259×(1+12‰) t
即
p 9.6259 1.012t
到2005年底,即27年后, 我国人口为 p 9.6259 1.012 .
27
两边取常用对数, lg p lg 9.6259 27 lg1.012 4.9835 27 0.0051 5.1212, 查反对数表, p 13.22(亿).
即根据1978年的数据,可推算出2005年底 我国人口为13.22亿.
人口模型 : 设某地某年人口为p0,人口自然 增长率为r,那么t 年后的人口p为 p p0 (1 r ) .
t
马尔萨斯(malthus,英,1776 — 1834) 根据上述模型提出了他的人口理论,这一模 型只适用于生物种群的生存环境较为优雅宽 松的情况.当生物种群数量增长到一定值时, 恶化的生态环境将抑制种群数量的增长,进 而出现负增长,此时马尔萨斯人口模型就不 适用了.
A1 A(1 r )t ;
r 若每期结算m次,则每次利率为 , m t期内共结算mt次,t期后的本利和为
r mt Am A(1 ) . m 如果,即按照每个瞬间“即存即算” 来计算本利和,则归结为求极限
r mt lim A(1 ) m m
这个求极限问题将在第二章的应用中 介绍.
y cos x
正切函数
y tan x
π π 定义域 : ( kπ , kπ ), k Z; 值域( , ), 2 2 π π 以π 为周期, 在每个开区间( kπ , kπ )上 2 2 递增.
余切函数
y cot x
定义域 : kπ ,( k 1)π ), k Z;值域( , ), ( 以π 为周期, 在每个开区间( π ,( k 1)π ) k 上 递减.
高数一公式-自己的笔记
![高数一公式-自己的笔记](https://img.taocdn.com/s3/m/5b6c661cb7360b4c2e3f6499.png)
第一章 极限连续五种基本初等函数:(缺少定义域) 1.幂函数为实数)μμ(x y = 2.指数函数)1,0(≠>=a a a y x 3.对数函数 )1,0(log ≠>=a a x y a4.三角函数x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ====== 5.反三角函数x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====一、函数的极限:f(x)在x 0处极限存在的充分必要条件是f(x)在点x 0处的左极限与右极限都存在且相等,此时三者值相同。
是否有极限与在x 0处有无定义无关。
两个重要极限公式:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=+=+=→∞→→e x e x x x x x x x x )11(lim ,)1(lim 1sin lim 100 ⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--→∞→∞nm n m n m ba b x b x b a x a x a x Q x P m m m n n n x x ,,0,......lim ,)()(lim 00110110可利用公式对于二、无穷小量:零可以作为无穷小量的唯一的数。
无穷小之商不一定无穷小。
无穷小量比较:设0lim ,0lim 0==→→βαx x x x。
不能在加减运算中使用除中使用注意:只能在乘存在,则且时性质:当时,当。
记为为等价无穷小量与时为同阶无穷小量。
与时则称在若为低阶无穷小量。
较时则称在若记为为高阶无穷小量较时则称在若,! ''limlim ''lim ,'~,'~~1,2~cos 1,~)1ln(,~tan ,~sin 0~,1A ,,0A lim ,,lim )(,,,0lim00000002000βαβαβαββααβαβαβαβαβαβαβοαβαβαx x x x x x xx x x x x x x x xe x x x x x x x x x x x x x x x →→→→→→=→--+→=→≠=→∞==→=三、函数连续的三要素1〉f(x)在x 0处有定义;2〉0x x →时f(x)有极限;3〉极限值等于该点的函数值。
反函数基本公式大全
![反函数基本公式大全](https://img.taocdn.com/s3/m/484c55ceed3a87c24028915f804d2b160b4e86dc.png)
反函数基本公式大全反函数是指对于一个函数f(x),如果存在另一个函数g(x),使得f(g(x)) = x,且g(f(x)) = x成立,那么g(x)就是f(x)的反函数。
在数学中,反函数是一个非常重要的概念,它在解方程、求导、积分等数学问题中都有着重要的应用。
因此,了解反函数的基本公式是十分必要的。
1. 一次函数的反函数。
对于一次函数y = kx + b,它的反函数可以通过以下公式来求解:x = ky + b。
y = (x b) / k。
其中k为一次函数的斜率,b为截距。
通过这个公式,我们可以很容易地求出一次函数的反函数。
2. 二次函数的反函数。
对于二次函数y = ax^2 + bx + c,它的反函数的求解就稍微复杂一些。
我们可以通过以下步骤来求解二次函数的反函数:首先,将y = ax^2 + bx + c中的y替换为x,然后解出关于x的二次方程;接着,将得到的解中的x和y互换位置,得到的表达式就是二次函数的反函数。
3. 对数函数的反函数。
对数函数y = loga(x)的反函数是指数函数y = a^x。
其中,a为对数函数的底数。
这两个函数是互为反函数的关系,它们的图像关于y=x对称。
4. 指数函数的反函数。
指数函数y = a^x的反函数是对数函数y = loga(x)。
同样地,这两个函数也是互为反函数的关系,它们的图像关于y=x对称。
5. 三角函数的反函数。
对于三角函数y = sin(x)、y = cos(x)、y = tan(x)等,它们的反函数分别是反正弦函数y = arcsin(x)、反余弦函数y = arccos(x)、反正切函数y = arctan(x)等。
这些反函数在三角函数的求解中具有重要的作用。
6. 复合函数的反函数。
对于复合函数f(g(x)),它的反函数可以通过以下公式来求解:g(f(x)) = x。
f(g(x)) = x。
通过这些公式,我们可以求解复合函数的反函数,从而在数学问题中得到更加简洁的表达式。
六大基本初等函数图像及其性质
![六大基本初等函数图像及其性质](https://img.taocdn.com/s3/m/d04d5aba970590c69ec3d5bbfd0a79563c1ed439.png)
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。
且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。
函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。
三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。
基本初等函数初等函数
![基本初等函数初等函数](https://img.taocdn.com/s3/m/ea929d5fdcccda38376baf1ffc4ffe473368fda0.png)
基本初等函数初等函数初等函数是指可以用基本初等函数表示和运算的函数。
基本初等函数是指常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
常数函数是指函数的值恒为一些常数的函数,例如f(x)=3幂函数是以x为底数的幂指数函数,可以表示为f(x)=x^n,其中n是一个常数。
指数函数是指以指数形式表示的函数,例如f(x)=a^x,其中a是一个常数。
对数函数是指以对数形式表示的函数,例如 f(x) = log_a(x),其中a 是一个常数。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
它们都是周期函数,周期为2π。
反三角函数是三角函数的反函数,例如正弦函数的反函数是反正弦函数(arcsin),余弦函数的反函数是反余弦函数(arccos),正切函数的反函数是反正切函数(arctan)。
例如,用加法和乘法运算可以生成多项式函数,多项式函数是指以多项式形式表示的函数,例如f(x)=3x^2+5x+2用加法、乘法和除法运算可以生成有理函数,有理函数是指以多项式分式形式表示的函数,例如f(x)=(3x^2+5x+2)/(2x+1)。
用加法、乘法、除法和根号运算可以生成代数函数,代数函数是指通过代数运算得到的函数,例如f(x)=√(3x^2+5x+2)。
例如,两个初等函数的和、差、积和商仍然是初等函数。
两个初等函数的复合函数也是初等函数。
例如,f(x) = sin(x^2) 是正弦函数和幂函数的复合函数。
需要注意的是,初等函数是一个相对的概念。
一些函数在特定的领域内可以表示为初等函数,但在其他领域内则可能无法表示为初等函数。
例如,f(x)=e^x在实数域上是一个指数函数,但在复数域上则无法用基本初等函数表示。
初等函数在数学和科学领域中有着广泛的应用。
它们可以描述和研究自然界中的各种现象和规律,为科学家和工程师提供了强大的工具。
此外,初等函数还在数学分析、微积分、概率论、统计学等许多数学学科中发挥着重要的作用。
几种特殊类型的函数积分
![几种特殊类型的函数积分](https://img.taocdn.com/s3/m/e97164e4dc3383c4bb4cf7ec4afe04a1b071b00f.png)
反三角函数积分公式
∫sinxdx=−cosx+Cint sin x , dx = -cos x + C∫sinxdx=−cosx+C
∫cosxdx=sinx+Cint cos x , dx = sin x + C∫cosxdx=sinx+C
∫tanxdx=ln|secx|+Cint tan x , dx = ln |sec x| + C∫tanxdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式
复变函数第二章2-3
![复变函数第二章2-3](https://img.taocdn.com/s3/m/c8bec5220066f5335a812176.png)
例6 求下列各式的值:
(1)Ln( 2 3i ); ( 2)Ln( 3 3i ); ( 3)Ln( 3).
解
(1)Ln ( 2 3i )
ln 2 3i iArg(2 3i )
1 3 ln 13 i arctan 2k . 2 2
例1 设 z x iy , 求(1) e
i 2 z
; ( 2) e ; ( 3) Re(e );
z2
1 z
解
因为 e z e x iy e x (cos y i sin y )
所以其模 e z e x , 实部 Re(e z ) e x cos y.
5
(1) e
i 2 z
13
例5
解方程 e z 1 3i 0.
解
因为 e z 1 3i ,
所以 z Ln(1 3i )
ln 1 3i i 2k 3 ln 2 i 2k 3
( k 0, 1, 2,)
14
d ln z 1 1 w . dz de z dw
[证毕]
18
三、乘幂 a 与幂函数
1. 乘幂的定义
b
设 a 为不等于零的一个复数 , b 为任意一个 复数, 乘幂 a b 定义为 e bLna ,
注意:
由于 Lna ln a i (arga 2k) 是多值的, 因而 a 也是多值的.
如果 a z 为一复变数, 就得到一般的幂函数 w zb;
1 当 b n 与 时, 就分别得到通常的幂函 数 w zn n 及 z w n 的反函数 w z n z .
1 n
三角函数公式、图像大全
![三角函数公式、图像大全](https://img.taocdn.com/s3/m/ec06e557f12d2af90342e657.png)
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
三角函数与指数函数、对数函数、反三角函数、指数对数函数、双曲函数、多项式函数、有理函数、无理函数、指
![三角函数与指数函数、对数函数、反三角函数、指数对数函数、双曲函数、多项式函数、有理函数、无理函数、指](https://img.taocdn.com/s3/m/69f1ad51974bcf84b9d528ea81c758f5f71f2954.png)
电子工程中的信号处理与传输
化工工程中的反应过程控制
经济中的复合函数应用
分析复合函数在经济学中的重要性和意义
描述复合函数在经济领域中的应用场景
举例说明复合函数在金融、投资等领域中的作用
探讨复合函数在未来经济学研究中的发展方向
THANK YOU
汇报人:XX
无理函数的复合函数
无理函数的复合函数定义
无理函数的复合函数性质
无理函数的复合函数图像
无理函数的复合函数应用
无穷级数的复合函数
PART 04
无穷级数的定义与性质
定义:无穷级数是无穷多个数相加的结果,可以用来表示函数的变化趋势。
01
02
性质:无穷级数具有收敛性、连续性和可微性等性质,在数学和物理中有广泛的应用。
复合函数具有奇偶性
添加标题
复合函数具有周期性
添加标题
复合函数的导数
导数在研究函数中的应用
导数的几何意义
导数的求导法则
复合函数的导数定义
三角函数与指数函数、对数函数、反三角函数、指数对数函数、双曲函数、多项式函数、有理函数、无理函数的复合函数
PART 02
三角函数与指数函数、对数函数、反三角函数的复合函数
定义:由三角函数和指数对数函数、双曲函数复合而成的函数
图像:可以通过图像法进行绘制
应用:在物理学、工程学、经济学等领域有广泛应用
性质:具有周期性、单调性、奇偶性等性质
三角函数与多项式函数、有理函数的复合函数
图像:复合函数的图像可以通过描点法或作图软件绘制。
三角函数与无理函数的复合函数
定义:将三角函数与无理函数进行复合,形成新的复合函数
应用:在数学、物理等领域有广泛的应用
最全的高中幂-指数-对数-三角函数知识点总结
![最全的高中幂-指数-对数-三角函数知识点总结](https://img.taocdn.com/s3/m/a68b9d0127d3240c8547ef66.png)
最全的高中幂-指数-对数-三角函数知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.幂 函 数一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
注意:幂函数与指数函数有何不同?【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。
0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。
探究:整数m,n 的奇偶与幂函数nm x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?结果:形如nmx y =),,,(互质且n m Z n m ∈的幂函数的奇偶性(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 四、规律方法总结:1、幂函数)1,0(==ααx y 的图像:2、幂函数),,,,(互质q p Z q p p qx y ∈==αα的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.二.指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n。
三角函数及反三角函数在它们的定义域内是连续的(精)
![三角函数及反三角函数在它们的定义域内是连续的(精)](https://img.taocdn.com/s3/m/49b44bf4998fcc22bcd10db1.png)
讨论不同值,
(均在其定义域内连续 )
定理4.12
基本初等函数在定义域内是连续的.
定理4.13 一切初等函数在其定义区间内都 是连续的. 定义区间是指包含在定义域内的区间.
注意 1. 初等函数仅在其定义区间内连续, 在 其定义域内不一定连续;
例如,
y cos x 1,
D : x 0,2,4,
例3 设 证明
x x0
lim u( x ) a 0,
x x0
x x0
lim v ( x ) b
lim u( x )v ( x ) a b .
证
,
补充定义 u( x0 ) a , v ( x0 ) b,
则u(x),v(x)在点x0连续,
从而 v ( x ) ln u( x ) 在 x0 连续, 所以 u( x )v ( x ) e v ( x ) ln u( x ) 在 x0 连续。
( x0 定义区间 )
例1 解
原式 sin e 1 1 sin e 1.
1 x2 1 . 例2 求 lim x 0 x
( 1 x 2 1)( 1 x 2 1) 解 原式 lim x 0 x( 1 x 2 1) x 0 0. lim 2 x 0 1 x 1 2
这些孤立点的邻域内没有定义.
y x ( x 1) ,
2 3
D : x 0, 及x 1,
在0点的邻域内没有定义.
函数在区间 [1,)上连续.
注意2. 初等函数求极限的方法——代入法.
x x0
lim f e x 1.
x 1
x x0 x x0
即a 1时, a 在任意点连续.
对数函数转化
![对数函数转化](https://img.taocdn.com/s3/m/f3bbff110812a21614791711cc7931b764ce7b5f.png)
对数函数转化
对数函数是高中数学中的一个重要概念,它的转化可以帮助我们更好地理解和应用这个函数。
对数函数转化主要包括以下几种:
1. 对数函数的反函数:对数函数y=loga x的反函数是x=a^y,它可以将对数函数的输入和输出互换。
2. 对数函数的对数化简:对数函数y=loga x可以通过对数化简转化为其他形式,如指数函数、三角函数等。
3. 对数函数的指数化简:对数函数y=loga x的指数化简是x=a^y,它可以将对数函数转化为指数函数。
4. 对数函数的性质转化:对数函数的性质可以通过转化为其他
形式来更好地应用,如变形成指数函数、三角函数等。
对数函数转化是数学学习中的重要内容,它不仅能够帮助我们更好地理解和应用对数函数,还能够提高我们的数学思维和解题能力。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数与反三角函数
大家应该都知道,这两个函数是高中里的重要的反函数。
然而呢,这两个反函数又与一般的反函数不一样。
因为原函数是代数函数,一般的反函数是属于代数函数,而指数函数和三角函数都是超越函数,所以对数函数与反三角函数也是超越函数。
在学习的时候,不难发现,对数函数与反三角函数这两个函数很多类似点。
首先,这两个函数都是出于逆向研究而建立的。
一个是要研究全体实数和指数的关系,一个是要研究三角函数值与弧度的关系。
而且两个都引入了新的数学符号,都有一系列的恒等公式和反演式。
当然,它们也有许多不同点,因为值域和定义域的不同,反三角函数常常在化简时要非常小心。
而且反三角函数有周期性,一般都取一个周期来算。
对数函数则全体一一对应。
对于代数函数,我曾经推导过导数。
那么对数函数和反三角函数的导数又如何求呢?
首先,用一般的极限法来对对数函数x x f ln )(=求导:
x x x x
x x x x x f x x f x y x f x x x x ∆∆+=∆-∆+=∆-∆+=∆∆=→∆→∆→∆→∆)1ln()ln()ln()()()('0
0000000lim lim lim
lim
接下来的就感觉无从入手了,无法将x ∆消去。
用同样的方法对反三角函数)sin(arc )(x x f =求导:
x x x x x x x x x x x x x x x x x x x x x x x x f x x f x y x f x x x x x x ∆--∆+-∆+=∆-∆+∆+=∆-∆+=∆-∆+=∆-∆+=∆∆=→∆→∆→∆→∆→∆→∆)
1)(1)arcsin(()))(cos(arcsin ))(sin(arcsin ))(cos(arcsin ))(arcsin(arcsin(sin )))arcsin()(arcsin(arcsin(sin )arcsin()arcsin()()()('2002000
000000000000000lim lim
lim
lim
lim
lim
很显然,遇到了和对数函数差不多的情况。
对数函数与反三角函数的加减相当的麻烦,几乎如果不是凑好的数据,很难进行运算。
那么反三角函数和对数函数有没有什么另外的方法求导呢?
在前面求导过程中,反三角函数的反演公式的运用给了我启发。
既然x e x =)(ln ,那么令)ln()(,x x f e y x ==
则=)('x e f 1 (1为x 求导后的结果)
那么)('y f 又等于什么呢? 很明显,这是一个复合函数的求导,那么要用到链式法则
)()(')('x x e y f e f ⨯=的导数
而x e 的导数刚好也是x e
1)('-=∴=y y f y
e x
那么一般的对数函数一样可以这样求,不过略微复杂一些
1log )(',log )(-⨯==x e x f x x f a a
反三角函数是不是也可以这样求导呢?
既然x x =)(sin arcsin ,那么令)arcsin()(,sin x x f x y ==
则=)(sin 'x f 1 (1为x 求导后的结果)
链式法则(CHAIN RULE) 若H(X)=F(G(X)) 则H'(X)=F'(G(X))G'(X)
x y f x f cos )(')(sin '⨯=
2211
)('cos 1y y f x
y -=∴-=
一样的方法,所以对数和反三角函数很多时候是可以互相参照一下的。