风电机组变桨系统介绍
SL1500风电机组变桨系统 ppt课件
16
伺服电机
带位置反馈和电热调节器 相关参数:1.5MW 功率: 4.8kW 额定扭矩:23Nm 额定转速:2000rpm
ppt课件
17
制动器
当制动器供电时,叶片能够向两个方向运行; 当制动器断电时,叶片只能向顺桨的方向运动, 不能向工作位置运动。1.5MW变桨制动器都是单向 的,工作时,一直供电,双方向都能运动,只有 出现紧急情况才断电,限制一个方向运动。
变桨限ppt课位件撞块
24
当叶片变桨趋 于顺桨位置时,顺 桨接近撞块就会运 行到接近开关上方, 接近开关接受信号 后会传递给变桨系 统,提示叶片已经 处于顺桨位置。
ppt课变件 (顺)桨接近撞块
25
顺桨接近撞块和变桨限位撞块的基本维护
a.检查变桨接近开关的清洁度,以保证能够 正常接受信号。
b.检查易损件缓冲块,做到及时更换。 c.检查各撞块螺栓的紧固。
ppt课件
4
二、变桨系统工作示意图
变桨调节范围
风向
顺桨位置
极限工作位置
变桨驱动装置
ppt课件
变桨齿轮边缘
5
顺桨位置
停机
启动
变桨保护
满发
ppt课件
6
工作位置
1.5MW轮毂装置示意图
导流帽
轮毂
极限工作位置撞块
轮毂变 桨控制 柜
变桨限 位撞块
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
ppt课件
缓冲器 变桨接 近开关
ppt课件28Fra bibliotek1.5MW变桨调节范围
ppt课件
29
ppt课件
30
置撞块、接近开关、限位开关、缓冲器
ppt课件
变桨系统原理及维护方案
1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。
优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。
缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。
优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。
变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。
变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。
▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;通过变桨控制使机组保持额定输出功率不变,目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5° /s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7° /s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。
风力发电机液压变桨系统简介
风力发电机液压变桨系统简介全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。
液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。
本文将对液压变桨系统进行简要的介绍。
风机变桨调节的两种工况风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。
风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。
液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。
当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。
液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。
液压变桨系统液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。
液压变桨系统的结构变桨距伺服控制系统的原理图如图1所示。
变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。
图1 控制原理图液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。
图2 液压原理图结束语液压变桨系统与电动变桨系统相比,液压传动的单位体积小、重量轻、动态响应好、扭矩大并且无需变速机构,在失电时将蓄压器作为备用动力源对桨叶进行全顺桨作业而无需设计备用电源。
变桨系统的工作原理
变桨系统的工作原理
变桨系统是指风力发电机组中的一种机电系统,用于调整叶片的角度,以最大化风能转化为机械能,并通过发电机产生电能。
这种系统通常由以下几个主要部件组成:
1. 变桨驱动机构:由电机、减速器和传动装置组成。
电机通过传动装置将转动力传递给叶片的桨叶根部,驱使桨叶进行转动。
2. 桨叶角度传感器:用于感知当前桨叶的角度。
常见的传感器包括光电编码器、霍尔传感器等。
传感器将角度信息发送给控制系统。
3. 控制系统:根据风速、转速和其他相关参数,通过对桨叶角度进行调整,以最大化风能转化效率。
控制系统通常包括主控制器、数据采集系统和执行器。
主控制器负责处理和分析传感器数据,并制定相应的桨叶调整策略。
数据采集系统用于实时监测发电机组的工作状态,并将数据传输给主控制器。
执行器根据主控制器的指令,调整变桨系统的工作状态。
整个系统的工作流程如下:
1. 控制系统通过数据采集系统获取当前的风速和转速等参数。
2. 主控制器根据当前的参数,计算出最优的桨叶角度。
3. 主控制器将桨叶角度指令发送给执行器。
4. 执行器根据指令,调整变桨驱动机构中的电机工作状态,实现桨叶角度的调整。
5. 变桨驱动机构将桨叶转到指定的角度。
6. 控制系统持续监测风速和转速等参数,并不断更新桨叶角度,以确保风能转化效率的最大化。
通过不断调整桨叶角度,变桨系统能够根据当前的风速和转速,使得风能能够以最高效率地转化为机械能,从而提高风力发电机组的发电效率。
变桨系统介绍范文
变桨系统介绍范文变桨系统是风力发电机组中的重要组成部分,主要用于调节和控制风力发电机的桨叶角度,以实现风力发电机的最佳风能捕捉和发电效率。
本文将详细介绍变桨系统的工作原理、组成部分、类型和应用。
一、工作原理变桨系统的主要工作原理是根据风力发电机的工作状态和风速的变化来调整桨叶角度,从而确保风能的最大化转换和最佳发电效率。
当风速较低时,变桨系统会调整桨叶角度使风能更好地捕捉并转化为机械能;当风速较高时,变桨系统会调整桨叶角度以减小风力对发电机组的影响,保证发电机组的安全运行。
二、组成部分1.桨叶:桨叶是变桨系统的核心部分,主要由复合材料制成,具有轻质、高强度和耐腐蚀的特点。
桨叶的角度调节直接影响到风能捕捉和发电效率。
2.变桨机构:变桨机构是用于调整桨叶角度的装置。
常见的变桨机构有液压变桨机构、电动变桨机构和气动变桨机构等。
液压变桨机构是目前应用最广泛的一种,可以通过液压系统实现桨叶角度的快速调整。
3.桨叶角度传感器:桨叶角度传感器用于测量桨叶的实际角度,并将数据传输给变桨控制系统,以实现对桨叶角度的准确控制。
4.变桨控制系统:变桨控制系统是整个变桨系统的核心,负责接收和处理来自桨叶角度传感器的数据,并根据风速和发电机组的工作状态来调整桨叶角度。
三、类型1.常规变桨系统:常规变桨系统通过调整桨叶角度来响应风速变化,以实现风能捕捉和发电效率的最大化。
常见的常规变桨系统包括液压变桨系统和电动变桨系统。
2.主动变桨系统:主动变桨系统是基于外部风速信息来主动调整桨叶角度的变桨系统。
通过接收来自气象站或其他风速监测设备的风速信息,主动变桨系统可以根据实时风速变化来调整桨叶角度,以实现最佳风能捕捉和发电效率。
3.响应变桨系统:响应变桨系统是基于发电机组内部状态变化来调整桨叶角度的变桨系统。
它通过监测发电机组的负载情况和发电机组的机械振动等指标,调整桨叶角度以保证发电机组的安全稳定运行。
四、应用变桨系统广泛应用于风力发电机组中。
风电变桨
变桨系统介绍
一.风机变桨系统概述
风力发电机组控制系统硬件分别安装在三个不同部分:
1. 机舱控制,安装在机舱内
2. 地面控制,安装在塔架底部
3. 变桨控制,安装在轮毂内部
二. 变桨系统的工作原理
定浆距风机通过叶片的失速,即改变叶片横断面周围流动的气流,导致效率的损失,从而控制风机的最大输出功率;
变浆距风机是通过叶片沿其纵向轴转动,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.
变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.
三. 变桨系统和定桨系统的比较
定桨距失速调节型风力发电机组定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化, 桨叶翼型本身所具有的失速特性.当风速高于额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。
在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。
失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。
其缺点是叶片重量大(与变桨。
风机变桨控制系统简介样本
风力发电机组变桨系统简介一.概述双馈风机风轮: 风轮普通由叶片、轮毂、盖板、连接螺栓组件和导流罩构成。
风轮是风力机最核心部件, 是它把空气动力能转变成机械能。
大多数风力机风轮由三个叶片构成。
叶片材料有木质、铝合金、玻璃钢等。
风轮在出厂前通过试装和静平衡实验, 风轮叶片不能互换, 有厂家叶片与轮毂之间有安装标记, 组装时按标记固定叶片。
组装风轮时要注意叶片旋转方向, 普通都是顺时针。
固定扭矩要符合阐明书规定。
风轮工作原理: 风轮产生功率与空气密度成正比。
风轮产生功率与风轮直径平方成正比;风轮产生功率与风速立方成正比;风轮产生功率与风轮效率成正比。
风力发电机风轮效率普通在0.35—0.45之间(理论上最大值为0.593)。
贝兹(Betz)极限风机四种不同控制方式:1.定速定浆距控制(Fixed speed stall regulated)发电机直接连到恒定频率电网,在发电时不进行空气动力学控制2.定速变浆距控制(Fixed speed pitch regulated)发电机直接连到恒定频率电网,在大风时浆距控制用于调节功率3.变速定浆距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),容许转子速度通过控制发电机反力矩变化.在大风时,减慢转子直到空气动力学失速限制功率到盼望水平.4.变速变浆距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 容许通过控制发电机反力矩变化转子速度.在大风时,保持力矩, 浆距控制用于调节功率.二. 基本知识三. 变桨系统工程实例1. 控制箱2. 轴箱3. 蓄电池箱轮毂中变桨控制柜实际照片, 周边三个兰色是变桨伺服电机将电池柜、配电柜用支架固定在图中所示位置编码器变桨角度限位开关带加热装置超声波矢量风速风向仪, 侧面为航空警示灯。
风电设备项目浇铸式滑环系统具备高转速、构造精致, 特别是可行执行件和外直径比例优化以及耐振性强等特性。
风力发电机变桨系统
风力发电机变桨系统1、综述变桨系统的所有部件都安装在轮毂上。
风机正常运行时所有部件都随轮毂以一定的速度旋转。
变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。
风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。
变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。
风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。
任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。
变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。
此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。
由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。
风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。
2、变浆系统的作用根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。
SSB变桨系统为寒冷环境设计。
环境温度定义如下工作温度为 -30 ~ +40 ℃静态温度为 -40 ~ +50 ℃在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。
变桨系统原理及维护
变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。
其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。
2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。
其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。
3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。
定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。
而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。
4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。
比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。
二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。
下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。
特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。
2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。
3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。
4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。
对于无法解决的故障,应请专业维修人员进行处理。
5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。
综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。
为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。
变桨工作原理
变桨工作原理一、引言变桨是风力发电机组中的重要部件,它能够根据风速的变化调整桨叶的角度,以最大限度地捕获风能。
本文将详细介绍变桨的工作原理以及其在风力发电中的作用。
二、变桨的工作原理1. 变桨系统组成变桨系统主要由桨叶、桨毂、变桨驱动装置和控制系统组成。
桨叶通过桨毂与变桨驱动装置连接,而变桨驱动装置则通过控制系统控制桨叶的角度变化。
2. 桨叶角度调整变桨系统通过调整桨叶的角度来适应不同风速下的工作需求。
当风速较小时,桨叶的角度会调整为较大的值,以增加风能捕获的面积;而当风速较大时,桨叶的角度会调整为较小的值,以减小风力对发电机组的冲击。
3. 变桨驱动装置变桨驱动装置是控制桨叶角度变化的关键部件。
它通常由液压系统或电动机驱动系统组成。
液压系统通过控制液压缸的伸缩来调整桨叶的角度,而电动机驱动系统则通过电动机的旋转来实现桨叶角度的调整。
4. 控制系统控制系统是变桨系统的智能化部分,它能够根据风速、发电机组的负载等参数来实时调整桨叶的角度。
控制系统通常由传感器、控制器和执行器组成。
传感器负责采集风速、发电机组负载等数据,控制器根据这些数据进行计算和判断,并通过执行器控制变桨驱动装置调整桨叶的角度。
三、变桨在风力发电中的作用1. 提高发电效率通过调整桨叶的角度,变桨系统能够使风力发电机组在不同风速下都能够工作在最佳状态,从而提高发电效率。
当风速较小时,桨叶角度调整为较大值,使得风能捕获面积增大,提高发电机组的输出功率;当风速较大时,桨叶角度调整为较小值,减小风力对发电机组的冲击,保护发电机组的安全运行。
2. 提高风力发电机组的稳定性风速的变化会对风力发电机组的稳定性产生影响,特别是在风速较大的情况下。
变桨系统通过调整桨叶的角度,可以减小风力对发电机组的冲击,从而提高发电机组的稳定性,减少振动和损坏的风险。
3. 保护风力发电机组在强风或极端天气条件下,风力发电机组可能会受到过载或损坏的风险。
变桨系统能够根据风速的变化及时调整桨叶的角度,以保护发电机组的安全运行,延长其使用寿命。
金风1.5MW风力发电机组Vensys变桨系统介绍
名称
开关电源
型号
ZIVAN
功能及端口定义
功能:将50HZ线电压400V(三相)交流电输入转换为60V直流电输出。 AUX1 C\AUX1 NO=开关电源正常输出信号
额定60V/80A
ON/OFF=开关电源工作/停止工作信号 LSENSE 电流检测通道
变频器
SW:AC2T2IFWMF145_HYSO4
功能:采集超级电容高低电压; X4:4=/X4:3分别采集电容高低60V/30V直流输入电压; X4:5=模块24V电源的接口;X4:9/X4:10=电压检测模拟量输出; X4:11=电流检测模拟量输出
A10自制模块
旋转编码器
1=旋边电源;3/7=正/负向SSI脉冲输入;5=清零端;8/9=速度和位移 反馈;10=反馈旋边工作正常信号;
功能:将60VDC转换成三相频率可变的29VAC BATT/-BATT为直流输入,U V W为交流电输出;
额定48V/450A
F3/F9控制变桨电机刹车电磁阀; E5=自动变桨控制信号;F4=自动变桨使能; E12=叶片向0度方向变桨信号;E13=叶片向90度方向变桨信号; F6/F12外部过载信号;
0° 接近开关
电机控制 及信号线
电机控制 及信号线
电机控制 及信号线
3.1 变桨系统驱动原理
Profibus DP 状态 自动/手动切换 Beckhoff I/O system 向0度变桨 向90度变桨 手动 控制 状 态 信 息 控 制 命 令 A10电压/ 电流转换 电压 电流 信号 DC 24V DC/DC 变换 风扇 温 度 信 号 Pt100 状 态 信 号 控 制 命 令 变 桨 速 度
20
发电机转速 (Ω—rpm)
风机变桨控制系统简介
风机变桨控制系统简介第一篇:风机变桨控制系统简介风力发电机组变桨系统介绍一.风力发电机组概述双馈风机1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。
风轮是风力机最关键的部件,是它把空气动力能转变成机械能。
大多数风力机的风轮由三个叶片组成。
叶片材料有木质、铝合金、玻璃钢等。
风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。
组装风轮时要注意叶片的旋转方向,一般都是顺时针。
固定扭矩要符合说明书的要求。
风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。
贝兹(Betz)极限2.发电机与齿轮箱双馈异步发电机变频同步发电机同步发电机---风力发电机中很少采用(造价高﹑并网困难)(同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发电机并入电网.)永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组.异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速, 电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能.异步电机发出的有功功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并联电容补偿的方式.异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行.3.偏航控制系统风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能.大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向.偏航系统一般包括感应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等.解缆大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态.4.变桨控制系统 5.变流器 6.塔架风机四种不同的控制方式: 1.定速定桨距控制(Fixed speed stall regulated)发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变桨距控制(Fixed speed pitch regulated)发电机直接连到恒定频率的电网,在大风时桨距控制用于调节功率3.变速定桨距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平.4.变速变桨距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 桨距控制用于调节功率.5二.基本知识三.风力发电机组的信号(一)机组状态参数检测1.转速风力发电机组转速的测量点有两个:即发电机转速和风轮转速。
风电机组变桨系统介绍
二、常见问题、解决方案及工作成果
3、变桨驱动器OK信号丢失
如东32#,16#机组,通过对两台机组的故障文件分析发现,导致 叶片不能完成收桨的故障原因相同——变桨驱动器检测到电机加速 度异常。 变桨驱动器通过采集编码器的增量通道信号来检测变桨电机的速 度。 通过复位将叶片收回的事实表明编码器没有损坏,造成变桨驱动 器检测到电机加速度异常的原因可能是增量编码器通道受干扰导 致的。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题 问题描述: 变桨柜内存在袋装颗粒干燥剂,机组吊装时这样的干燥剂在
运行的过程极易破损,颗粒撒落到变桨柜内,可能导致变桨系统 Q1断路器卡死、手动/自动旋钮失灵、柜内循环风扇被卡死等情况。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题
解决方案及工作成果 : (1)机组吊装时,要求必须取出变桨柜内的干燥剂,工程技术部 完善吊装工艺文件。 (2)变桨柜内干燥剂使用固态干燥剂,取代颗粒干燥剂,由总装 工艺人员配合对此干燥剂进行更换。
一、变桨调试中需要注意的地方
5、叶片变桨时,人员需要知道叶片转动的方向,方向不能变反, 还要注意接近开关和限位开关的位置,防止器件被撞坏。 6、调试限位开关时,既要保证限位开关触发,也要保证限位开关 冲过挡块斜坡后触头不被撞坏,限位开关的高度要合适。 7、变桨调试时,如果发现柜体内部有杂质或出现凝露、水珠,此 时禁止对变桨柜进行上电调试操作,必须清理杂质或烘干柜体。 8、超级电容电压大于35V时,运行驱动器复位。 9、目前2.5变桨柜配变桨电机为8.6KW。当标准变桨柜配置6KW 变桨电机系统,则驱动器刷入的参数版本为:20130408 ending version。
风电 变桨系统简介
目录
01 02
关于变桨风机的几个重要概念 变桨控制原理和过程
01 关于变桨风机的几个重要概念
• (1)上风向风机与下风向风机
上风向是指主风方向的相反方向,即风机的叶轮面在塔筒前面(相对来 风方向),正对面迎着风;下风向是指主风方向,即风机的叶轮面在 塔筒后面(相对来风方向),背对着风。 上风向风机:目前的大型风力发电机都是的这种型式的。 优点:风吹来时不会被风机其他部件影响,风能利用效率高一点。 下风向风机:因为风会受到前面塔筒的影响(塔影效应),在吹过风轮 的时候,已经有了部分损失,而且风的稳定性也会变差。对机组产生 不利影响。 优点:目前有的小型风力机采用下风向型式,因为塔影效应对小风机影 响不大;可以根据风向的变化,自动进行偏航对风,节省控制成本。
2014-2-28
2014-2-28
2014-2-28
• (3)桨距角 桨距角,也叫节距角,是指叶片弦长与旋转 平面的夹角。 在风力发电机组中,如果把三个桨叶所在的 平面作为一个参考面,那么任何一个叶片 与该参考面的夹角就是叶片桨距角。 一般变桨角度在0-86度。
2014-2-28
不 同 节 距 角 时 的 桨 叶 截 面 图
2014-2-28
• 轴控箱
2014-2-28
• 电池柜
每个叶片分配一个电池箱。在供电故障或 EFC 信号(紧急顺桨控制信号) 复位的情况下,电池供电控制每个叶片转动到顺桨位置。
2014-2-28
• 轮毂内变桨构成实物图
2014-2-• 编码器
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电 机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承 内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部 编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨 系统应用冗余编码器的信号。
变桨系统
风力发电机组变桨系统介绍一.风机变桨系统概述风力发电机组控制系统硬件分别安装在三个不同部分:1. 机舱控制,安装在机舱内2. 地面控制,安装在塔架底部3. 变桨控制,安装在轮毂内部人机界面触摸屏显示风机的运行状况和参数,或者启动或停止风机.风力发电机组四种控制方式:1. 定速定浆距控制(Fixed speed stall regulated)发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制2. 定速变浆距控制(Fixed speed pitch regulated)发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率3. 变速定浆距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平.4. 变速变浆距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,浆距控制用于调节功率.二. 变桨系统的工作原理定浆距风机通过叶片的失速,即改变叶片横断面周围流动的气流,导致效率的损失,从而控制风机的最大输出功率;变浆距风机是通过叶片沿其纵向轴转动,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.三. 变桨系统和定桨系统的比较定桨距失速调节型风力发电机组定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化,桨叶翼型本身所具有的失速特性.当风速高于额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
风力发电机组变桨系统设计原理解析
风力发电机组变桨系统设计原理解析风力发电机组是一种利用风能转化为电能的装置,其中变桨系统是其重要组成部分。
本文将从设计原理的角度对风力发电机组变桨系统进行深入解析。
一、风力发电机组概述风力发电机组是利用风能转动叶片,通过传动系统驱动发电机发电的设备。
其工作原理是当风速达到一定程度时,叶片受到风的作用而转动,进而带动转子旋转,驱动发电机发电。
而变桨系统则在风力发电机组运行过程中起着至关重要的作用。
二、变桨系统功能风力发电机组在运行过程中,受到风速的影响较大。
为了更好地利用风能,确保发电机组的稳定性和安全性,变桨系统被设计为一个关键的控制系统。
其主要功能包括:1. 调节叶片角度,使风力发电机组在不同风速下的转速和输出功率保持在合适的范围内;2. 在风速发生突变或超出限定范围时,自动调整叶片角度,保障风力发电机组的安全运行;3. 提高风力发电机组的整体效率,最大限度地利用风能资源。
三、变桨系统设计原理1. 变桨系统传动机构变桨系统的传动机构通常由变桨电机、减速器和转动叶片的机械结构组成。
变桨电机通过减速器驱动叶片转动,控制叶片的角度。
减速器的设计是为了将电机高速输出的转矩通过减速装置转化为叶片所需要的低速高转矩输出。
2. 变桨系统控制原理变桨系统的控制原理主要包括两种方式:定时控制和传感器反馈控制。
定时控制是通过风力发电机组的控制系统按照预设的时间对叶片进行角度调整;传感器反馈控制则是通过传感器实时监测风速和叶片位置,根据监测数据对叶片的角度进行调整。
3. 变桨系统安全保护为了保证风力发电机组的运行安全,变桨系统还配备有多种安全保护装置。
例如,当风力发电机组运行中出现极端状况时,比如风速过大或传感器失效等,变桨系统会自动切断电源,避免事故的发生。
四、变桨系统的发展趋势随着风力发电技术的不断发展,变桨系统也在不断创新和完善。
未来的风力发电机组变桨系统将更加智能化、自动化和高效化。
例如,采用先进的控制算法和传感技术,实现对叶片角度的精准控制,提高风力发电机组的发电效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 变桨距伺服控制控制算法
位置反馈 速度给定
速度反馈 电流 反馈
M
PLC执行位置 环控制,驱动 器实现电流环 和速度环控制
PLC
AC输入
电机驱动器
串励直 编码器 流电机
电机伺服驱动系统结构图
• 变桨距系统电气原理
主控箱
3*400V+N+PE
滑 防 雷 及
控制信号 配 电
环
通信
充电 机
PLC
电源 24V
• 变桨系统的作用
变桨系 统功能
变桨距系统的失 效可导致机组飞
车灾难
调节功率 在较高风速时调 节桨距角,使发 电机输出功率维 持在额定功率附
近。
气动刹车 在机组或电网故 障情况执行顺桨 动作,使机组迅
速停下来。
• 变桨系统分类
变桨系 统分类
电动变桨距系统 电动机作为执行 机构。
液压变桨系统 采用液压系统作 为执行机构。不 需要配备后备电 源;存在漏油问
2、编码器故障
• 现象: 编码器跳变,或者编码器通讯不正常
• 原因: 1)编码器受到强电磁干扰引起跳变,尤其是磁感应式编码器;
2)机械振动或者受力过大导致损坏;3)编码器电源没电(对于 电子式绝对值编码器而言)。 解决方案:更换编码器,如果是强电磁干扰引起的跳变解决干扰 源问题,也可以更换光电式编码器。
题。
• 变桨系统分类
变桨电 机类型
直流变桨系统
优点:故障情况可 直接通过后备电源 供电顺桨,可靠性 高
缺点:电机成本高 ,碳刷需要维护; 体积较大,维护不 方便。
交流变桨系统 优点:电机体积小 ,维护量小;电机 成本低; 缺点:故障情况时 必须通过伺服驱动 器驱动电机顺桨, 不能通过后备电源
直接供电顺桨。
5、变桨跟随故障
现象:
变桨速度较大时实际桨距角值与主控给定偏差较大 原因: 1) 变桨位置控制参数未达到最优,动态响应差; 2)变桨系统检测到内部故障自主顺桨,导致与主控给定指令 不同。 3)变桨系统伺服机构如电机,编码器,驱动器等部件故障, 导致无法跟随给定位置。
6、变桨电机温度高
现象: 变桨电机温度高于报警值 原因: 1)温度传感器异常或者检测回路断线,无法正确反映实际温 度 2)散热风扇故障或者风扇供电断路,造成风扇运行异常,没 有起到电机散热作用 3)电机载荷变大,例如冬变桨齿轮箱油凝固导致,或变桨传 动环节问题,长期过载运行。
6
• 变速变桨风电机组控制目标
欠负荷区:
为了获得最大功 率,电磁转矩设 定在能获得最佳 叶尖速比的值, 而桨距角设定在 可以获得最大升 力的角度,桨距 角一般设定0°
控制 目标
满负荷区:
在额定功率时保 持转速在额定转 速上,如果转速 降低就减下桨距 角;这时电磁转 矩控制目标是产 生额定的电磁转
矩。
7、变桨主控通讯故障
现象:
通讯中断,或通讯时断时续,或偶尔的通讯中断 原因: 1)线路的干扰引起的通讯故障,时断时续; 2)通讯协议不完善导致; 3)滑环进油,进尘土导致通讯时断时续。 4)设备硬件本身问题,有些厂家PLC兼容性不高,导致主控 变桨无法正常通讯
风电机组变桨系统
风电机组变桨系统
风机的叶片(根部)通过变桨轴承与轮毂相连,每个 叶片都要有自己的相对独立的电控同步的变桨驱动系统。 变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。
风机正常运行期间,当风速超过机组额定风速时(风 速在12m/s到25m/s之间时),为了控制功率输出变桨角度 限定在0度到30度之间(变桨角度根据风速的变化进行自 动调整),通过控制叶片的角度使风轮的转速保持恒定。 任何情况引起的停机都会使叶片顺桨到89(90)度位置( 执行紧急顺桨命令时叶片会顺桨到91度限位位置)
• 变桨系统后备电源
后备 电源
蓄电池
优点:电压稳定, 不需要均压控制, 缺点:寿命短,充 电速度慢,放电电 流较小
超级电容器
优点:充电速度快, 可在短时间充满,寿 命长; 缺点:放电时电压降 快,需要均压控制
锂电池:能量密
度较高,价格介于
铅酸和超电之间;
低温特性差,应用
较少,没有形成完
善的供应链。
3、伺服驱动器故障
现象:伺服驱动器就绪信号丢失,无法驱动电机。 原因:变桨电机速度反馈信号丢失;2)主电源异常;3)控制电 源异常;4)驱动器输出与电机主电路接反;5)变桨电机温度反 馈信号丢失6)制动电阻未连接
4、伺服驱动器烧毁
现象:伺服驱动器烧毁 原因:1)过电压;2)输出短路导致IGBT烧毁;3)浪涌导致前 端防雷器件烧毁4)潮湿或绝缘强度不够导致电气击穿;5)金属 部件如螺钉等在变桨系统旋转过程中脱落,导致短路。
加热器
电池箱
轴1
充电
加热器
驱动柜
91
控制/信
号采集
95
驱 动 器
加热器
直流电机 M
M 冗余编 码器
开桨顺桨10ຫໍສະໝຸດ 正转11反转
12
13
1、蓄电池容量不足或老化
• 现象: 蓄电池端电压将降低,无法正常放电;
• 原因: 1)蓄电池过度放电;2)长时间不使用没有按规定补充电;3)
长时间小电流放电导致蓄电池深度放电等;4)充电电气回路故障 造成长时间无法正常充电;5)充电过压,或大电流放电。 解决方案:更换电池,检查充电回路;在长时间不用时按照蓄电池 的维护要求充电;长时间不用时应该断开蓄电池开关。