高中数学选修22人教A版 .2反证法PPT

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 已知a≠0,证明x的方程ax=b有且只有 一个根.
证 : 假 设 方 程 a x + b = 0 ( a ≠ 0 ) 至 少 存 在 两 个 根 ,
不 妨 设 其 中 的 两 根 分 别 为 x 1 , x 2 且 x 1 ≠ x 2 则 ax1=b, ax2=b∴ax1 =ax2 ∴ax1-ax2 =0 ∴ a( x1-x2) =0 ∵ x 1≠ x 2 , x 1-x 2 ≠ 0 ∴a = 0 与 已 知 a≠ 0矛 盾 , 故 假 设 不 成 立 , 结 论 成 立 。
例3:用反证法证明:圆的两条不是直径的相交弦
不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于点P,且
AB、CD不是直径.求证:弦AB、CD不被P平分. A
证明:假设弦AB、CD被P平分,
O
D
由于P点一定不是圆心O,连结OP,根据垂径
定理的推论,有OP⊥AB,OP⊥CD,
P C
即过点P有两条直线与OP都垂直,这与垂线性质矛盾。
2.2.2 反证法
反证法
阅读下面的故事,体会其中的推理: 《路边苦李》
古时候有个人叫王戎,7 岁那年的某一天和 小伙伴在路边玩,看见一棵李子树上的果实多得 把树枝都快压断了,小伙伴们都跑去摘,只有王 戎站着没动。他说:“李子是苦的,我不吃。”小伙 伴摘来一尝,李子果然苦的没法吃。小伙伴问王 戎:“这就怪了!你又没有吃,怎么知道李子是苦的 啊?”王戎说:“如果李子是甜的,树长在路边,李 子早就没 了!李子现在还那么多 ,所以啊,肯定李 子是苦的,不好吃!”
你能举出一个类似故事《路边苦李》中的推理 的例子吗?
“昨晚下雨了……”
下面的计算结果是否正确:
123456789 999999999 123456789876543211
当我们直接从正面考虑不易解决问题时,于是就要 改变思维方向,从结论入手,反面思考。这种从“正面难 解决就从反面思考”的思维方式就是我们通常所说的 间接解法中的一种——反证法. (又比如课本的思考)
求证: PO .
什么是反证法?
一般地,假设原命题不成立,经过正确的推理,
最后得出矛盾,因此说明假设错误,从而证明了原命
题成立,这样的证明方法叫做反证法(归谬法).
反证法证明命题的一般步骤如下:
1.假设结论的反面成立; 反设
2.由这个假.设.出发,经过正确的推理, 归谬
导出矛盾;
推理过程中一定要用到才行
显而易见的矛盾(如和已知条件矛盾

任意 两个
至少有 一个也 否定 两个 没有
某个
某些 至少有n 某两个 +1个
高中数学选修22人教A版 .Baidu Nhomakorabea反证法【公开课课件】
高中数学选修22人教A版 .2反证法【公开课课件】
求证: 2 是无理数.
证 : 假 设2是 有 理 数 ,
则 存 在 互 质 的 整 数 m , n 使 得 2=m, n
O
H
a
CF B
求证: | f (1) |,| f (2) |,| f (3) | 中至少有一个不小于 1 。 2
高中数学选修22人教A版 .2反证法【公开课课件】
1.直 线 PO 与平面 相交 于 O ,过点 O 在平 面 内引直 高中数学选修22人教A版.2反证法【公开课课件】 线 OA 、 OB 、 OC , POA POB POC . P
方法小结: 高中数学选修22人教A版 .2反证法【公开课课件】 1直接证明:直接从原命题的条件逐步推得结论成立. ⑴综合法──联想尝试(浮想联翩,尝试前进!) 由⑵因分导析果法:─(已─知转)化A尝试B(1执果索因,B妙n 在转 B (化结!论) )
执果索因:(结论) B B1 Bn A (已知)
B
所以,弦AB、CD不被P平分。
反 证法是一 种重要的 数学思想 方法, 对于那些 含有否 定词的命题,“至少”型命题、唯一性命题,尤为适宜。牛
顿说:“反证法是数学上最精良的武器之一.” 这就充分肯
定了这一方法的积极作用和不可动摇的重要地位。
数学上很多有名的结论都是用反证法得证的.比如说,
素数有无穷多个, 2 是无理数的证明等.
高中数学选修22人教A版 .2反证法【公开课课件】
选做作业: 高中数学选修22人教A版 .2反证法【公开课课件】
1.直线 PO 与平面 相交于 O ,过点 O 在平面 内
引直线 OA 、 OB 、 OC , POA POB POC .
求证: PO .
P
A E
2.已知 f ( x) x2 px q ,
2.反证法是一种常用的间接证明方法.
(1)用反证法证明命题的一般步骤是什么? ①反设②归谬③结论
(2)用反证法证题,矛盾的主要类型有哪些? 用反证法在归谬中所导出的矛盾可以是与题设矛盾,与
假设矛盾,与已知定义、公理、定理矛盾,自相矛盾等. (3)适宜使用反证法的情况: 正难则反! (1)结论以否定形式出现;(2)结论以“至多----,” ,“ 至少---” 形式出现;(3)唯一性、存在性问题;(4)结论 的反面比原结论更具体更容易研究的命题。
). 3.由矛盾判定假设不正确,从而肯定
命题的结论正确.
结论
例1:用反证法证明: 如果a>b>0,那么 a > b
证 : 假 设 a >b 不 成 立 , 则 a ≤ b 若a= b, 则 a=b,与 已 知 a>b矛 盾 ,
若a< b, 则 a<b,与 已 知 a>b矛 盾 ,
故 假 设 不 成 立 , 结 论 a >b 成 立 。
高中数学选修22人教A版 .2反证法【公开课课件】
高中数学选修22人教A版 .2反证法【公开课课件】
说明:常用的正面叙述词语及其否定:
正面 词语
否定
正面 词语
等于 大于(>) 小于 (<)
小于或 不等于 等于(≤

至多有 至少有 一个 一个
大于或 等于(≥ )
任意的
是 不是 所有的
都是
不都是 至多有n
∴ m = 2n ∴m2 =2n2
∴ m 2 是 偶 数 , 从 而 m 必 是 偶 数 , 故 设 m = 2 k ( k ∈ N )
从 而 有 4 k 2= 2 n 2 , 即 n 2= 2 k 2 ∴n2也是偶数,这 与 m , n 互 质 矛 盾 !
所 以 假 设 不 成 立 , 2 是 有 理 数 成 立 。
相关文档
最新文档