第十二章 全等三角形复习资料

合集下载

十二章《全等三角形》知识点归纳总结

十二章《全等三角形》知识点归纳总结

十二章《全等三角形》知识点归纳总结第十二章《全等三角形》知识要点归纳总结一、知识网络二、基础知识梳理(一)基本概念 1、全等三角形的定义全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。

第 1 页 1 共 13 页3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

SSS(2)两边和它们的夹角对应相等的两个三角形全等。

SAS (3)两角和它们的夹边对应相等的两个三角形全等。

ASA (4)两角和其中一角的对边对应相等的两个三角形全等。

AAS (5)斜边和一条直角边对应相等的两个直角三角形全等。

HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要注意以下几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找①夹角相等(SAS) ②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA) ②夹等角的另一组边相等(SAS)第 2 页 2 共 13 页(三)疑点、易错点 1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

人教版八年级数学上册第12章 全等三角形 单元复习 课件

人教版八年级数学上册第12章 全等三角形 单元复习 课件

∵BF∥AC,DE⊥AC,∴BF⊥DF,
∵BC平分∠ABF,DH⊥AB,DF⊥BF,∴DH=DF,
∴DE=DF,
∴点D为EF的中点.
(2)∵BF∥AC,∴∠C=∠DBF,
∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD,
∵AD平分∠BAC,∴∠CAD=∠BAD,
又AD=AD,∴△DCA≌△DBA,∴∠CDA=∠BDA,
应角与对角的概念.一般地,对应边、对应角是对两个三
角形而言,而对边、对角是对同一个三角形的边和角而言,
对边是指角的对边,对角是指边的对角.
1.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,
∠A=70°,∠B1=50°,则∠C的度数为( D )
A.70°
B.50°
C.120°
D.60°
2.(全国视野)(2022南京模拟)如图,四边形ABCD的对角
证明:(1)在Rt△BOF和Rt△COE中,
∵OF=OE,OB=OC,
∴Rt△BOF≌Rt△COE(HL).
∴∠FBO=∠ECO,即∠ABO=∠ACO.
(2)连接AO.∵OF⊥AB,OE⊥AC,且OF=OE,
∴∠BAO=∠CAO.
∵∠ABO=∠ACO,AO=AO,
∴△BOA≌△COA(AAS),∴AB=AC.
则BD=
1 .
22.如图,过点B,D分别向线段AE作垂线段BQ和DF,
点Q和F是垂足,连接AB,DE,BD,BD交AE于点C,且
AB=DE,AF=EQ.
(1)求证:△ABQ≌△EDF;
(2)求证:点C是BD的中点.
证明:(1)∵AF=EQ,∴AQ=EF,在Rt△ABQ和Rt△EDF中,

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【1】【2】【3】4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.686.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【4】【5】【6】7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【7】【8】【9】10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.【10】【11】【12】13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.【13】【14】【16】17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=度.【17】【18】【19】【20】三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.第12章《全等三角形》章节复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.68【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°【解答】解:∵△ABC≌△ADE,∠CAD=10°,∠EAB=120°,∴∠EAD=∠CAB=(∠EAB﹣∠CAD)=55°,∵∠FAB=∠CAD+∠CAB,∴∠FAB=65°,∵∠AFB+∠FAB+∠B=180°,∴∠AFB=180°﹣65°﹣25°=90°,∵∠GFD=∠AFB,∴∠GFD=90°,∵∠EGF=∠D+∠GFD,∴∠EGF=90°+25°=115°.故选C.8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对【解答】解:连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个【解答】解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE,故⑤正确,故选D.二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB 等(只要符合要求即可),使△AEH≌△CEB.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为0.7cm.【解答】解:∵AD⊥CE于D,BE⊥CD于E,∴∠E=∠ADC=90°∵AC=CB,∠ACB=90,∴∠BCE+∠ACD=90°,∠ACD+∠DAC=90°,∴∠BCE=∠ACD,∴△BCE≌△CAD,∴AD=CE=2.4,BE=CD,∴CD=CE﹣DE=2.4﹣1.7=0.7,∴BE=CD=0.7cm.故答案为0.7cm.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为1或4s.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=20度.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.【解答】证明:∵∠BAE=∠BCE=90°,∴∠B+∠AEC=180°,而∠DEC+∠AEC=180°,∴∠B=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.【解答】结论:DE=BD+CE.证明:如右图,∵∠BAC=90°,∴∠EAC+∠DAB=90°,∵BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=90°,∠D=∠E=90°,∴∠EAC=∠DBA,在△ABD和△CAE中,∵,∴△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.【解答】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【解答】猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,,∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.证毕.26.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.【解答】解:(1)①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)②中的结论不成立.结论:DE=AD+BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴AD=CE,CD=BE,∵DE=CD+CE=BE+AD,∴DE=AD+BE.28.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意答:点P运动1或3.5或12秒时,△PEC与△QFC全等.。

第十二章全等三角形知识点归纳

第十二章全等三角形知识点归纳

第十二章 全等三角形一、知识要点1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质3、证题的思路:(A S A )(A A S )⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)(3)截长补短法(适合于证明线段的和、差等问题)(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密(1)常见全等的判定和性质考察1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;CBAFE DC B A第2小题 第3小题 第4小题3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.7.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

人教版八年级数学上册 第十二章 全等三角形知识归纳与题型突破(12类题型清单)

人教版八年级数学上册  第十二章 全等三角形知识归纳与题型突破(12类题型清单)

第十二章全等三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定五、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

人教版八年级上册数学第十二章 全等三角形复习课件

人教版八年级上册数学第十二章 全等三角形复习课件

先在过点B的AB的垂线上取两点C、D,使得CD=
BC,再在过点D的垂线上取点E,使A、C、E三点
在一条直线上,可以证明△EDC≌△ABC,所以测
得ED的长就是A、B两点间的距离,这里判定
△EDC≌△ABC的理由是( C )
A.SAS
B.SSS
C.ASA
D.AAS
第十二章 全等三角形
16.如图,AB,CD表示两根长度相等的铁条,若 O是AB,CD的中点,经测量AC=15cm,则容器的
在△AOD和△BO
第十二章 全等三角形
9.如图,已知AB∥CD,AE⊥BD,CF⊥BD,垂 足分别E,F,BF=DE. 求证:AB=CD. ∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°. ∵BF=DE,∴BF+FE=DE+EF,即BE=DF, ∵AB∥CD,∴∠D=∠B.
∵BE=CF,∴BE+EF=CF+EF,即BF=CE,
在△ABF和△DCE中,

∴△ABF≌△DCE(SAS).
第十二章 全等三角形
8.如图,已知AD=BC,AC=BD,求证: (1)△ADB≌△BCA; (2)△AOD≌△BOC.
(1) 在△ADB与△BCA中,

∴△ADB≌△BCA(SSS); (2) ∵由(1)得△ADB≌△BCA,∴∠D=∠C,
第十二章 全等三角形
22.如图:已知BD=CD,BF⊥AC, CE⊥AB,求证:AD平分∠BAC.
∵BF⊥AC,CE⊥AB, ∴∠BED=∠CFD=90°,
在△BED和△CFD中,

∴△BED≌△CFD(AAS),∴DE=DF, 又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC.
感谢聆听
内径长为( D )

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

人教版八年级数学上册第12章 全等三角形 小结与复习

人教版八年级数学上册第12章  全等三角形 小结与复习

∠A =∠D,∠B =∠E,∠C =∠F
( 全等三角形的对应角相等).
二、三角形全等的判定方法
1. 三边分别相等的两个三角形全等 (可以简写为
“边边边”或“SSS”).
A
用符号语言表示为:
在△ABC 和△ DEF 中,
AB = DE, BC = EF,
B
C
D
CA = FD,
∴△ABC≌△DEF (SSS).
∠PEA =∠PFC = 90°,
∠EAP =∠FCP,
PE = PF, ∴△APE≌△CPF (AAS). ∴ AP = CP.
E
A 1
N P
2
B
FC
证法2 思路分析:由角是轴对称图形,其对称轴是角
平分线所在的直线,所以可想到构造轴对称图形. 方法
是在 BC 上截取 BD = BA,连接 PD (如图).
1 2
N P
FC
∴∠EAP =∠FCP =∠PCB. ∵∠BAP +∠EAP = 180°, ∴∠PCB +∠BAP = 180°.
E
N
A 1 2
B
P FC
想一想:本题如果不给图,条件不变,请问∠PCB 与∠PAB 有怎样的数量关系呢?
性质
全等 三角形
判定
作用 角的平分线 的性质定理 角的平分线 的判定定理
构造角平分线模型.
1 2
N P
B
FC
证明:过点 P 作 PE⊥BA,PF⊥BC,垂足分别为 E,F.
又∵∠1 =∠2,∴ PE = PF,∠PEA =∠PFC = 90°.
∵∠PCB + ∠BAP = 180°,∠BAP +∠EAP = 180°,

人教版八年级数学下上册第12章 全等三角形的性质与判定复习

人教版八年级数学下上册第12章   全等三角形的性质与判定复习

第一节全等三角形的性质与判定知识结构导图高频核心考点1.全等三角形的有关概念全等图形:能够完全重合的两个图形叫做全等图形。

注:平移、对称、旋转前后的图形全等。

全等三角形:能够完全重合的两个三角形叫做全等三角形。

相关概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2.表示方法:△ABC和△DEF全等,记作△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:书写全等三角形时要求对应顶点必须写在对应位置。

3.全等三角形的一般规律⑴全等三角形对应角所对的边是对应边,两组对应角所夹的边是对应边;⑵全等三角形对应边所对的角是对应角,两组对应边所夹的角是对应角;⑶两个全等三角形中的一对最长边(最大角)是对应边(对应角),一对最短边(最小角)是对应边(对应角);⑷两个全等三角形有公共边时,公共边是对应边;⑸两个全等三角形有公共角时,公共角是对应角;⑹两个全等三角形有对顶角时,对顶角是对应角。

4.全等三角形的性质特别提醒:1.由全等三角形的性质可得到全等三角形的面积和周长相等,但周长和面积相等的三角形不一定全等。

2.全等三角形的性质是证明线段或角相等的重要方法,在运用这个性质时,关键是结合图形或根据全等三角形的记法灵活地找到对应边或对应角,要牢牢抓住“对应”二字。

5.全等三角形的判定(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形判定的书写格式:在△XXX和△XXX中_______________________________________∴△XXX≌△XXX(判定定理)在寻找证明两个三角形全等的条件时,应注意图形中的隐含条件:①公共边或公共角相等;②对顶角相等。

第十二章全等三角形复习资料人教版数学八年级上册

第十二章全等三角形复习资料人教版数学八年级上册

第十二章《全等三角形》复习资料知 识 结 构一、全等三角形:能够 的两个三角形叫做全等三角形。

二、全等三角形的性质:全等三角形的对应边 ,对应角 。

考点一:全等三角形的性质【例1】如图,已知△ABC ≌△DEF,AB=DE,AC=DF,且点E 、B 、C 、F 在同一条直线上。

(1)求证:AC//DF ; (2)若∠D+∠F=900,试判断AB 与BC 的位置关系.三、三角形全等的判定方法 考点二:全等三角形的判定 考点二:全等三角形的判定方法 【例2】(古18第8题)如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A=∠DB .BC=EFC .∠ACB=∠FD .AC=DF【例3】(古18第21题)如图,已知AB=CD ,∠B=∠C ,AC 和BD 相交于点O ,E 是AD 的中点,连接OE .求证:△AOB ≌△DOC ;(2)求∠AEO 的度数.【例4】(古18第12题)如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M ,P ,CD 交BE 于点Q ,连接PQ ,BM ,下面结论:①△ABE ≌△DBC ;②∠DMA=60°;③BD//CE ;④BP=BQ ,其中结论正确的有( )A .1个B .2个C .3个D .4个 1、 分别相等的两个三角形全等。

(S ·A ·S )2、两边和它们的分别相等的两个三角形全等。

( · · ) 3、两角和它们的 分别相等的两个三角形全等。

( · · )4、两角分别 且其中 相等的两个三角形全等( · · )5、 和一条 分别对应相等的两个三角形全等( · )图9 四、角的平分线的性质 1、角的平分线上的点到 的距离相等(如上右图)。

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练

人教版数学《第十二章全等三角形》知识点梳理及同步训练知识梳理一.全等三角形概念1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.二.全等三角形的性质:1.全等三角形的对应边相等;全等三角形的对应角相等.2.全等三角形的周长、面积相等.三.全等的变换1.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.2.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素四.两个三角形全等的条件1.全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).2.全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.4.全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.5.直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理五.判定三角形全等方法的选择:1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

八年级第十二章全等三角形总复习课件

八年级第十二章全等三角形总复习课件

四、小结:
1、全等三角形识别思路:
已知两边
找夹角(SAS) 找第三边(SSS) 已知两角 找直角(HL)
找夹边(ASA) 找一角的对边(AAS)
(边与角相对) 找任一角(AAS)
已知一边一角
找夹这个角的另一边(SAS)
(边与角相邻) 找夹这条边的另一角(ASA)
找边的对角(AAS)
注意:1、“分别对应相等”是关键; 2、已知两边及其中一边的对角分别对应相等的两个三角形不一定全等。
10、下列四组中一定是全等三角形的为 ( ) A.三内角分别对应相等的两三角形 B、斜边相等的两直角三角形 C、两边和其中一条边的对角对应相等的两个三角形 D、三边对应相等的两个三角形
11.【99江西】已知,如图,BC=BD, ∠C=∠D,求证:AC=AD.
A
有一同学证法如下:
证:连结AB 在⊿ABC和⊿ABD中
BC=BD
∠C=∠D
B
AB=AB
C
D
∴⊿ABC≌⊿ABD ( SAS )
∴AC=AD
你认为这位同学的证法对吗?如果错误,
错在哪里,应怎样证明?
答:证法错误。 SAS定理应用错误。
12.如图,∠ACB=90°,AC=BC, BE⊥CE,AD⊥CE于D, AD=2.5cm,DE=1.7cm。求:BE的 长。 B
在△ADE与△CBF中 AE = CF
AB = CD
A EB
∴△ADE≌△CBF ( SSS)
② ∵ △ADE≌△CBF ∴ ∠A=∠C ( 全等三角形) 对应角相等
例4.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD。
求证:AF∥DEA
在 ABF 和 D C E中

第十二章全等三角形复习提纲以及复习题

第十二章全等三角形复习提纲以及复习题

第十二章 《全等三角形》复习要点:1、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形有哪些性质 (1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS ”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS ”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA ”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS ”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL ”) 二、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” 一、选择题1.如图1,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.如图2,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°图1 图23.如图3,点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出APC APD △≌△.从下列条件中补充一个条件,不一定能....推出APC APD △≌△的是( ) A .BC BD = B .AC AD =C .ACB ADB ∠=∠D .CAB DAB ∠=∠C AD P B图35.如图4,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E , 若AC = 10cm ,则BD+DE=A .10cmB .8cmC .6cmD .9cm6.如图5,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A . 30B . 40C . 50D . 607.如图6,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°8.如图7,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分∠ACB图4图5图6 图7 9.如图8,尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( )A .SASB .ASAC .AASD .SSS10.如图9, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm, 则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cmD. 不能确定11.如图10,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP图9图8A D CB AB CAB C DCA B B ' A ' O 图10BAPO E D CB12.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n 二、填空题1.如图11,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).2.如图12,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________图123.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形 有 个 .4、已知:如图13,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度.三、解答题1.如图,已知AB=AC ,AD=AE ,求证:BD=CE.……第1个第2个第3个第1个第2个第3个AC E B D图11OABCDE图13A B C DE2.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数;(2)求证:BD CE =.3.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .4.如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE , 找出图中的一组全等三角形,并说明理由.5.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN的数量关系,并证明你的结论.EB CA DME D CBA6.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,12∠=∠,34∠=∠. 求证:(1)ABC ADC △≌△;(2)BO DO =.7.如图,在ABC △和ABD △中,现给出如下三个论断:①AD BC =;②C D ∠=∠; ③12∠=∠.请选择其中两个论断为条件,另一个论断为结论,构造一个命题. (1)写出所有的真命题(写成“⎫⇒⎬⎭”形式,用序号表示): . (2)请选择一个真命题加以证明. 你选择的真命题是:⎫⇒⎬⎭.证明:8已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .21ACDBD C BAO 12349.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .10.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E D CBAF E D C B A。

人教版八年级数学上册第十二章全等三角形章末复习课件共58张

人教版八年级数学上册第十二章全等三角形章末复习课件共58张

章末复习
例3 如图12-Z-7, 在△ABC和△DEF中, 点B,E, C, F在同一直线上, 下面 有四个条件, 请你从中选三个作为题设, 余下的一个作为结论, 写出 一个正确的命题, 并加以证明. ①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.
章末复习
分析
条件 结论 是否正确
章末复习
例2 如图12-Z-4, ∠B=∠C=90°, E是BC的中点, DE平分∠ADC. 求证:AD=AB+CD.
章末复习
分析
角平分线 的性质
作EF⊥AD
EC=EF
E是BC的中点
EF=EB Rt△AFE≌Rt△ABE
AF=AB
CD=DF
AD=AB+CD
同理
章末复习
证明:如图 12-Z-4, 过点 E 作 EF⊥AD 于点 F. ∵∠C=90°, DE 平分∠ADC, ∴EC=EF. ∵E 是 BC 的中点, ∴EC=EB, ∴EF=EB. 在 Rt△AFE 与 Rt△ABE 中, AE=AE, EF=EB, ∴Rt△AFE≌Rt△ABE,∴AF=AB. 同理可得 FD=CD, ∴AD=AF+FD=AB+CD.
全等三角 形的性质
应用
角的平 分线
全等三角形
章末复习
全等三 角形
角的平 分线
全等三角形
边边边(SSS)
一般三 角形
直角三 角形
性质
边角边(SAS) 角边角(ASA) 角角边(AAS)
角的平分线上 的点到角的两 边的距离相等
SSS, SAS, ASA, AAS
HL(只适用于判定两 个直角三角形全等)
∴△AOD≌△BOC(SAS).

初中八年级数学第12章《全等三角形》复习(新人教版)

初中八年级数学第12章《全等三角形》复习(新人教版)

全等三角形复习1、概念:⑴全等形:能够完全重合的两个图形叫全等形。

⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。

表示:△ABC ≌△DEF注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

2、三角形全等的判定和性质注意:1、有两个角和一边分别相等的两个三角形不一定全等,如有对应则全等。

2、边边角(SSA )和角角角(AAA)不能判断全等的方法。

3、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 4、角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。

⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。

⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。

5、解题技巧:1)寻找全等三角形对应边、对应角的规律:(1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2) 全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.(3) 有公共边的,公共边一定是对应边.(4) 有公共角的,公共角一定是对应角.(5) 有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)(6) 寻找对应元素的方法1)根据对应顶点找2)根据已知的对应元素寻找3)通过观察,想象图形的运动变化状况,确定对应关系①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图,∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图,∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

人教版数学八年级上册第十二章全等三角形复习课件

人教版数学八年级上册第十二章全等三角形复习课件

证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F
∵BM是△ABC的角平分线,点P在
BM上, PD⊥AB于D,PE⊥BC于E
A
ND
M
PF
∴PD=PE(角平分线上的点到这个B角的两边E距 C
离相等).
同理,PE=PF.
∴PD=PE=PF.
即点P到三边AB、BC、CA的距离相等
2.如图,已知△ABC的外角∠CBD和∠BCE的平分线相
总结提高
学习全等三角形应注意以下几个问题:
(1):要正确区分“对应边”与“对边”,“对应
角”与
“对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的 字母要写在对应的位置上;
(3):要记住“有三个角对应相等”或“有两边及 其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
4.已知:如图:在△ABC中,BE、CF 分别是AC、AB两边上的高,在BE上 截取BD=AC,在CF的延长线上截取 CG=AB,连结AD、AG。
求证:△ ADG 为等腰直角三角形。
G F
A
E D H
Bபைடு நூலகம்
C
5.已知:如图21,AD平分 ∠BAC,DE⊥AB于E,DF⊥AC于 F,DB=DC, 求证:EB=FC
c
D
A
B E
4.已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条
直线上求证:BE=AD 证明:
E
∵ △ABC和△ECD都是等边三角形
A
∴ AC=BC DC=EC ∠BCA=∠DCE=60°
∴ ∠BCA+∠ACE=∠DCE+ ∠ACE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 全等三角形复习资料
知识点1 全等三角形的性质
1.全等三角形:两个能够完全重合的三角形称为全等三角形
(1)表示方法:两个三角形全等用符号“≌”来表示,
如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆
(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,
合起来就是形状相同,大小也相等,这就是全等. (3)性质:对应边相等,对应角相等。

∵△ABC ≌△DEF
∴AB=DE ,AC=DF,BC=EF , ∴∠A=∠D ,∠B=∠E ,∠C=∠F.
类型1:对应边相等的应用(重叠边)
1、如图1,△ABC ≌△DEF ,若BE=5cm,EC=3cm , 则EF=______ 类型2:对应角相等的应用(平行、重叠角、角平分线) 图1
2、如图1,△ABC ≌△DEF ,若∠B=∠DEF , 则 若∠ACB=∠F , 则AC//____
3、如图2,△ABC ≌△ADE ,若∠BAC=80º,∠DAC=50º,
则 ∠CAE=______
图2
知识点2 全等三角形的五大判定(SSS 、SAS 、ASA 、AAS 、HL)
★注意:要记住“AAA ”或“SSA ”的两个三角形不一定全等. 全等三角形的判定(一)SSS :
三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.
在ABC ∆和DEF ∆中
⎪⎩

⎨⎧===DF AC EF BC DE
AB
ABC ∆∴≌)(SSS DEF ∆
全等三角形的判定(二)SAS :
两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”. 如图,在ABC ∆和DEF ∆中,
AB DE
B E B
C EF =⎧⎪
∠=∠⎨⎪=⎩
ABC ∆∴≌)(SAS DEF ∆
全等三角形的判定(三)ASA : 有两角和它们的夹边对应相等的两个三角形全等.简写“角边角”或“ASA ”. 在ABC ∆与DEF ∆中
F C EF BC E B ∠=∠=∠=∠ ∴)(ASA DEF ABC ∆≅∆
A B
C D E
A B E D
D
C
B A
全等三角形的判定(四)AAS:
有两角和其中一角的对边对应相等的两个三角形全等.简写“角角边”或“AAS”.
在ABC
∆与DEF
∆中
DE
AB
F
C
E
B
=

=


=

∴)
(AAS
DEF
ABC∆


全等三角形的判定(五)HL:
∵∠C=∠F=90°
∴△ABC和△DEF是直角三角形
在ABC
Rt∆与DEF
Rt∆中,




=
=
EF
BC
DE
AB
∴)
(HL
DEF
Rt
ABC
Rt∆


三角形全等的证题思路(判定方法有:SSS,SAS,ASA,AAS或HL(R t△))
(1)
SAS
HL
SSS





⎪→

找夹角
已知两边找直角
找另一边
(2)
ASA
AAS





找夹边
已知两角
找任意一边
(3)
AAS
SAS
ASA
AAS
→→





⎨⎪
→→



⎪→


边为角的对边找任意一角
找夹角的另一边
已知一边和一角
边为角的邻边找夹边的另一角
找边的对角
知识点3 角平分线的性质及判定
1. 角平分线的作法(尺规作图)
①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;
②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;
③过点P作射线OP,射线OP即为所求.
2. 角平分线的性质及判定
(1)角平分线的性质:角的平分线上的点到角的两边的距离相等.
∵PA⊥OM,PB⊥ON,
OP平分∠MON(∠1=∠2),
∴PA=PB。

(2)角平分线的判定:到角的两边的距离相等的点在角的平分线上.
∵PA⊥OM,PB⊥ON,
PA=PB,
∴∠1=∠2(OP平分∠MON)
【题型一】公共边类型的全等三角形
图形1 图形2
图形
3
注意:隐含条件AD=AD 隐含条件AB=BA 隐含条件AC=CA
【例1】在ABC
∆中,AB=AC,AD平分∠BAC,求证:ABD
∆≌ACD

【例2】如图, ∠ABC=∠DCB, ∠ACB=∠DBC,求证:AC=DB.
【例3】已知:如图,AB∥CD,AB=CD.求证:AD∥BC.
【题型二】公共角类型的全等三角形
【例4】如图,AB=AC, AD=AE,BE和CD相交于P,PB=PC,求证:PD=PE.
【题型三】对顶角类型的全等三角形
图形1 图形2
【例5】如图1,已知:AE=CE,EB=ED.求证:∠B=∠D.
【例6】如图,两条直线AC,BD相交于O,BO=DO,AO=CO,直线EF过点O且分
别交AB、CD于点E,F,求证:OE=OF
A
B C
D
A
B C
D
B C
A D
D C
B
A
A
B C
D
【题型四】等线段加或减公共部分类
图形1 图形2
图形3 图形4
(1)∵AD=AE, BD=CE (2) ∵AB=AC, AD=AE ∴AD+BD=AE+CE ∴AB -AD=AC -AE 即AB=AC 即BD=CE
【例7】点B,E,C,F 在同一条直线上,AB=DF,AC=DE,BE=CF. 求证:∠A=∠D.
【例8】如图,已知:.,,CF BE DE AC DF AB ===求证:DF AB //.
【例9】已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,
求证:△ABC ≌△DEF .
A D
B E F C
(1)
A B
F
E C D
(4) A B F E D C
(2) A B E F D C (3) ∵ BE=CF ∴ BE-EF=CF-EF 即BF=CE ∵ BE=CF
∴ BE+EF=CF+EF
即 BF=CE
∵ BE=CF
∴ BE+EF=CF+EF 即BF=CE ∵ BE=CF ∴ BE-EF=CF-EF 即 BF=CE A D B E C F
B
C
D
F A A B C D E 图5
【题型五】角加减(旋转)公共部分类型的全等三角形 图形1 图形2
(1) ∵∠ABD=∠CAE (2) ∵∠BAC=∠DAE
∴∠ABD+∠CAD =∠CAE+∠CAD ∴∠BAC -∠CAE =∠DAE -∠CAE 即∠BAC=∠DAE 即∠1=∠2
图形3 图形4
【例10】如图,已知AB=AD,∠B=∠D,∠1=∠2,证明:BC=DE 证明:∵∠1=∠2
【例11】已知:如图(2),∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△CAN ≌△ABM ;④CD=DN.其中正确是_______.
【题型六】等角加或减等角类(如图四)
(1) ∵∠ADC=∠CBA, (2) ∵∠ADB=∠CBD,
∠CDB=∠ABD ∠CDB=∠ABD
∴∠ADC+∠CDB=∠CBA+∠ABD ∴∠ADB -∠CDB=∠CBD -∠ABD 即∠ADB=∠CBD 即∠ADC=∠CBA
【题型七】大山型的全等三角形(互余性质)
【例12】已知:如图,AB ⊥CD,ED ⊥BD ,AB=CD ,BC=DE ,求证:AC ⊥CE.
E
D
C B A N
M
F E D
C B
A
E
D
C
B A A D O
C B 图四 A
D O C B 图四
【例13】在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.
【例14】如图所示,已知在Rt△ABC中,AB=AC,∠BAC=90°,过A的任一条
【例15】如图,BE、CF是△ABC的高,且BP=AC,CQ=AB.求证:AP⊥AQ.直线AN,BD⊥AN于D,CE⊥AN于E。

(1)求证:DE=BD+CE;
(2)若将直线AN绕A点沿顺时针方向旋转,使它经过△ABC的内部,再作BD
⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间还存在等量关系吗?若存在,
请证明你的结论。

相关文档
最新文档