电工基础第二章讲述

合集下载

电工电子技术基础第二章直流电路分析 ppt课件

电工电子技术基础第二章直流电路分析  ppt课件

结点数 N=4 支路数 B=6
(取其中三个方程)
PPT课件
6
b
列电压方程
I2
abda :
I1
I6
E4 I6R6 I4 R4 I1R1
a I3 I4
R6
c
I5 bcdb :
0 I2R2 I5R5 I6R6
+E3
d R3
adca : I4R4 I5R5 E3 E4 I3R3
对每个结点有
I 0
3. 列写B-(N-1)个KVL电压
方程 对每个回路有
E U
4. 解联立方程组
PPT课件
5
I1 a
b I2
I6
R6
I3 I4
d
+E3
R3
列电流方程
结点a: I3 I4 I1
c 结点b: I1 I6 I2
I5
结点c: I2 I5 I3
结点d: I4 I6 I5
基本思路
对于包含B条支路N个节点的电路,若假 设任一节点作为参考节点,则其余N-1个节点 对于参考节点的电压称为节点电压。节点电压 是一组独立完备的电压变量。以节点电压作为 未知变量并按一定规则列写电路方程的方法称 为节点电压法。一旦解得各节点电压,根据 KVL可解出电路中所有的支路电压,再由电路 各元件的VCR关系可进一步求得各支路电流。
3、会用叠加定理、戴维宁定理求解复杂电路中的电压、电流、功率等。
PPT课件
1
对于简单电路,通过串、并联关系即可 求解。如:
R
R
R
+ E 2R 2R 2R 2R
-
PPT课件
+

电工基础第二章正弦交流电路及应用

电工基础第二章正弦交流电路及应用

U1 sin 1 U 2 sin 2 U1 cos 1 U 2 cos 2
由相量与正弦量之间的对应关系最后得 u u1 u2 2U sin(t ) U1cosψ1+U2cosψ2
三角函数运算由几何分析运算所替代,化复杂为简单!
电工技术
如何把代数形式变 换成极坐标形式?
例:正弦量i=14.1sin(ωt+36.9°)A的最大值相量表示为:
I m 14.1/ 36.9A
其有效值相量为: 10/ 36.9A I 由于一个电路中各正弦量都是同频率的,所以相量只需 对应正弦量的两个要素即可。 即模值对应正弦量的最大值或有效值,
幅角对应正弦量的初相位。


电工技术
复数的运算法则
设有两个复数分别为: A a a1 jb1 A
B B b a 2 jb2
A、B加、减、乘、除时运算公式如下: A B ( a1 a 2 ) j ( b1 b2 )
A B ( a1 a 2 ) j ( b1 b2 ) A B AB a b A A a b B B
补充内容:复数的运算
A 6 j8 B 3 j 4
C 10 30 D 6135
A+B= A-B= A· B=
C+D= C-D= C· D=
A/B=
C/D=
电工技术
(2)正弦量的相量表示法
与正弦量相对应的复数形式的电压和电流称为相量。 为区别与一般复数,相量的顶上一般加符号“· ”。

正弦量与纵轴相交处若 在正半周,初相为正。
-
正弦量与纵轴相交处若 在负半周,初相为负。
电工技术

电工基础全书知识点总结

电工基础全书知识点总结

电工基础全书知识点总结第一章电学基础知识1.1 电荷和电流电荷是原子中的一种基本粒子,带正电荷的叫正电荷,带负电荷的叫负电荷。

电流是单位时间内通过导体的电荷量,通常用符号I表示,单位是安培(A)。

1.2 电压和电阻电压是电场的强度,通常用符号U表示,单位是伏特(V)。

电阻是导体对电流的阻碍,通常用符号R表示,单位是欧姆(Ω)。

1.3 电路原理电路可以分为直流电路和交流电路,直流电路的电压和电流方向不变,而交流电路的电压和电流方向会周期性地变化。

电路中的电源、导线和负载是基本组成部分。

1.4 电路定律欧姆定律、基尔霍夫定律和功率公式是电路中的重要定律,可以用来分析和计算电路中的电压、电流和功率。

第二章电工安全知识2.1 电击伤害电击伤害是由于人体触碰电源或电路而导致电流通过人体产生的伤害,严重时甚至可致命。

预防电击伤害的方法包括正确使用绝缘工具、穿戴防护设备和加强对电气安全知识的培训。

2.2 火灾危险电器设备的故障可能导致火灾,因此电工需要定期检查和维护设备,及时发现并排除潜在的安全隐患。

此外,正确使用防火设施和工具也是预防火灾的重要措施。

2.3 包覆和固定电气设备的包覆和固定是保障电气安全的关键环节,包括各种绝缘材料的选择和使用、设备的安装和固定等,都需要符合相关标准和规定。

2.4 作业安全在进行电气设备安装、检修和维护时,要严格遵守作业规程和操作流程,避免违反操作规定和规程导致事故的发生。

第三章电气设备3.1 开关设备包括各种常用的电气开关,如手动开关、自动开关、接触器等,用于控制电路的通断和电器设备的启停。

3.2 电气保护设备包括过载保护器、短路保护器、漏电保护器等,用于保护电气设备和人身安全。

3.3 变压器可以实现电压变换和功率传递,是电力系统中重要的设备。

3.4 发电机和发电机组发电机是将机械能转换为电能的设备,发电机组则是将多台发电机连接成一个整体,用于供电系统。

3.5 电缆和线路电缆和线路是电能传输的重要通道,需要选择合适的规格和类型,保证电能的安全传输。

电工与电子技术基础第二章课件

电工与电子技术基础第二章课件
第二章
1.了解磁场的基本概念,理解磁感应强度、磁通、磁导率的概念。 2.掌握磁场的产生及磁场(或磁力线)方向的判断。 3.掌握磁场对通电直导体的作用及方向的判断。 4.了解铁磁材料的性质。 5.理解电磁感应定律,掌握感应电动势的计算公式。 6.了解自感现象和互感现象及其在实际中的应用。 7.理解互感线圈的同名端概念。 1.能用右手螺旋定则(安培定则)判断磁场方向。 2.能用左手定则判断电磁力方向。 3.能正确判断导体中感应电动势的方向。 4.会正确判断绕组的同名端。 一、磁的基本知识 二、电流的磁场
五、互感
8)楞次定律的基本内容是:感应磁通总是企图阻止原磁通的变化。 9)直导体产生的感应电动势的方向用右手定则来判断,其大小为e= BLvsinα,当直导体垂直于磁场方向切割磁力线时,产生的感应电动 势最大。 10)自感是由于流过线圈本身的电流变化而引起的电磁感应,对于线 性电感来说,自感电动势的大小与电流的变化率成正比。 11)互感是由于一个线圈中的电流变化在另一个线圈中引起的电磁感 应,互感电动势的方向可用楞次定律来判别,但比较复杂,通常用 同名端判别法来判断互感电动势的方向。 12)同名端就是绕在同一铁心上的线圈其绕向一致而产生感应电动势 极性相同的接线端。
一、磁的基本知识
1)磁铁的两端磁性最强,叫做磁极。 2)同性磁极互相排斥,异性磁极互相吸引。 3)任何磁铁都具有两个磁极,而且无论把磁铁怎样分割总保持有两 个异性磁极,也就是说N极和S极总是成对出现的。 2.磁场与磁力线 1)磁力线是无头无尾互不交叉,假想闭合的曲线,在磁铁外部由N 极指向S极,在磁铁内部由S极转向N极。 2)磁力线上任意一点的切线方向,就是该点的磁场方向,即小磁针 N极的指向。 3)磁力线越密,磁场越强;磁力线越疏,磁场越弱。

第二章电工基础知识资料

第二章电工基础知识资料

22
① 同相:
两个同频率正弦交流量的相位差为0° ② 反相: 两个同频率正弦交流量的相位差为180° ③ 超前: 两个同频率正弦交流量初相角大的那一个,叫做超前 于另一个。
④ 滞后:
两个同频率正弦交流量初相角小的那一个,叫做滞后 于另一个。
23
4、正弦交流电有效值
若一个交流电和直流电通过相同的电阻,经过相同的 时间产生的热量相等,则这个直流电的量就称为该交流电 的有效值 用 E U I
物理意义:
在外电路中,正电荷在电场力的作用下,从高电位处 移到低电位处所做的功,称为电位。
用字母 φ表示。单位是伏特 V。
7
4、电动势
在电源内部,非静电力把电位正电荷从负极板移到正 极板所做的功叫电动势。
本书解释: 由其它形式的能量转换为电能所引起的电源的正、负 极之间存在的电位差,叫电动势。
用字母 E 或 e 表示;单位是“伏特”(V)
39
②、三角形联接:“Δ”
UL =Uφ IL =√3 Iφ
40
2、三相负载:
“Y”联接的负载
“△”接的负载:
41
五、三相交流电路的功率和功率因数
1、三相交流电路的功率 P = PU + PV + PW = UUIUcosφU + UVIVcosφV+ UWIWcosφW
= 3Uφ Iφ cosφ = √3 U I cosφ 同理可推出: 无功功率: Q = √3 U I cosφ 视在功率: S = √3 U I 4、功率因数 Cosφ = R = P Z S
3)最大值:交流电的最大瞬时值(振幅值或峰值)
用 Em Um Im
3、相位、初相位、相位差 1)相位: 交流电动势某一瞬间所对应的(从零上升开始计)已经变化 过的电角度(ωt+φ)。

低压电工作业 第二章 电工基础知识

低压电工作业  第二章  电工基础知识
位是V(伏特)。
生活中常见水往低处流,是因为水流两端存在水 位差,同理,能促使电流形成的条件
是导体两端有电位差(电势差)的存在,即电压。
电压是衡量电场做功本领大小的物理量,在一个闭 合的外电路,电流总是从电源的正极经过负载流向 电源的负极,电场力做功,将电能转换为其他形式 的能。而内电路,电源是如何建立并维持正极及负 极之间的电位差的呢?任何一种电源都是一个能量转 换装置,
负载
电 源
开关
导线
•(二)电路的基本物理量
•1.电荷、电场和电场强度 •带电的基本粒子称为电荷,失去电子带正电的粒子 叫正电荷,失去电子带负电的粒子叫负电荷。电荷 的多少用电量或电荷量来表示;电量的符号是Q, 单位是C(库仑)
• 电场是电荷及变化磁场周围空间星存在 的一种特殊物质。电场对放入其中的电荷有作用力, 这种力称为电场力;当电荷在电场中移动时,电场 力对电荷做功,说明电场具有通常物质所具有的力 和能量等特征。
低压电工作业 第二章 电工基础知 识
第一节直流电路
• 一、电路的基本概念 (一)电路和电路图 电路是为了某种需要,将电气设备和电子元器件按照一定方 式连接起来的电流通路。直流电通过的电路称为直流电路。电路 图是为了研究和工程的实际需要。用国家标准化符号绘制的、表 示电路设备装置组成和连接关系的简图 。
在同一回路中各支路 电压之间的关系。体 现的是电荷在电场中 从一点移到另一点时, 它所具有能量的改变 量只及这两点的位置 有关,而及移动路径 无关的性质。
在分析电路列回路KVL方程时,应先规定回路绕行方向,各 支路电压参考方向及回路绕行方向一致时(从“+”极性向“”极性)取正号,反之取负号。
四、功率和电能
两个或两个以上电阻的首尾两端分别接在电路 中相同的两节点之间,使电路同时存在几条通路的 电路称为电阻的并联电路。并联电路有以下性质:

电工与电子技术基础第2版课件第2章

电工与电子技术基础第2版课件第2章

2.2 正弦量的相量图表示法
正弦量除可用三角函数、波形图表示外,但 可用随时间变化的旋转有向线段OA在y轴上的投影 来表示,如图2-4所示。称相量图法 。
y ω u1 t1 to O A ψ x Um u uo O ψ
ωt1
ωt
图2-4 用旋转的有向线段表示正弦量
用有向线段OA的长度表示正弦量的幅值Um(或Im), OA与x轴正向的夹角表示初相位ψ, OA随时间以逆时 针方向旋转的角速度表示ω,则OA在y轴上的投影为 OA=ASsin(ωt+ψ)。


(1) i 与 u 为 同频 率 ,且 u 超 前 i90° , 或 i 滞 后 u90°。 (2) Um (U)与Im(I)和ωL符合欧姆定律关系。ωL 的单位是欧姆,具有对i起阻碍的物理性质,称为 电抗,简称感抗,用XL表示,即 XL=ωL=2πfL
3.电感元件的功率关系 瞬时功率 p= ui=Imsinωt Umsin(ωt+90˚)=UIsin2ωt 图2-12b中p波形得 ,当p>0时,电感元件从外界(电 源)吸收电能,并转换为磁场能贮存于线圈中;当p<0 时,电感元件向外界释放能量,磁场能转换成电能, 并归还给电源。 有功功率P=0。即电感元件在交流电路中无能量 消耗,但电源与电感元件间存在能量的互换。用无功 功率Q来衡量能量互换的规模。规定Q等于瞬时功率p 的幅值,即 2 U Q=UI=I2XL= X L Q单位用乏 [尔] (Var)
在交流电路中,因各电流和电压多 +j A 为同一频率的正弦量,故可用有向线段 b r 来表示正弦量的最大值 ( 有效值 ) Im 、 ψ Um(I、U)和初相ψ ,称为正弦量的相量。 O a +1 在正弦量的大写字母上打“ •”表示,如 图2-5 有向线段的表示正弦量 幅值电流、电压相量用 I m、 U m表示,有 • U 效值电流、电压相量用 I 、 U 表示。将电 • 路中各电压、电流的相量画在同一坐标 φ I ψ 中,这样的图形称为相量图。 ψ 同频率的u和i可用图2-6相量图表示。 图2-6 u和i的相量图 即 U 超前 I φ°,I 或 U 滞后φ°。

中专电工基础教案第二章直流电路

中专电工基础教案第二章直流电路

第二章直流电路2.1 电阻串联电路& 2.2 电阻并联电路、串联电路把几个电阻一次连接起来,组成中间无分支的电路,叫做电阻串联电路。

如下图1 所示为两个电阻组成的串联电路。

图1 电阻串联电路串联电路的特点:1.串联电路中电流处处相等。

当n 个电阻串联时,则I1 I2 I 3 I n (式2-1)2.电路两端的总电压等于串联电阻上分电压之和。

U U1 U 2 U 3 U n (式2-2)3.电路的总电阻等于各串联电阻之和。

R 叫做R1,R2串联的等效电阻,其意义是用R 代替R1,R2后,不影响电路的电流和电压。

在图1中,(b)图是(a)图的等效电路。

当n 个电阻串联时,则R R1 R2 R3 R n (式2-3 )4.串联电路中的电压分配和功率分配关系。

由于串联电路中的电流处处相等,所以上述两式表明,串联电路中各个电阻两端的电压与各个电阻的阻值成正比; 各个电阻所消耗的功率也和各个电阻阻值成正比。

推广开来,当串联电路有 n 个电阻构成时,可得串联电路分压公式 R 1 R 1 R 2 R 3R n提示:在实际应用中,常利用电阻串联的方法,扩大电压表的量程。

二、电阻并联电路把两个或两个以上的电阻接到电路中的两点之间, 电阻两端承受同一个电压 的电路,叫做电阻并联电路。

图 2 电阻并联电路 并联电路的特点 :1、电路中各个电阻两端的电压相同即 U 1 U 2 U 3 U n (式 2-6)2、电阻并联电路总电流等于各支路电流之和U 1U 2 R 1 R 2 R n2 P 1 P 2R 1 R 2 P nR nU 2 R 2 R 1 R 2 R 3R n U nR n R 1 R 2 R 3 R n即 I I 1 I 2 I 3 I n (式 2-7 )3、并联电路的总阻值的倒数等于各并联电阻的倒数的和4、电阻并联电路的电流分配和功率分配关系 在并联电路中,并联电阻两端电压相同,所以 U R 1I 1 R 2I 2 R 3I 3 R n I n上式表明,并联电路中各支路电流与电阻成反比;各支路电阻消耗的功率和 电阻成反比。

电工基础第二章复杂直流电路的分析计算课件

电工基础第二章复杂直流电路的分析计算课件

由星形电阻网络变为等效三角形电阻网络
复杂直流电路的分析计算方法
戴维南定理
支路电流法
• 在电路的学习中,常会遇到电路中各电气元件的参数都已知,求各支路电流的问题。无论多
复杂的电路,也都是由节点、支路、回路组成的。如图所示电路,有三条支路,各电动势和
电阻值已知,试求出三个支路电流。若对节点列出节点电流方程,对回路列出回路电压方程,
通过这些方程的联立求解,就可以求出电路中的所有电压和电流。
复杂直流电路的参数
• 1.支路 : 电路中的每个分支都叫支路。如图所示,bafe、be、bcde 这三个
分支都是支路。一条支路中流过同一个电流,称为支路电流。bafe 、bcde 两条支路中含有有源元件,称为有源支路;be支路不含有源元件,成为无源 支路。 • 2.节点 : 三条或三条以上支路的汇集点,也叫节点。如图电路中b、e两点都是节点。这
阻R1、R2、R3各有一端连接在一起成为电路的一个节点,而另一端则分别接到、 、三个端钮上与外电路相连,这样的连接方式叫做星形(Y 形)联结。图(b) 中的三个电阻R12、R23、R31,则分别接在、、三个端钮中的每两个之间, 称为三角形(△形)联结。
• 电阻的星形和三角形联结都是通过三个端钮与外电路相连的,所以称它们为三端电
任意假定的封闭面。如图所示对虚线所包围的闭合
面可视为一个结点,该结点称为广义结点。即流进
封闭面的电流等于流出封闭面的电流。如图可表示


I1 I2 I3 0
•或
I1 I2 I3
广义节点
基尔霍夫第二定律
• 基尔霍夫第二定律也称基尔霍夫电压定律,又叫回路电压定律,简称KVL . • 1.描述:在任一瞬间沿任一回路绕行一周, 回路中各个元件上电压的代数和等于零。

电工技术基础与技能(中职)第二章

电工技术基础与技能(中职)第二章
叠加定理指出,在多个电源共同作用的线性电路中,任一支路的电流或电压等于各个电源单独作用于 该支路产生的电流或电压的代数和。在进行电路分析时,可以利用叠加定理简化问题,提高计算效率 。
03
磁场与电磁感应
磁场的基本概念
磁场
磁感应强度
是存在于磁体或电流周围的一种特殊 物质,对处于其中的磁体或电流产生 力的作用。
描述磁场强弱的物理量,用符号B表 示,单位是特斯拉(T)。
磁感应线
为了形象地描述磁场分布,人们设想 了一系列假想的闭合曲线,这些曲线 就是磁感应线,它们具有方向性。
磁场对通电导线的作用
01
02
03
安培力
当电流在磁场中受到磁场 的作用力时,这个力被称 为安培力,其方向可用左 手定则判断。
洛伦兹力
带电粒子在磁场中受到的 磁场作用力被称为洛伦兹 力,其方向可用左手定则 判断。
用于升高或降低电压,主要由 铁芯、绕组、油箱等组成。
电源变压器
用于电子设备和仪器中,提供 各种电压等级的电源。
自耦变压器
具有抽头,可以通过改变抽头 的位置来改变输出电压。
互感器
用于测量高电压和大电流,分 为电压互感器和电流互感器。
变压器的工作原理
变压器利用磁场和导线的相互 作用实现电能从原边传递到副 边的过程。
电路的基本组成
总结词
掌握电路的基本元件和连接方式
ห้องสมุดไป่ตู้详细描述
电路由电源、负载、导线和开关等基本元件组成。电源是将其他形式的能量转换 为电能的装置;负载是利用电能进行工作的设备;导线用于传输电流;开关用于 控制电路的通断。
电流、电压及其测量
总结词
理解电流、电压的概念及其测量方法

电工技术基础第二章第六节 最大功率传输定理

电工技术基础第二章第六节  最大功率传输定理

RL上获得Pmax为
Pmax
110 2 20 20
20
W
151.25
W
B=110V (2)求等效电阻R0=20Ω (3)求吸收最大的功率的 可变电阻RL值 RL R0 20
第一篇 电路分析 最大功率传输定理
例: 在图所示电路中,当可变电阻RL等于多大时它能从 电路中吸收最大的功率,并求此最大功率。
解: 吸收Pmax的RL值为 RL R0 20
解:(1)求开路电压UAB
第一篇 电路分析 最大功率传输定理
解:(1)求开路电压UAB
第一篇 电路分析 最大功率传输定理
解:(1)求开路电压UAB
第一篇 电路分析 最大功率传输定理
解:(1)求开路电压UAB=110V
(2)求等效电阻R0
第一篇 电路分析 最大功率传输定理
解:(1)求开路电压UAB=110V (2)求等效电阻R0
第一篇 电路分析
第六节 最大功率传输定理
第一篇 电路分析 最大功率传输定理
定理:设有一个电压源模型与一个电阻负载相接, 当负载电阻等于电压源模型的内电阻时,则负载能从 电压源模型中获得最大功率。 RL上获得最大功率的条件为
电压源模型与负载RL
第一篇 电路分析 最大功率传输定理
例: 在图所示电路中,当可变电阻RL等于多大时它能从 电路中吸收最大的功率,并求此最大功率。

《电工电子技术基础》第2章 电路的基本分析方法

《电工电子技术基础》第2章 电路的基本分析方法
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——电源等效变换
如图2.2.11所示,计算电路中流过2 Ω电阻的电流I。
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——叠加定理
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法——戴维宁定理
2.5 戴维宁定理
复杂电路中有时只需要计算其中某一条支路的响应,此时可 以将这条支路划出,而把其余部分看作一个有源二端网络。 有源二端网络 具有两个出线端的内含独立电源的电路 无源二端网络 不含独立电源的二端网络
回路,网孔的数目就等于总的独立回路数。
I1
I3
I2 I II
III
章目录 节首页 上一页 下一页
第2章 电路的基本分析方法 ——支路电流法
4.选取独立结点电流方程和独立回路电压方程组成联列方程组。
I1
I3
I1+I2 - I3=0 R1I1 - R2I2=US1 - US2
I2 I II
R2I2+R3I3=US2
III
5.方程总数等于支路总数,也就是所要求的变量数,方程组
有唯一的解。解方程组,可得到各支路电流I1、I2和I3。
I1
US1(R2 R3 ) R1R2 R2 R3
US2 R3 R3R1

《电工基础》(第五版)第二章

《电工基础》(第五版)第二章
术中有着广泛的应用。
第二章 简单直流电路的分析
1. 利用电桥测量温度 把铂(或铜)电阻置于被测点,当温度变化时,电阻值也随之改 变,用电桥测出电阻值的变化量,即可间接得知温度的变化量。 2. 利用电桥测量质量 把电阻应变片紧贴在承重的部位,当受到力的作用时,电阻应 变片的电阻就会发生变化,通过电桥电路可以把电阻的变化量转换 成电压的变化量,经过电压放大器放大和处理后,最后显示出物体 的质量。
第二章 简单直流电路的分析
电池的连接 1.电池的串联 当用电器的额定电压高于单个电池的电动势时,可以将多 个电池串联起来使用,称为串联电池组。
串联电池组
等效电路
第二章 简单直流电路的分析
2.电池的并联 有些用电器需要电池能输出较大的电流,这时可使用并联 电池组。
并联电池组
等效电路
第二章 简单直流电路的分析
(3)由等效电路可求出A、B之间的等效电阻,即:
第二章 简单直流电路的分析
等效变换方法并不是求解等效电阻的唯一方法。其他常用 的方法还有利用电流的流向及电流的分、合画出等效电路图, 利用电路中各等电位点分析电路画出等效电路图等。
混联电路的功率关系是:电路中的总功率等于各电阻上的 功率之和。这一规律同样适用于串联电路和并联电路。
(3)电路的等效电阻(即总电阻)的倒数等于各并联电阻的倒 数之和,即
(4)电路中通过各支路的电流与支路的阻值成反比,即
第二章 简单直流电路的分析
两个电阻并联电路
第二章 简单直流电路的分析
四、电阻并联电路的应用 1. 凡是额定工作电压相同的负载都采用并联的工作方
式。这样每个负载都是一个可独立控制的回路,任一负载的 正常启动或关断都不影响其他负载的使用。
时R3与R4的额定值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 电阻的串联和并联2.2 电阻的星形连接与三角形连接的等效变换2.3两种实际电源模型的等效变换2.4支路电流法2.52.6节点电压法2.7叠加定理2.8戴维南定理*2.9 含受控源电路的分析iNuIR R R U U U U )(321321++=++=321R R R R i ++=U 1-+U R 1R 2R 3U 2+-U 3+-(a )-+UR 1+R 2+R 3(b )Iba ba I⎪⎪⎪⎭⎪⎪⎪⎬⎫⋅++===⋅++===⋅++===U R R R R R UR I R U U R R R R R UR I R U U R R R R R UR I R U i i i 321333332122223211111VI R U g g 1.0502=⨯==VU f 9.991.0100=-=10029.99⋅+=ff R R Ω=k R f 1998+-100 VR g50 A+-U g +-U f R f321G G G G i ++=+-UIG 1G 2G 3I 3I 1(a )+-U IG 1+G 2+G 3(b )I 2⎪⎪⎪⎭⎪⎪⎪⎬⎫++=++=++===IG G G G I IG G G G I I G G G G G G U G I i 321333212232111111如图2.5所示2121R R R R R i +=3221050200050⨯⨯+=R R Ω=002.22R50 mAI 250 AR 2R g图2.5 例2.2图+-U 1I 1U 2a bR 1R 2I 2+-R L图2.6 例2.3图Ω=+⨯+=++=755050505050221L L ab R R R R R R AR U I ab 93.27522011===VI R U AI R R R I L L 5.7347.15047.193.2505050221222=⨯===⨯+=⨯+=VU AI AI R ab 1204.2504.24507575455220555075507525221=⨯==⨯+===Ω=+⨯+=(2) 并联化简, 将2.7(b )变为图2.7(c )Ω=+=+++⨯+=10647315)73(154ab Rd15 Ωabc6 Ω 6 Ω20Ω5 Ω7 Ω′(a)15 Ωabc6 Ω6 Ω20Ω5 ΩΩ(b)d15 Ωabc3 Ω4 ΩΩ(c)d图2.7 例2.4图2.2I11I12R12I 232 I2R31 I3I31R23(a)I33R332R2R11I1(b)I2312312233133123121223231231231121R R R R R R R R R R R R R R R R R R ++=++=++=213132133221311323211332212332121313322112R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R ++=++=++=++=++=++=流。

R 1I 1R 5I 5I 2R 2cd R 4R 3I 3I 4bR 0U s-+(a )a IIR aoR 0U s-+R cR dR 4R 2bcI 4I 2(b )d图2.10例2.5图Ω=++⨯=++=Ω=++⨯=++=Ω=++⨯=++=5405010501044050101040204050104050135351355113513R R R R R R R R R R R R R R R R R R d c aΩ=+⨯=2460406040ab R Ω=+=442420i R AR R U I i s 54412250=+=+=AI R R R I AI R R R I d c c d c d 156040403560406042244242=⨯+=⋅+==⨯+=⋅+=VI R I R U c a ac 112345202=⨯+⨯=+=AR U I ac 8.24011211===AI I I A I I I 2.022.22.28.2543513=-=-==-=-=2.3 两种实际电源模型的等效变换-U s+(a )I+-UU sU s / R IU(b )R RIU U s -=Is(a)I+-UIsIs/ GIU(b)GUGGUIIs -=ss GU I RG ==,1图2.14例2.6图(a )+-U s1R 1R 2+-U s2I aI s1(b )R 1R 2I s2RabR 12(c )I sRIabAR U I AR U I s s s s 23610110222111======AI I I s s s 1221021=+=+=Ω=+⨯=+=433131212112R R R R R A I R R R I s 333.13412643431212==⨯+=⨯+=以图2.16321I I I +--0321=-+I I I+-U s1R 1R 2+-U s2I 2abR 3I 1I 3211211s s U U I R I P -=-23322s U I R I R =+⎪⎭⎪⎬⎫=+-=-=+--117246.01171306.003221321I I I I I I I 解得I 1=10A, I 2=-5A, I 3=5A600151005851300600245156.0)5(100110232323222121+++==⨯==⨯-==⨯=WR I WR I WR I2.5 网孔法2321211m m m m I I I I I I I -=+-==R 1+-U s3I 1R 3R 2I 2+-U s2+-U s1I 3I m 1I m 2图2.18⎭⎬⎫-=+--=-+3223122221221211s s m m m s s m m m U U I R I R I R U U I R I R I R ⎭⎬⎫-=++--=-+32232122122121)()(s s m m s s m m U U I R R I R U U I R I R R ⎭⎬⎫=+=+2222212111212111s m m s m m U I R I R U I R I R⎪⎪⎭⎪⎪⎬⎫=+⋅⋅⋅++=+⋅⋅⋅++=+⋅⋅⋅++smm mm mm m m m m s mm m m m s mm m m m U I R I R I R U I R I R I R U I R I R I R 2211222222121111212111如图2.19VU V U V U R R R R R R R R R s s s 5,5,101,3210,3212,321332211311333322322211211=-==Ω-==Ω=+===Ω=+=Ω-==Ω=+=-+2 Ω+-10 V 1 Ω5 V 2 Ω 1 ΩI 1I 3I 2I 4I 5I m 1I m 2I 6I m 3图2.19例2.8图5353210233121321=+--=+-=--m m m m m m m I I I I I I I AI A I A I m m m 75.3,5.2,25.6321===AI I A I I I A I I I A I I I AI I A I I m m m m m m m m m 75.3,25.15.2,75.35.2,25.6362352142132211===-==-==-=====UI I U I I I I I m m m m m m m -=++-+=-+++---=-+10)156(6306)6510(10103010010)1010(3232121232=-m m I IVU A I AI A I m m m 8,24,5321-====AI I A I I AI A I I I AI I I A I I m m m m m m m 2,42,31,53625413312211=====-=-=-=-===2.6 节点电压法⎭⎬⎫=+---=--++003243231431s s s s I I I I I I I I I I2414214154423132131233222111)()(U G U G U U G U G I U G U G U U G U G I U G I U G I -=-==-=-====⎭⎬⎫-=++++-+=+-++322432143312431431)()()()(s s s s I I U G G G U G G I I U U G U G G G⎭⎬⎫+=+22212111212111U G U G I U G U G s)1)(1(1)1)(1(22)1(11)1(221)1(2222121111)1(1212111-----------=+⋅⋅⋅++=+⋅⋅⋅++=+⋅⋅⋅++n n s n n n n n s n n s n n I U U G U G I U G U G U G I U G U G U G。

相关文档
最新文档